Synthesis and Structural Characterization of the Diborylated Organometallics 1,3-Bis(dibromoboryl)-1′**,2**′**,3**′**,4**′**,5**′**-(pentamethyl) ferrocene and 1,3-Bis(dibromoboryl)cymantrene**

U. David Eckensberger, Kerstin Kunz, Michael Bolte, Hans-Wolfram Lerner, and Matthias Wagner*

Institut für Anorganische und Analytische Chemie, J. W. Goethe-Universität Frankfurt, Max V*on Laue-Strasse 7, D-60438 Frankfurt (Main), Germany*

*Recei*V*ed October 5, 2007*

Diborylated organometallic complexes can function as precursors for boron-bridged organometallic macromolecules. So far, mainly ferrocenylborane polymers featuring a 1,1′-connectivity pattern have been prepared from 1,1′-bis(dibromoboryl)ferrocene. In this paper we present the optimized synthesis protocols for 1,3-bis(dibromoboryl)-1′,2′,3′,4′,5′-(pentamethyl)ferrocene and 1,3-bis(dibromoboryl)cymantrene. Both compounds have been fully characterized by NMR spectroscopy as well as X-ray diffraction techniques and possess promising potential for the preparation of boron-bridged polymers with a 1,3 connectivity pattern.

Polymeric organoboranes are of versatile use as catalysts, sensor systems, or luminescent materials.^{1–9} Another important class of compounds consists of metal-containing macromolecules that show useful properties such as electronic communication or cooperative magnetic behavior between the individual metal sites. $10-23$ It is thus justified to expect that the

-
- (1) Jäkle, F. *Coord. Chem. Re*V*.* **²⁰⁰⁶**, *²⁵⁰*, 1107–1121. (2) Entwistle, C. D.; Marder, T. B. *Chem. Mater.* **²⁰⁰⁴**, *¹⁶*, 4574–4585.
- (3) Entwistle, C. D.; Marder, T. B. *Angew. Chem., Int. Ed.* **2002**, *41*, 2927–2931.
- (4) Parab, K.; Venkatasubbaiah, K.; Jäkle, F. *J. Am. Chem. Soc.* **2006**, *128*, 12879–12885.
- (5) Qin, Y.; Sukul, V.; Pagakos, D.; Cui, C.; Jäkle, F. *Macromolecules* **2005**, *38*, 8987–8990.
- (6) Qin, Y.; Pagba, C.; Piotrowiak, P.; Jäkle, F. *J. Am. Chem. Soc.* **2004**, *126*, 7015–7018.
- (7) Qin, Y.; Cheng, G.; Sundararaman, A.; Jäkle, F. *J. Am. Chem. Soc.* **2002**, *124*, 12672–12673.
- (8) Matsumi, N.; Miyata, M.; Chujo, Y. *Macromolecules* **1999**, *32*, 4467–4469.
- (9) Matsumi, N.; Naka, K.; Chujo, Y. *J. Am. Chem. Soc.* **1998**, *120*, 5112–5113.
- (10) Hoogenboom, R.; Schubert, U. S. *Chem. Soc. Re*V*.* **²⁰⁰⁶**, *³⁵*, 622– 629.
- (11) Manners, I. *Synthetic Metal-Containing Polymers*; Wiley-VCH: Weinheim, 2004.
- (12) Schubert, U. S.; Eschbaumer, C. *Angew. Chem., Int. Ed.* **2002**, *41*, 2892–2926.
- (13) Archer, R. D. *Inorganic and Organometallic Polymers*; Wiley-VCH: Weinheim, 2001.
- (14) Pittman, C. U.; Carraher, C. E.; Zeldin, M.; Sheats, J. E.; Culbertson, B. M. *Metal-Containing Polymeric Materials*; Plenum Press: New York, 1996.
- (15) Nguyen, P.; Gómez-Elipe, P.; Manners, I. *Chem. Re*V*.* **¹⁹⁹⁹**, *⁹⁹*, 1515–1548.
- (16) Tsui, Y.; Brühl, A.; Remović-Langer, K.; Pashchenko, V.; Wolf,
- B.; Donath, G.; Pikul, A.; Kretz, T.; Lerner, H.-W.; Wagner, M.; Salguero,
- A.; Saha-Dasgupta, T.; Rahaman, B.; Valenti, R.; Lang, M. *J. Magn. Magn. Mater.* **2007**, *310*, 1319–1321.
- (17) Kretz, T.; Bats, J. W.; Losi, S.; Wolf, B.; Lerner, H.-W.; Lang, M.; Zanello, P.; Wagner, M. *Dalton Trans.* **2006**, 4914–4921.
- (18) Margraf, G.; Kretz, T.; Fabrizi de Biani, F.; Laschi, F.; Losi, S.; Zanello, P.; Bats, J. W.; Wolf, B.; Remović-Langer, K.; Lang, M.; Prokofiev, A.; Assmus, W.; Lerner, H.-W.; Wagner, M. *Inorg. Chem.* **2006**, *45*, 1277– 1288.

