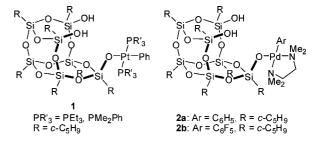
Preparation and NMR Studies of Palladium Complexes with a Silsesquioxanate Ligand

Makoto Tanabe, Kohji Mutou, Neli Mintcheva, and Kohtaro Osakada*

Chemical Resources Laboratory (R1-3), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan


Received August 13, 2007

Reaction of an incompletely condensed silsesquioxane trisilanol, $(c-C_5H_9)_7Si_7O_9(OH)_3$, with *trans*-[Pd(I)(Ar)(PMe_3)_2] in the presence of Ag_2O yielded arylpalladium complexes with a monodentate *O*-coordinated silsesquioxanate ligand, *trans*-[Pd{O₁₀Si₇($c-C_5H_9$)₇(OH)_2}(Ar)(PMe_3)_2] (**4a**: Ar = Ph, **4b**: Ar = C_6F_5). X-ray crystallographic results of **4b** showed *trans* coordination of the pentafluorophenyl ligand and the *O*-coordinated silsesquioxanate ligand to the square-planar Pd(II) center. Variable-temperature ¹H, ¹⁹F{¹H}, and ²⁹Si{¹H} NMR spectra of **4a** and **4b** revealed dynamic behavior of the molecules in solution.

Introduction

The metal complexes with silsesquioxane-containing ligands were studied as molecular model compounds of silica-supported transition-metal catalysts or precursors of metal-based heterogeneous catalysts.¹ Incompletely condensed silsesquioxanes that are functionalized with amino and phosphido groups are employed as the ligands of transition-metal complexes.^{2,3} Polyhedral oligomeric silsesquioxanes with incompletely condensed structures are coordinated to transition metals as the bulky O-ligands.⁴ Although the metallasilsesquioxanes of early transition metals are stabilized by the M-O bond of the inherently oxophilic metals, the late transition metal complexes with directly O-bonded silsesquioxanate ligands are less common, possibly due to mismatching of the coordinating siloxo groups and electron-rich metals.⁵ Abbenhuis⁶ and Johnson⁷ prepared platinum complexes containing incompletely condensed silsesquioxanates as O,O-chelating bidentate ligands.

(2) (a) P-ligands: Wada, K.; Izuhara, D.; Shiotsuki, M.; Kondo, T.; Mitsudo, T. *Chem. Lett.* **2001**, 734. (b) Nowotny, M.; Maschmeyer, T.; Johnson, B. F. G.; Lahuerta, P.; Thomas, J. M.; Davis, J. E. *Angew. Chem., Int. Ed.* **2001**, 40, 955. (c) van der Vlugt, J. I.; Fioroni, M.; Ackerstaff, J.; Hanssen, R. W. J. M.; Mills, A. M.; Spek, A. L.; Meetsma, A.; Abbenhuis, H. C. L.; Vogt, D. *Organometallics* **2003**, 22, 5297. (d) van der Vlugt, J. I.; Ackerstaff, J.; Dijkstra, T. W.; Mills, A. M.; Kooijman, H.; Spek, A. L.; Meetsma, A.; Abbenhuis, H. C. L.; Vogt, D. *Adv. Synth. Catal.* **2004**, *346*, 399.

Recently, we reported platinum and palladium complexes with a monodentate silsesquioxanate ligand, *trans*-[Pt{O₁₀Si₇(*c*-C₅H₉)₇(OH)₂}(Ph)(PR₃)₂] (1) (PR'₃ = PEt₃, PMe₂Ph)⁸ and [Pd{O₁₀Si₇(*c*-C₅H₉)₇(OH)₂}(Ar)(tmeda)] (2a: Ar = Ph, 2b: Ar = C₆F₅, tmeda = *N*,*N*,*N'*,*N'*-tetramethylethylenediamine) (Figure 1).⁹ Two OH groups and the coordinated oxygen atom formed two intramolecular O–H····O hydrogen bonds, which were revealed by X-ray crystallography and ¹H NMR spectroscopy. In this paper, we report the preparation and dynamic behavior of the palladium complexes having two PMe₃ ligands and a silsesquioxanate as the *O*-coordinated ligand.