combination of both Lewis acidic boron atoms and organometallic moieties will result in particularly intriguing compounds.

So far, only a few examples of boron-bridged organometallic polymers are known in the literature, almost all of them featuring ferrocene as the key building block.^{24–33} Two different types have to be distinguished: (1) The first type is poly(ferrocenylene)s containing cationic, neutral, or anionic tetra-coordinated boron linkers. In most cases, these macromolecules have been prepared via coordination polymerization of diborylated organometallics and ditopic Lewis bases (e.g., $[-BMe₂ + BMe₂ + BMe₂$ bipy–]_n;³¹ fc = $(C_5\hat{H}_4)_2Fe$, bipy = 2,2′-bipyridyl). Here, the boron atoms mainly serve the purpose of providing a Lewis boron atoms mainly serve the purpose of providing a Lewis acidic anchor group. (2) The second class of poly(ferrocenylene)s contains three-coordinated boron atoms that offer a

- (19) Wolf, B.; Zherlitsyn, S.; Lüthi, B.; Harrison, N.; Löw, U.; Pashchenko, V.; Lang, M.; Margraf, G.; Lerner, H.-W.; Dahlmann, E.; Ritter, F.; Assmus, W.; Wagner, M. Phys. Rev. B 2004, 69, 092403.
- (20) Dinnebier, R.; Lerner, H.-W.; Ding, L.; Shankland, K.; David, W. I. F.; Stephens, P. W.; Wagner, M. *Z. Anorg. Allg. Chem.* **2002**, *628*, 310–314.
- (21) Müller, T. J. J.; Blümel, J. *J. Organomet. Chem.* **2003**, *683*, 354– 367.
- (22) Bunz, U. H. F.; Enkelmann, V. *Organometallics* **1994**, *13*, 3823– 3833.
- (23) Bunz, U. H. F.; Enkelmann, V.; Beer, F. *Organometallics* **1995**, *14*, 2490–2495.
- (24) Heilmann, J. B.; Scheibitz, M.; Qin, Y.; Sundararaman, A.; Jäkle, F.; Kretz, T.; Bolte, M.; Lerner, H.-W.; Holthausen, M. C.; Wagner, M.
- *Angew. Chem., Int. Ed.* **2006**, *45*, 920–925.
- (25) Heilmann, J. B.; Qin, Y.; Jäkle, F.; Lerner, H.-W.; Wagner, M. *Inorg. Chim. Acta* **2006**, *359*, 4802–4806.
- (26) Scheibitz, M.; Heilmann, J. B.; Winter, R. F.; Bolte, M.; Bats, J. W.; Wagner, M. *Dalton Trans.* **2005**, 159–170.
- (27) Scheibitz, M.; Winter, R. F.; Bolte, M.; Lerner, H.-W.; Wagner, M. *Angew. Chem., Int. Ed.* **2003**, *42*, 924–927.
- (28) Ma, K.; Scheibitz, M.; Scholz, S.; Wagner, M. *J. Organomet. Chem.* **2002**, *652*, 11–19.
- (29) Berenbaum, A.; Braunschweig, H.; Dirk, R.; Englert, U.; Green, J. C.; Jäkle, F.; Lough, A. J.; Manners, I. *J. Am. Chem. Soc.* **2000**, *122*,
- 5765–5774. (30) Grosche, M.; Herdtweck, E.; Peters, F.; Wagner, M. *Organometallics* **1999**, *18*, 4669–4672.
- (31) Fontani, M.; Peters, F.; Scherer, W.; Wachter, W.; Wagner, M.; Zanello, P. *Eur. J. Inorg. Chem.* **1998**, 1453–1465.
- (32) Jäkle, F.; Priermeier, T.; Wagner, M. *Chem. Ber.* **1995**, *128*, 1163– 1169.
- 10.1021/om700995q CCC: \$40.75 2008 American Chemical Society Publication on Web 01/24/2008