Results and Discussion

The reaction of an incompletely condensed silsesquioxane, $(c-C_5H_9)_7Si_7O_9(OH)_3$, with *trans*-[Pd(I)(Ar)(PMe_3)_2] (**3a**: Ar = Ph, **3b**: Ar = C_6F_5) in the presence of Ag₂O at room temperature produced the palladium complexes with silsesquioxanate and two *trans* PMe_3 ligands, *trans*-[Pd{O₁₀Si_7(*c*-C_5H_9)_7(OH)_2}-(Ar)(PMe_3)_2] (**4a**: Ar = Ph, **4b**: Ar = C_6F_5), in 85% and 78% yields (eq 1). The obtained complexes are stable under air in the solid state but are decomposed slowly in CHCl₃.

Complex **4a** was obtained also by exchange of the auxiliary ligand of $[Pd{O_{10}Si_7(c-C_5H_9)_7(OH)_2}(Ph)(tmeda)]$ (**2a**); treatment of **2a** with excess PMe₃ yielded **4a** at room temperature in 85% yield, accompanied by *cis-trans* isomerization (eq 2).

^{*} To whom correspondence should be addressed. E-mail: kosakada@ res.titech.ac.jp.

For reviews: (a) Feher, F. J.; Budzichowski, T. A. Polyhedron 1995, 14, 3239. (b) Murugavel, R.; Voigt, A.; Walawalkar, M. G.; Roesky, H. W. Chem. Rev. 1996, 96, 2205. (c) Abbenhuis, H. C. L. Chem. Eur. J. 2000, 6, 25. (d) Lorenz, V.; Fischer, A.; Giessmann, S.; Gilje, J. W.; Gun'ko, Y.; Jacob, K.; Edelmann, F. T. Coord. Chem. Rev. 2000, 206–207, 321. (e) Duchateau, R. Chem. Rev. 2002, 102, 3525. (f) Hanssen, R. W. J. M.; van Santen, R. A.; Abbenhuis, H. C. L. Eur. J. Inorg. Chem. 2004, 675. (h) Lorenz, V.; Edelmann, F. T. Z. Anorg. Allg. Chem. 2004, 630, 1147.

^{(3) (}a) N-ligands: Naka, K.; Itoh, H.; Chujo, Y. *Nano Lett.* **2002**, *2*, 1183. (b) Wada, K.; Yano, K.; Kondo, T.; Mitsudo, T. *Catal. Today* **2006**, *117*, 242.

^{(4) (}a) Feher, F. J. J. Am. Chem. Soc. **1986**, 108, 3850. (b) Feher, F. J.; Newman, D. A.; Walzer, J. F. J. Am. Chem. Soc. **1989**, 111, 1741.

^{(5) (}a) Wolczanski, P. T. *Polyhedron* **1995**, *14*, 3335. (b) Marciniec, B.; Maciejewski, H. *Coord. Chem. Rev.* **2001**, *223*, 301.

⁽⁶⁾ Abbenhuis, H. C. L.; Burrows, A. D.; Kooijman, H.; Lutz, M.; Palmer, M. T.; van Santen, R. A.; Spek, A. L. *Chem. Commun.* **1998**, 2627.

⁽⁷⁾ Quadrelli, E. A.; Davies, J. E.; Johnson, B. F. G.; Feeder, N. Chem. Commun. **2000**, 1031.

⁽⁸⁾ Mintcheva, N.; Tanabe, M.; Osakada, K. Organometallics 2006, 25, 3776.

⁽⁹⁾ Mintcheva, N.; Tanabe, M.; Osakada, K. Organometallics 2007, 26, 1402.

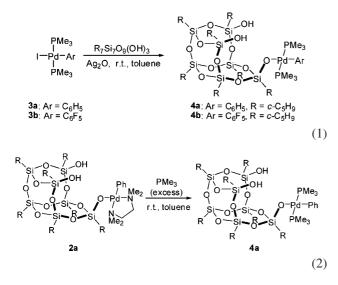


Figure 2 shows the molecular structure of 4b determined by X-ray crystallography. Selected bond distances and angles are summarized in Table 1. 4b has a square-planar coordination around the Pd center, having the C₆F₅ group and the Ocoordinated silsesquioxanate ligand at trans positions. The C₆F₅ plane is situated perpendicularly to the coordination plane around the Pd center. The Pd–O1 bond distance of **4b** (2.098(3) Å) is similar to the reported alkoxo-palladium complexes (1.979-2.129 Å),¹⁰ aryloxo-palladium complexes (2.020-2.134 Å),¹¹ and the palladium silsesquioxanate with tmeda ligand 2b (2.000(2) Å).⁹ The plane formed by Pd, O1, and Si1 atoms is also perpendicular to the coordination plane. The Pd-O1-Si1 bond angle $(125.6(2)^{\circ})$ is smaller than those of **2b** $(133.0(1)^{\circ})$,⁹ $[Pd(C_6F_5)(OSiPh_3)(tmeda)]$ (136.9(2)°, 137.9(2)°),¹² and silsesquioxanate platinum complexes 1 (130.2(2)°, 134.6(2)°).⁸ The O1 ··· O6 and O6 ··· O9 distances of 4b (2.588(4) and 2.771(5) Å) indicate the presence of two intramolecular O····H-O hydrogen bonds, and the O6-H1 and O9-H2 bonds are oriented toward O1 and O6, respectively. The shorter distance between the coordinated oxygen O1 and O6 atoms than that between O6 and O9 suggests a stronger hydrogen bond of the former, which is ascribed to the high electron density of the O1 atom coordinated by the Pd center. The complexes of platinum,⁸ palladium,⁹ and iron¹³ with O-coordinated silsesquioxanate ligands were reported to form similar hydrogen bonds among OH groups and the coordinated oxygen atoms. IR spectra of 4a and 4b show broad ν (OH) peaks at 3200 and 3300 cm^{-1} , respectively, in the solid state. Incompletely condensed silsesquioxanes, having a vicinal trisilanol structure, $(c-C_5H_9)_7Si_7O_9(OH)_3$, exhibit a peak at a similar position (3200 cm^{-1}), but the silsesquioxane disilanols formed by its methylation, $(c-C_5H_9)_7Si_7O_9(OSiMe_3)(OH)_2$, give rise to the $\nu(OH)$

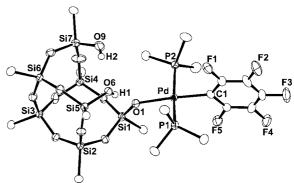


Figure 2. ORTEP drawing of 4b at the 50% ellipsoidal level. Hydrogen atoms, except for two OH hydrogens, and CH₂ carbons of the cyclopentyl groups are omitted for simplicity.

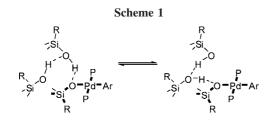
	Table 1.	Selected	Bond	Distances	and	Angles for 4b	
--	----------	----------	------	-----------	-----	---------------	--

bond distances (Å)		bond angles (deg)		
Pd-O1	2.098(3)	P1-Pd-O1	88.68(8)	
Pd-P1	2.322(1)	P1-Pd-C1	87.9(1)	
Pd-P2	2.330(1)	P2-Pd-O1	95.69(8)	
Pd-C1	2.014(4)	P2-Pd-C1	88.0(1)	
Si1-O1	1.609(3)	Pd-O1-Si1	125.6(2)	
01 ••• 06	2.588(4)	01 · · · H1-06	172.0(4)	
0609	2.771(5)	O6 •••• H2 - O9	170.0(8)	
0109	3.826(5)			
O1 ••• H1	1.86(6)			
06 •••• H2	2.11(6)			

peaks at a higher wavenumber (3471 cm⁻¹).^{1e} Thus, two OH groups of 4a form strong hydrogen bonds similarly to (c-C5H9)7Si7O9(OH)3, while 4b contains weaker O-H···O hydrogen bonds due to the less electron-donating C₆F₅ ligand of **4b** than the C_6H_5 ligand of **4a**.

¹H NMR spectra of **4a** and **4b** at room temperature contain broadened peaks of the OH hydrogens of the silsesquioxanate ligand at δ 9.20 (4a) and 8.34 (4b). Figure 3 shows variabletemperature ¹H NMR spectra of 4a at -80 to 50 °C. As the temperature of the solution is lowered, the OH signal of 4a is shifted to a lower magnetic field (δ 9.57 at -50 °C) and is sharpened at -80 °C. Although the crystal structure of **4b** shows the presence of two OH groups that are hydrogen bonded to the coordinated oxygen or oxygen atom of the other OH group, the ¹H NMR signal of the OH hydrogens is observed as a single peak even at low temperature; similar results are obtained from the variable-temperature ¹H NMR studies of Pt complex 1.⁸

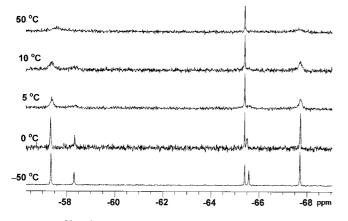


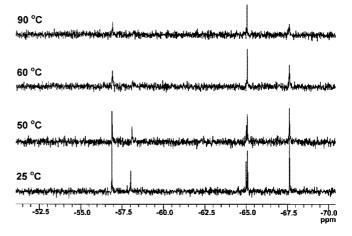

Figure 3. ¹H NMR spectra of 4a in toluene- d_8 at -80, -50, -20, 10, and 50 °C.