^{*} Corresponding author. Fax: +49 69 798 29260. E-mail: Matthias.Wagner@ chemie.uni-frankfurt.de.

(1) Jäkle, F. Coord. Chem. Rev. 2006, 250, 1107-1121.

Figure 1. Boron-bridged poly(ferrocenylene)s **A** containing 1,1′ disubstituted ferrocenylene moieties and target polymers **B** containing 1,3-disubstituted organometallic fragments.

vacant p orbital for conjugative interaction between the bonded metal complexes (e.g., $[-B(Mes)fc-]_n^2$ ²⁴ Mes = mesityl).
Common to both types of polymers is the 11'-connectivity Common to both types of polymers is the 1,1′-connectivity pattern at the ferrocene fragment; i.e., the polymer chain comes in at one cyclopentadienyl ring and goes out at the other (cf. **A**; Figure 1).

Our group has recently prepared various **A**-type polymers $(R = Br, Mes, O(CH₂)₄Br)$ via a newly developed condensation reaction that employs 1,1′-bis(dibromoboryl)ferrocene as starting material and Et_3SH as trigger compound.^{24,25,34} According to cyclic voltammetry and UV/vis spectroscopy, these compounds show a significant degree of electronic interaction between the Fe(II) ions. Since it has been predicted that a 1,3-connectivity pattern should be superior to a 1,1′-pattern with regard to the electronic communication of the ferrocene units, $35,36$ it is our aim to get access to **B**-type compounds (Figure 1) and to test this hypothesis.

Unfortunately, the synthesis of poly(ferrocenylene)s **B** is hampered by the poor availability of the required starting material 1,3-bis(dibromoboryl)ferrocene. The convenient electrophilic borylation of ferrocene with 2 equiv of BBr₃ leads almost exclusively to 1,1′-bis(dibromoboryl)ferrocene and gives only trace amounts of the $1,3$ -isomer.^{37,38} It has, however, been shown that 1,1',3,3'-tetrakis(dibromoboryl) ferrocene can be prepared in reasonable yield from ferrocene and a large excess of BBr₃.^{38,39} This result clearly proves that the desired 1,3substitution pattern is electronically and sterically feasible.

To circumvent 1,1′-diborylation and to force the reaction toward 1,3-diborylation, we decided to switch from ferrocene **Scheme 1. Synthesis of 1,3-Bis(dibromoboryl)-1**′**,2**′**,3**′**,4**′**,5**′**- (pentamethyl)ferrocene 1 and 1,3-Bis(dibromoboryl)cymantrene 2***^a*

^a (i) hexane, reflux, 6 h; (ii) reflux, 44 h.

to 1,2,3,4,5-(pentamethyl)ferrocene, in which one cyclopentadienyl ring is protected by permethylation while the other is still accessible for borylation [*Note*: In the following we will abbreviate 1,2,3,4,5-(pentamethyl)ferrocene as (pentamethyl)ferrocene]. Another possibility is to replace ferrocene by cymantrene, for which direct borylation to 1,3-bis(dibromoboryl)cymantrene has already been described.³⁷

The purpose of this paper is to report the optimized synthesis and complete characterization of 1,3-bis(dibromoboryl)-1′, 2′,3′,4′,5′-(pentamethyl)ferrocene (**1**; Scheme 1) and 1,3-bis- (dibromoboryl)cymantrene (**2**; Scheme 1), which have promising potential as building blocks for **B**-type polymers.