^{(10) (}a) Kim, Y.-J.; Osakada, K.; Takenaka, A.; Yamamoto, A. J. Am. Chem. Soc. 1990, 112, 1096. (b) Kapteijn, G. M.; Dervisi, A.; Grove, D. M.; Kooijman, H.; Lakin, M. T.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. 1995, 117, 10939.

^{(11) (}a) Alsters, P. L.; Baesjou, P. J.; Janssen, M. D.; Kooijman, H.; Sicherer-Roetman, A.; Spek, A. L.; van Koten, G. Organometallics 1992, 11, 4124. (b) Kapteijn, G. M.; Grove, D. M.; Kooijman, H.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. Inorg. Chem. 1996, 35, 526. (c) Kapteijn, G. M.; Meijer, M. D.; Grove, D. M.; Veldman, N.; Spek, A. L.; van Koten, G. Inorg. Chim. Acta 1997, 264, 211. (d) Kim, Y.-J.; Lee, J.-Y.; Osakada, K. J. Organomet. Chem. 1998, 558, 41. (e) Liu, X.; Renard, S. L.; Kilner, C. A.; Halcrow, M. A. *Inorg. Chem. Commun.* 2003, *6*, 598.
(12) Ruiz, J.; Vicente, C.; Rodríguez, V.; Cutillas, N.; López, G.; de

Arellano, C. R. J. Organomet. Chem. 2004, 689, 1872.


⁽¹³⁾ Liu, F.; John, K. D.; Scott, B. L.; Baker, R. T.; Ott, K. C.; Tumas, W. Angew. Chem., Int. Ed. 2000, 39, 3127.


Consequently, complex **4a** undergoes rapid exchange of the two OH groups over the NMR time scale even at -80 °C, as shown in Scheme 1. Broadening of the OH signals of complex **4a** above 0 °C may suggest the occurrence of a different dynamic behavior.

Variable-temperature ²⁹Si{¹H} NMR studies of 4a in toluene d_8 also demonstrate dynamic behavior of the silsesquioxane molecules, as shown in Figure 4. The ²⁹Si{¹H} NMR spectrum at -50 °C shows five distinct signals at δ -67.7, -65.6, -65.4, -58.3, and -57.3 (ratio 2:1:1:1:2), similarly to the spectra of analogous Pt complexes 1 ($PR_3 = PEt_3$, PMe_2Ph) at room temperature.⁸ The signal at δ -65.4 remains as a sharp peak even at 50 °C. Two sets of signals at δ –67.7 and –65.6 and δ -58.3 and -57.3 are broadened at 5 °C due to exchange of the ²⁹Si nuclei on the NMR time scale. The peak pair at lower magnetic field with a smaller peak separation ($\Delta \nu = 77.2$ Hz at -50 °C) approaches the weighted average position at 50 °C, although the peak pair (δ -67.7 and -65.6) with a larger peak separation ($\Delta \nu = 169$ Hz at -50 °C) does not move from their original position at 50 °C. Coalescence of the latter peak pair would occur at higher temperature. The NMR spectra at 75 °C indicated partial decomposition of the complex and did not provide useful information for the dynamic behavior of the molecule. The ²⁹Si^{{1}H} NMR spectrum of complex **4b** changes above room temperature, indicating that the same dynamic process takes place less easily (Figure 5). The spectrum of 4b at 25 °C shows five signals at δ -67.6, -65.1, -65.0, -58.0, and -56.9 in 2:1:1:1:2 ratio. Heating the solution at 90 °C causes broadening of two sets of signals at δ -67.6 and -65.0 and δ -58.0 and -56.9 to give two broadened signals and a sharp signal. The higher coalescence temperature of the ²⁹Si{¹H} NMR signals of **4b** than **4a** can be ascribed to the C₆F₅ group situated at the *trans* position of the silsesquioxanate ligand; an electron-withdrawing C₆F₅ ligand stabilizes coordination of the electron-donating silsesquioxanate ligand more significantly than the C_6H_5 ligand.