Results and Discussion

Synthesis and NMR Spectroscopic Characterization. Compound **1** was synthesized in good yields from 4.5 equiv of BBr3 and (pentamethyl)ferrocene in refluxing hexane. Since a significant degree of diborylation already occurs at ambient temperature, (pentamethyl)ferrocene appears to be more reactive toward BBr₃ than the parent ferrocene. This observation can be explained by the +I-effect of the five methyl groups.

By contrast, diborylation of cymantrene is much harder to achieve than diborylation of ferrocene due to the electronwithdrawing effect of the $Mn(CO)$ ₃ group. We obtained the best yields of **2** by keeping a mixture of cymantrene and neat BBr3 at reflux temperature for about 40 h. This synthesis protocol is similar to the one employed for the preparation of 1,1',3,3'tetrakis(dibromoboryl)ferrocene.39

Compounds 1 and 2 were characterized by ${}^{11}B$, ${}^{1}H$, and ${}^{13}C$ NMR spectroscopy of C_6D_6 solutions.

The 11B NMR spectrum of **1** shows one signal at 53.8 ppm, indicating the two boron atoms to be three-coordinated 40 and chemically equivalent. The chemical shift value of **1** is close to those of 1,3-bis(dibromoboryl)ferrocene (δ ⁽¹¹B) = 53.0) and 1.1' 3.3'-tetrakis(dibromoboryl)ferrocene (δ ⁽¹¹B) = 53.6). The 1,1',3,3'-tetrakis(dibromoboryl)ferrocene (δ (¹¹B) = 53.6). The ¹H NMR spectrum of 1 reveals three signals with singlet ¹H NMR spectrum of 1 reveals three signals with singlet, doublet, and triplet multiplicity (integral ratio 15:2:1), which are assigned to the five chemically equivalent methyl groups, the protons H4,5, and the H2 proton, respectively. Only four of the expected five signals are observed in the 13 C NMR spectrum of **1**, because the resonances of the borylated carbon atoms are broadened beyond detection due to $^{1}J_{\text{CB}}$ coupling and the fast quadrupolar relaxation of the boron nuclei.

⁽³³⁾ For oligonuclear complexes and metal-containing polymers with ditopic poly(pyrazol-1-yl)borate ligands see: (a) Haghiri Ilkhechi, A.; Mercero, J. M.; Silanes, I.; Bolte, M.; Scheibitz, M.; Lerner, H.-W.; Ugalde, J. M.; Wagner, M. *J. Am. Chem. Soc.* **2005**, *127*, 10656–10666. (b) Bieller, S.; Bolte, M.; Lerner, H.-W.; Wagner, M. *Inorg. Chem.* **2005**, *44*, 9489– 9496. (c) Bieller, S.; Zhang, F.; Bolte, M.; Bats, J. W.; Lerner, H.-W.; Wagner, M. *Organometallics* **2004**, *23*, 2107–2113. (d) Zhang, F.; Bolte, M.; Lerner, H.-W.; Wagner, M. *Organometallics* **2004**, *23*, 5075–5080. (e) Haghiri Ilkhechi, A.; Guo, S.; Bolte, M.; Wagner, M. *Dalton Trans.* **2003**, 2303–2307. (f) Guo, S. L.; Peters, F.; Fabrizi de Biani, F.; Bats, J. W.; Herdtweck, E.; Zanello, P.; Wagner, M. *Inorg. Chem.* **2001**, *40*, 4928– 4936. (g) Guo, S. L.; Bats, J. W.; Bolte, M.; Wagner, M. *J. Chem. Soc., Dalton Trans.* **2001**, 3572–3576. (h) Fabrizi de Biani, F.; Jäkle, F.; Spiegler, M.; Wagner, M.; Zanello, P. *Inorg. Chem.* **1997**, *36*, 2103–2111. (i) Jäkle, F.; Polborn, K.; Wagner, M. *Chem. Ber.* **1996**, *129*, 603–606.

⁽³⁴⁾ Scheibitz, M.; Bats, J. W.; Bolte, M.; Lerner, H.-W.; Wagner, M. *Organometallics* **2004**, *23*, 940–942.

⁽³⁵⁾ Plenio, H.; Hermann, J.; Sehring, A. *Chem. Eur. J.* **2000**, *6*, 1820– 1829.

⁽³⁶⁾ Plenio, H.; Hermann, J.; Leukel, J. *Eur. J. Inorg. Chem.* **1998**, 2063– 2069.