Scheme 2 depicts a plausible mechanism that accounts for the dynamic behavior of **4a**. The five peaks at δ -67.7, -65.6, -65.4, -58.3, and -57.3 at -50 °C are assigned to Si_{C',C''},

Figure 4. ²⁹Si{¹H} NMR spectra of **4a** in toluene- d_8 containing Cr(acac)₃ (0.02 M) at -50, 0, 5, 10, and 50 °C.

Figure 5. ²⁹Si{¹H} NMR spectra of **4b** in toluene- d_8 containing Cr(acac)₃ (0.02 M) at 25, 50, 60, and 90 °C.

Si_C, Si_A, Si_B, and Si_{B',B"} of structure **I**, which is consistent with the 2:1:1:12 ratio. Transfer of the Pd to the other OH groups would form the structures **II** and **III**. Approach of the signals at δ –58.3 and –57.3 to the weight averaged position with broadening, broadening of the signal at δ –65.6 and –67.7, and the temperature-independent position of the peak at δ –65.4 (Si_A) are consistent with the dynamic behavior of the molecule. Previously, we proposed intramolecular exchange of the siloxo ligand of the Pt and Pd complexes with an *O*-coordinated silsesquioxanate ligand in order to interpret the ¹H and ¹⁹F NMR signals of the C₆H₅ and C₆F₅ ligands bonded to the metal center. The complexes in this study show dynamic behavior via intramolecular exchange of the hydrogen bonds, shown in Scheme 2.

The ¹⁹F{¹H} NMR spectra of **4b** change depending on temperature, as shown in Figure 6. The spectrum at -50 °C contains a signal for the *para* fluorine nucleus (δ -158.7), two signals for *ortho* (δ -117.1, -117.9), and two signals for *meta* (δ -161.5, -162.1) fluorine nuclei. Raising the temperature causes broadening of the signals for the *ortho* and *meta* fluorine peaks, and the signals are coalesced at 0 °C. Separation of the ¹⁹F NMR peaks (318 and 252 Hz) is larger than the pairs of ²⁹Si NMR peaks that are broadened on heating (90.8 and 208 Hz), and the fluxional behavior of the ¹⁹F NMR spectra is not directly related to that observed in the ²⁹Si{¹H} NMR spectra. There is a possible dynamic process other than those in Schemes 1 and 2, and rotation of the aryl ring may occur independently from the two dynamic processes shown above.

The present study provided the structure of the palladium complexes with a monodentate silsesquioxanate ligand in the solid state and in solution. Variable-temperature ²⁹Si NMR studies of complexes **4a** and **4b** display the dynamic behavior that involves switching of the O–H···O hydrogen bonds within the *O*-coordinated silsesquioxanate ligand.

Experimental Section

General Procedures. All manipulations of the complexes were carried out using standard Schlenk techniques under an argon or nitrogen atmosphere. Hexane and toluene were purified by passing through a solvent purification system (Glass Contour). ¹H, ¹³C{¹H}, ¹⁹F{¹H}, ²⁹Si{¹H}, and ³¹P{¹H} NMR spectra were recorded on a Varian Mercury 300 or JEOL EX-400 spectrometer. Chemical shifts of the signals in ¹H and ¹³C{¹H} NMR spectra were adjusted to the residual peaks of the solvents used. The peak positions of the ¹⁹F{¹H}, ²⁹Si{¹H}, and ³¹P{¹H} NMR spectra were referenced to external CF₃COOH (δ -76.5) in toluene-*d*₈, external SiMe₄ (δ

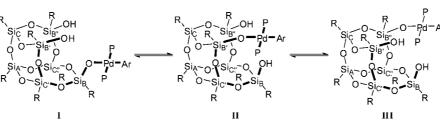
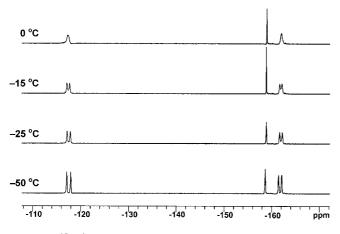