⁽³⁷⁾ Ruf, W.; Renk, T.; Siebert, W. *Z. Naturforsch.* **1976**, *31b*, 1028– 1034.

⁽³⁸⁾ Wrackmeyer, B.; Dörfler, U.; Herberhold, M. *Z. Naturforsch.* **1993**, *48b*, 121–123.

⁽³⁹⁾ Appel, A.; Nöth, H.; Schmidt, M. *Chem. Ber.* **1995**, *128*, 621– 626.

⁽⁴⁰⁾ Nöth, H.; Wrackmeyer, B. Nuclear Magnetic Resonance Spectroscopy of Boron Compounds. In *NMR Basic Principles and Progress*; Diehl, P., Fluck, E., Kosfeld, R., Eds.; Springer: Berlin, 1978.

Table 1. Selected Crystallographic Data for 1 and 2

	1	$\mathbf{2}$
formula	$C_{15}H_{18}B_{2}Br_{4}Fe$	$C_8H_3B_2Br_4MnO_3$
fw	595.40	543.30
color, shape	dark violet, block	light yellow, plate
temp(K)	173(2)	173(2)
radiation	Mo Kα, 0.71073 A	Mo Kα, 0.71073 A
cryst syst	monoclinic	triclinic
space group	$P2_1/c$	$P-1$
a(A)	15.0877(10)	6.7882(11)
b(A)	18.6584(11)	10.6733(19)
c(A)	13.8304(11)	11.313(2)
α (deg)	90	100.226(14)
β (deg)	93.375(6)	105.977(14)
γ (deg)	90	105.209(13)
$V(\AA^3)$	3886.7(5)	732.3(2)
Z	8	2
$D_{\text{calcd.}}$ (g cm ⁻³)	2.035	2.464
F(000)	2272	500
μ (mm ⁻¹)	8.992	11.805
cryst size $(mm3)$	$0.29 \times 0.27 \times 0.24$	$0.21 \times 0.18 \times 0.07$
no. of rflns collected	64 011	6497
no. of indep rflns (R_{int})	7368 (0.0999)	2722 (0.0852)
no. of data/restraints/params	7368/75/388	2722/0/164
GOF on F^2	1.096	1.076
R1, wR2 $(I > 2\sigma(I))$	0.0709, 0.1557	0.0686, 0.1680
$R1$, w $R2$ (all data)	0.0983, 0.1701	0.0823, 0.1779
largest diff peak and hole $(e \text{ Å}^{-3})$	$0.718, -1.134$	$2.176, -1.532$

Some trends in the chemical shift values of borylated ferrocenes are revealing in the context of the question: Are **A**-type or **B**-type compounds better suited to bring about electronic communication along the polymer chain? Introduction of BBr2 substituents into a cyclopentadienyl ligand leads to a continuous and pronounced downfield shift of its 13 C (and 1 H) NMR resonances along the sequence ferrocene ($\delta(^{13}C) = 68.3$)
 \rightarrow (dipromoboryl)ferrocene ($\delta(^{13}C) = 77.4$ (78.4) \rightarrow 1.3- \rightarrow \rightarrow (dibromoboryl)ferrocene (δ (¹³C) = 77.4, 78.4) → 1,3-
bis(dibromoboryl)ferrocene (δ (¹³C) = 84.6, 86.1) This deshieldbis(dibromoboryl)ferrocene ($\delta(^{13}C) = 84.6, 86.1$). This deshield-
ing of the corresponding carbon puclei is diagnostic of a ing of the corresponding carbon nuclei is diagnostic of a concomitant decrease of π -electron density in the ring. Contrary to that, if we compare the ¹³C NMR data of the $1,3-C_5H_3(BBr_2)_2$ ligand in **1**, 1,3-bis(dibromoboryl)ferrocene, and 1,1′,3,3′ tetrakis(dibromoboryl)ferrocene, the differences in chemical shift values are negligibly small (<4 ppm). This is true, even though **1** contains an electron-rich Cp* ring whereas 1,1′,3,3′-tetrakis(dibromoboryl)ferrocene possesses an electron-poor 1,3-bis- (dibromoboryl)cyclopentadienyl moiety as second ligand. It is thus obvious that the Fe(II) ion buffers the influence of one cyclopentadienyl ligand on the other (cf. **A**) to a greater extent than the electronic interaction of a cyclopentadienyl ring with its substituents (cf. **B**).

The 11 B NMR signal of 2 appears at 51.0 ppm. In the 1 H NMR spectrum, the organometallic backbone gives rise to two resonances for the cyclopentadienyl protons with an integral ratio of 2:1 (d, H4,5; n.r., H2). Two 13 C NMR resonances are observed; the signals for the borylated carbon atoms and the CO ligands of **2** could not be detected.

In the IR spectrum, 2 has CO bands at 2038 cm^{-1} and 1967 cm⁻¹, compared to values \bar{v} (CO) = 2022 cm⁻¹/1934 cm⁻¹
for (dibromoboryl)cymantrene and 2022 cm⁻¹ (A₁)/1931 cm⁻¹ for (dibromoboryl)cymantrene and 2022 cm⁻¹ (A₁)/1931 cm⁻¹ (E) for parent cymantrene (toluene solutions).

X-ray Crystal Structure Determination. Crystal data and structure refinement details for **1** and **2** are compiled in Table 1.

The ferrocene derivative **1** crystallizes from hexane (monoclinic, $P2_1/c$) with two crystallographically independent molecules $(1_A, 1_B)$ in the asymmetric unit. In the solid state, the

Figure 2. Molecular structure and numbering scheme of compound **1A**; thermal ellipsoids are drawn at the 50% probability level. Selected bond lengths (A) and angles (deg) : $B(1)-Br(1) =$ 1.912(11), B(1)-Br(2) = 1.915(11), B(1)-C(1) = 1.527(13), $B(3)-Br(3) = 1.920(11), B(3)-Br(4) = 1.937(10), B(3)-C(3) =$ $1.478(14)$, $C(1) - C(2) = 1.445(12)$, $C(2) - C(3) = 1.438(12)$, $C(3)-C(4) = 1.464(12), C(4)-C(5) = 1.403(12), C(1)-C(5) =$ $1.438(11)$, Fe(1)-COG(Cp^{*}) = 1.679, Fe(1)-COG(Cp) = 1.667; $Br(1)-Br(2) = 117.6(5), C(1)-Br(1) = 121.3(7),$ $C(1)-B(1)-Br(2) = 120.9(8), Br(3)-Br(3)-Br(4) = 116.1(5),$ $C(3)-B(3)-Br(3) = 121.9(7), C(3)-B(3)-Br(4) = 121.9(7);$ $B(1)Br(1)Br(2)//B(3)Br(3)Br(4) = 5.1, B(1)Br(1)Br(2)//Cp = 3.8,$ B(3)Br(3)Br(4)//Cp = 3.9, Cp//Cp* = 3.3; $\alpha^*(B(1)) = 7.1$, $\alpha^*(B(3)) = 5.8$. COG: centroid of the respective cyclopentadienyl ring.

two cyclopentadienyl rings of 1_A adopt a staggered conformation; the Cp^* ligand of $\mathbf{1}_B$ is disordered over two positions. The molecular structures of 1_A and 1_B are identical within the experimental error margins so that only the structural parameters of **1A** need to be discussed here.

The crystal structure analyses of **1** (Figure 2) and **2** (Figure 3) clearly prove them to be 1,3-diborylated species with threecoordinated boron atoms (sum of angles about $B(1)$ and $B(3)$) $= 360^{\circ}$). In both cases, the dihedral angle between the two BBr₂ planes is smaller than 10°. The same is true for the angles between each cyclopentadienyl ring and its boryl substituents. This leads to the conclusion that there is no significant steric repulsion within the $1,3-C_5H_3(BBr_2)_2$ ligands of 1 and 2. Moreover, the conformations of the molecules permit a high degree of orbital overlap between the cyclopentadienyl *π*-electron system and the empty p orbitals of the boron atoms.