Table 2. Crystallographic Data and Details of Refinement for 4b

0) in toluene- d_8 , and 85% H₃PO₄ (δ 0) in C₆D₆, respectively. The palladium complexes *trans*-[Pd(I)(Ph)(PMe₃)₂],¹⁴ [Pd(I)(C₆F₅)-(tmeda)],¹⁵ and [Pd{(*c*-C₅H₉)₇Si₇O₁₀(OH)₂}(Ph)(tmeda)] (**2a**)⁹ were prepared according to the previous reports. Silsesquioxanes, 1,3,5,7,9,11,14-heptacyclopentyltricyclo[7.3.3.1(5,11)]heptasiloxane-endo-3,7,14-triol (Gelest), Ag₂O (Wako Pure Chemical), and acetone (Kanto Chemical) are commercially available products. These reagents and solvents are used without any purification. IR absorption spectra were recorded on a Shimadzu FT/IR-8100 spectrometer. Elemental analysis was carried out with a LECO CHNS-932 CHNS or Yanaco MT-5 CHN autorecorder.

Preparation of *trans*- $[Pd(I)(C_6F_5)(PMe_3)_2]$ (3b). To a toluene (10 mL) solution containing $[Pd(I)(C_6F_5)(tmeda)]$ (858 mg, 1.7 mmol) at room temperature was slowly added PMe₃ (0.43 mL, 4.15 mmol) by a syringe. After stirring for 12 h at room temperature, the solvent was removed under reduced pressure to give a white solid, which was washed twice with 3 mL of hexane and dried in vacuo to afford **3b** (883 mg, 96%). Anal. Calcd for C₁₂H₁₈F₅IP₂Pd: C, 26.08; H, 3.28; F, 17.19; I, 22.97. Found: C, 26.17; H, 3.27; F, 16.97; I, 22.64. ¹H NMR (400 MHz, C₆D₆, room temperature): δ 0.89 (apparent triplet due to virtual coupling, PCH_3 , 18H, splitting 3.6 Hz). ${}^{13}C{}^{1}H$ NMR (75 MHz, C₆D₆, room temperature): δ 16.5 (apparent triplet due to virtual coupling, PCH₃, splitting 16.3 Hz), 137.2 (ddd, C_6F_5 meta, $J_{F-C} = 254$, 30, 13 Hz) 138.3 (m, C_6F_5 para, $J_{\text{F-C}} = 244 \text{ Hz}$), 146.6 (dd, C_6F_5 ortho, $J_{\text{F-C}} = 221$, 16 Hz). The ipso-carbon signal of the C₆F₅ group was not observed due to the low intensity. ¹⁹F{¹H} NMR (376 MHz, C₆D₆, room temperature): δ -163.0 (m, 2F, C₆F₅ meta, J_{F-F} = 24, 6 Hz), -160.0 (t, 1F, C_6F_5 para, $J_{F-F} = 20$ Hz), -118.3 (dd, 2F, C_6F_5 ortho, $J_{F-F} = 32$, 6 Hz). ³¹P{¹H} NMR (162 MHz, C₆D₆, room temperature): δ -17.9

Preparation of *trans*-[Pd{ $(c-C_5H_9)_7Si_7O_{10}(OH)_2$ }(Ph)(PMe_3)_2] (4a). To a toluene (10 mL) solution of *trans*-[Pd(I)(Ph)(PMe_3)_2]

Figure 6. ${}^{19}F{}^{1}H{}$ NMR spectra of **4b** in toluene-*d*₈ at -50, -25, -15, and 0 °C.

(14) Kim, Y.-J.; Lee, J.-Y.; Kim, D.-H.; Lee, S.-W. Bull. Korean Chem. Soc. 1996, 17, 663.

(15) Hughes, R. P.; Ward, A. J.; Golen, J. A.; Incarvito, C. D.; Rheingold, A. L.; Zakharov, L. N. *Dalton Trans.* **2004**, 2720.

formula	$C_{47}H_{83}F_5O_{12}P_2PdSi_7 \boldsymbol{\cdot} 1/2C_7H_8$
fw	1346.18
cryst color	orange
cryst syst	triclinic
cryst size/mm	$0.15 \times 0.35 \times 0.40$
space group	<i>P</i> 1̄ (No. 2)
a/Å	13.700(6)
b/Å	14.054(6)
c/Å	17.196(7)
α/deg	102.186(7)
β/deg	99.416(5)
γ/deg	91.966(7)
V/Å ³	3185(2)
Ζ	2
$D_{\rm calcd}/{\rm g}~{\rm cm}^{-3}$	1.411
F(000)	1418
μ/mm^{-1}	0.5425
no. of rflns measd	20 863
no. of unique rflns	12 827 ($R_{int} = 0.027$)
no. of obsd rflns $(I > 2.00\sigma(I))$	10 188
no. of variables	797
$R1 \ (I > 2.00\sigma(I))$	0.0603
$wR2 \ (I > 2.00\sigma(I))$	0.1326
GOF	1.018