Interestingly, the $C-C$ bond lengths of the borylated cyclopentadienyl rings vary in the comparatively broad interval between C(4)-C(5) = 1.403(12) Å and C(3)-C(4) = 1.464(12) Å in the ferrocene derivative 1_A and $C(4)-C(5) = 1.389(13)$ Å and $C(1)-C(5) = 1.472(12)$ Å in the cymantrene species 2. A similar bond alternance has been reported for the related compounds (dibromoboryl)ferrocene⁴¹ and (dibromoboryl)cymantrene⁴² and was attributed to some borafulvene character of the C_5H_4 -BBr₂ moieties. If we superpose the two borafulvene resonance structures that can be drawn for each molecule of **1** and **2**, it becomes immediately apparent that $C(4)-C(5)$ is the only bond that possesses double-bond character in *both* reso-

⁽⁴¹⁾ Appel, A.; Jäkle, F.; Priermeier, T.; Schmid, R.; Wagner, M. *Organometallics* **1996**, *15*, 1188–1194.

⁽⁴²⁾ Kunz, K.; Vitze, H.; Bolte, M.; Lerner, H.-W.; Wagner, M. *Organometallics* **2007**, *26*, 4663–4672.

Figure 3. Molecular structure and numbering scheme of compound **2**; thermal ellipsoids are drawn at the 50% probability level. $B(1)-Br(1) = 1.921(10), B(1)-Br(2) = 1.911(10), B(1)-C(1) =$ 1.524(14), B(3)-Br(3) = 1.921(10), B(3)-Br(4) = 1.914(10), $B(3)-C(3) = 1.515(14), C(1)-C(2) = 1.452(11), C(2)-C(3) =$ 1.436(12), $C(3)-C(4) = 1.460(12), C(4)-C(5) = 1.389(13),$ $C(1) - C(5) = 1.472(12)$, Mn(1) $-COG(Cp) = 1.774$; Br(1) $-B(1) - B(2)$ $= 118.4(6), C(1)-B(1)-Br(1) = 120.5(6), C(1)-Br(2) =$ 121.1(7), Br(3)-B(3)-Br(4) = 117.6(5), C(3)-B(3)-Br(3) = 121.0(7), C(3)-B(3)-Br(4) = 121.4(7); B(1)Br(1)Br(2)//B(3)- $Br(3)Br(4) = 9.7$, $B(1)Br(1)Br(2)//Cp = 8.8$, $B(3)Br(3)Br(4)//Cp$ = 2.5; $\alpha^*(B(1)) = 7.6$, $\alpha^*(B(3)) = 3.7$. COG: centroid of the cyclopentadienyl ring.

nance structures. As a consequence, one would expect $C(4)-C(5)$ to be the shortest of all cyclopentadienyl C-C bonds, which nicely agrees with our experimental findings.

Bending of the three-coordinated boryl substituent out of the plane of the cyclopentadienyl ring toward the respective transition metal center is a regularly observed structural feature in the solid state structures of borylated ferrocenes and cymantrenes.^{39,41–49} The dip angle $\alpha^* = 180^\circ - \alpha$ ($\alpha =$ $B-C_{inso}-COG$; COG: centroid of the Cp ring) has been introduced as a measure for the degree of this distortion.⁴⁵ Large values of α^* are usually observed with strongly Lewis acidic boryl substituents. Moreover, α^* tends to become smaller when additional boryl substituents are introduced into the organometallic core. Bending of an exocyclic $BR₂$ substituent is likely due to electronic interactions between filled d-type orbitals at Fe(II) or $Mn(I)$ and the empty p orbital at boron.⁴⁵

We determined dip angles $\alpha^*(B(1)) = 7.1^\circ$ and $\alpha^*(B(3)) =$ 5.8° for 1_A ; the corresponding values in 1_B are 5.2° and 4.5°. These angles are significantly smaller than in (dibromoboryl) ferrocene (two crystallographically independent molecules in the asymmetric unit; $\alpha^* = 17.7^{\circ}/18.9^{\circ}$, β^4 but compare well with the value of 1.1'-bis(dibromoboryl) ferrocene ($\alpha^* = 9.1^{\circ}$, β^8 In the value of 1,1'-bis(dibromoboryl)ferrocene ($\alpha^* = 9.1^{\circ}$).⁴⁸ In 1,1′,3,3′-tetrakis(dibromoboryl)ferrocene, only two of the boryl