(107 mg, 0.23 mmol) were added (c-C₅H₉)₇Si₇O₉(OH)₃ (199 mg, 0.23 mmol) and Ag₂O (63.4 mg, 0.27 mmol). The mixture was stirred for 46 h at room temperature. When the reaction was completed by monitoring of the ³¹P{¹H} NMR spectroscopy, the toluene suspension was filtrated through Celite to remove the precipitation, and the solvent was pumped off. The residual solid substance was washed twice with 3 mL portions of acetone and dried in vacuo to give 4b as a white solid (237 mg, 85%). Anal. Calcd for C₄₇H₈₈O₁₂P₂PdSi₇: C, 46.65; H, 7.33. Found: C, 46.34; H, 7.25. ¹H NMR (400 MHz, C₆D₆, room temperature): δ 0.98 (apparent triplet due to virtual coupling, 18H, PCH_3 , splitting 3.2 Hz), 1.21 (m, 7H, CH pentyl), 1.57, 1.74, 1.83, 1.97, 2.22 (56H, CH_2 pentyl), 6.88 (m, 3H, C_6H_5 meta and para), 7.13 (br, 2H, C_6H_5 ortho), 9.20 (br, 2H, OH). ¹H NMR (400 MHz, toluene- d_8 , -50 °C): δ 0.91 (br, 18H, PCH₃), 1.23 (m, 7H, CH pentyl), 1.61, 1.80, 1.87, 2.03, 2.28 (56H, CH₂ pentyl), 6.88 (m, 3H, C₆H₅ meta and para), 7.04 (br, 1H, C₆H₅ ortho), 7.19 (br, 1H, C₆H₅ ortho), 9.57 (br, 2H, OH). ${}^{13}C{}^{1}H$ NMR (100 MHz, C₆D₆, room temperature): δ 12.8 (apparent triplet due to virtual coupling, PCH₃, splitting 14 Hz), 23.1, 23.9, 24.1 (CH pentyl), 27.7, 28.1, 28.4, 29.8 (CH₂ pentyl), 123.1 (C₆H₅ para), 136.7 (C₆H₅ ortho), 149.0 (t, C₆H₅ ipso, $J_{P-C} = 9.0 \text{ Hz}$). ¹³C{¹H} NMR (100 MHz, toluene- d_8 , -50 °C): δ 13.5 (apparent triplet due to virtual coupling, PCH₃, splitting 14 Hz), 22.7, 22.9, 23.4, 23.7, 26.9 (1:1:2:2:1, CH pentyl), 27.4, 27.4, 27.6, 27.8, 27.9, 28.1, 28.2, 28.3, 29.5 (CH₂ pentyl), 122.8 (C₆H₅ *para*), 137.1 (C_6H_5 ortho), 149.2 (t, C_6H_5 *ipso*, $J_{P-C} = 9.0$ Hz). The *meta*-carbon signal of the C_6H_5 group was overlapped with the solvent signals. ${}^{31}P{}^{1}H{}$ NMR (161 MHz, C₆D₆, room temperature): $\delta - 17.9$. ²⁹Si{¹H} NMR (79.3 MHz, toluene- d_8 , 0.02 M Cr(acac)₃, 25 °C): δ -67.4 (br), -65.1, -58.1 (br), -57.0 (br). ²⁹Si{¹H} NMR (79.3 MHz, toluene- d_8 , 0.02 M Cr(acac)₃, -50 °C): δ -67.7, -65.6, -65.4, -58.3, -57.3 (ratio 2:1:1:1:2). IR data (KBr): 3200 (br), 2950 (s), 2867 (s), 1119 (s), 951 (s), 735 (m), 505 (m) cm^{-1} .

Preparation of trans-[Pd{(c-C₅H₉)₇Si₇O₁₀(OH)₂}(C₆F₅)-(PMe₃)₂](4b). To a toluene (10 mL) solution of trans- $[Pd(I)(C_6F_5)(PMe_3)_2]$ (65.3 mg, 0.12 mmol) were added (c-C₅H₉)₇Si₇O₉(OH)₃ (105 mg, 0.12 mmol) and Ag₂O (33.4 mg, 0.14 mmol). The mixture was stirred for 4 days at room temperature. The toluene suspension was filtrated through Celite, and the solvent was pumped off. The residual solid substance was washed twice with 3 mL of acetone and dried in vacuo to give 4b as a white solid (122 mg, 78%). Anal. Calcd for C₄₇H₈₃O₁₂P₂PdSi₇: C, 43.42; H, 6.43; F, 7.31. Found: C, 43.24; H, 6.47; F, 7.14. ¹H NMR (400 MHz, C_6D_6 , room temperature): δ 0.93 (apparent triplet due to virtual coupling, 18H, PCH₃, splitting 3.2 Hz), 1.16 (m, 7H, CH pentyl), 1.56, 1.74, 1.99, 2.21 (56H, CH2 pentyl), 8.34 (br, 2H, OH). ¹³C{¹H} NMR (100 MHz, toluene- d_8 , room temperature): δ 13.8 (apparent triplet due to virtual coupling, PCH₃, splitting 15 Hz), 23.1, 23.3, 23.8, 24.0, 27.4 (CH pentyl), 27.5, 27.6, 28.1, 28.1, 28.3, 28.4, 28.5, 29.8 (CH₂ pentyl), 113.9 (m, C₆F₅ ipso), 137.1 (m, C_6F_5 meta, $J_{F-C} = 254$ Hz) 138.0 (m, C_6F_5 para, $J_{F-C} = 244$ Hz), 146.9 (m, C_6F_5 ortho, $J_{F-C} = 227$ Hz). ¹⁹F{¹H} NMR (376 MHz, toluene- d_8 , room temperature): $\delta - 162.1$ (2F, C₆F₅ meta), -159.3 (1F, C₆F₅ para), -117.5 (2F, C₆F₅ ortho). ¹⁹F{¹H} NMR (376 MHz, toluene-d₈, -50 °C): δ -162.1 (m, 1F, C₆F₅ meta), -161.5 (m, 1F, C₆F₅ meta), -158.7 (t, 1F, C₆F₅ para, $J_{\text{F-F}} = 20$ Hz), -117.9 (d, 1F, C₆F₅ ortho, $J_{F-F} = 29$ Hz), -117.1 (d, 1F, $C_6F_5 \text{ ortho}, J_{F-F} = 29 \text{ Hz}$). ³¹P{¹H} NMR (162 MHz, C_6D_6 , room temperature): $\delta - 14.3$. ²⁹Si{¹H} NMR (79.3 MHz, toluene- d_8 , 0.02 M Cr(acac)₃, room temperature): δ -67.6, -65.1, -65.0, -58.0, -56.9 (ratio 2:1:1:1:2). IR data (KBr): 3300 (br), 2950 (s), 2867 (s), 1504.7 (s), 1458 (s), 1111 (w), 951 (s), 504 (m) cm⁻¹.

Reaction of *trans*-[Pd{($c-C_5H_9$)₇Si₇O₁₀(OH)₂}(Ph)(tmeda)] (2a) with an Excess of PMe₃. To a solution of palladasilsesquioxane 2a (100 mg, 0.085 mmol) in toluene (3 mL) was added an excess of PMe₃ (35 μ L, 0.34 mmol) at room temperature. The reaction mixture was stirred at room temperature for 13 h. The solvent was removed under reduced pressure. The resulting material was washed twice with 3 mL of acetone to yield 4a as a white solid (87.1 mg, 85%).

X-ray Crystallography. Crystals of **4b** suitable for an X-ray diffraction study were sealed in glass capillaries. Data for **4b** were collected at -160 °C on a Rigaku Saturn CCD diffractometer equipped with monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Calculations were carried out using the program package Crystal Structure, version 3.7, for Windows. A full-matrix least-squares refinement was used for the non-hydrogen atoms with anisotropic thermal parameters. Hydrogen atoms, except for the OH hydrogens of **4b**, were located by assuming the ideal geometry and were included in the structure calculations without further refinement are summarized in Table 2.

Acknowledgment. This work was financially supported by a Grant-in-Aid for Scientific Research for Young Chemists (No. 80376962) and for Scientific Research on Priority Areas, from the Ministry of Education, Culture, Sport, Science, and Technology of Japan.

Supporting Information Available: Crystallographic data for **4b** as a CIF file. This material is available free of charge via the Internet at http://pubs.acs.org. OM700827F