(45) Scheibitz, M.; Bolte, M.; Bats, J. W.; Lerner, H.-W.; Nowik, I.; Herber, R. H.; Krapp, A.; Lein, M.; Holthausen, M. C.; Wagner, M. *Chem. Eur. J.* **2005**, *11*, 584–603. For recent reviews on borylated metallocenes see:(a) Shapiro, P. J. *Eur. J. Inorg. Chem.* **2001**, 321–326. (b) Braunschweig, H; Breitling, F. M.; Gullo, E.; Kraft, M. *J. Organomet. Chem.* **2003**, *680*, 31–42. (c) Aldridge, S.; Bresner, C. *Coord. Chem. Re*V*.* **²⁰⁰³**, *²⁴⁴*, 71–92. (46) Venkatasubbaiah, K.; Zakharov, L. N.; Kassel, W. S.; Rheingold,

A. L.; Jäkle, F. *Angew. Chem., Int. Ed.* **2005**, *44*, 5428–5433.

(47) Scheibitz, M.; Bolte, M.; Lerner, H.-W.; Wagner, M. *Organometallics* **2004**, *23*, 3556–3559.

(48) Wrackmeyer, B.; Dörfler, U.; Milius, W.; Herberhold, M. *Polyhedron* **1995**, *14*, 1425–1431.

(49) Braunschweig, H.; Radacki, K.; Rais, D.; Seeler, F. *Organometallics* **²⁰⁰⁴**, *²³*, 5545–5549. (50) Bunel, E. E.; Valle, L.; Manriquez, J. M. *Organometallics* **¹⁹⁸⁵**,

substituents show a significant bending toward the Fe(II) ion $(\alpha^* = 6.8^{\circ})$, while the other two are not bent $(\alpha^* = 0.1^{\circ})^{39}$ It has, however, to be taken into account that the dip angles in compound **¹** are not only influenced by the through-space Fe-^B interaction but also by the steric repulsion between the $BBr₂$ fragments and the Cp* ring.

The diborylated complex 2 features dip angles $\alpha^*(B(1)) =$ 7.6° and $\alpha^*(B(3)) = 3.7$ °, which are again significantly smaller than the α^* values of 11.4^{o42} and 12.3^{o44} that have been found
in monohorylated cymantrenes in monoborylated cymantrenes.

Conclusion

As a result of our work, the two ditopic organometallic Lewis acids, 1,3-bis(dibromoboryl)-1′,2′,3′,4′,5′-(pentamethyl)ferrocene (**1**) and 1,3-bis(dibromoboryl)cymantrene (**2**), are now readily available. The solid state structures of **1** and **2** give no indication of steric repulsion between their two boryl substituents, and it is apparent that both molecules can adopt a conformation permitting *π*-electron delocalization from the cyclopentadienyl rings into both boryl substituents. Thus, complexes **1** and **2** have promising potential as building blocks for the preparation of boron-bridged organometallic polymers with a 1,3-connectivity pattern, which favors a high degree of charge delocalization along the polymer chain.

Experimental Section

General Remarks. All reactions were carried out under a nitrogen atmosphere using Schlenk tube techniques. Reaction solvents were freshly distilled under argon from Na/Pb alloy (hexane) and Na/benzophenone (toluene) prior to use; C_6D_6 was distilled under nitrogen from Na/benzophenone and stored in a Schlenk flask. NMR: Bruker AM 250, Avance 300, and Avance 400. Chemical shifts are referenced to residual solvent signals $(^1H,$ 400. Chemical shifts are referenced to residual solvent signals (¹H, ¹³C{¹H}) or external BF₃ • Et₂O (¹¹B{¹H}). Abbreviations: s = singlet d = doublet tr = triplet n r = multiplet expected in the singlet, $d =$ doublet, tr = triplet, n.r. = multiplet expected in the ¹H NMR spectrum but not resolved, n.o. $=$ signal not observed. BBr3 was stored over mercury under a nitrogen atmosphere. Cymantrene and BBr₃ are commercially available; (pentamethyl)ferrocene can be synthesized according to a literature procedure.50

Synthesis of 1. BBr₃ (4.89 g, 1.85 mL, 19.5 mmol) was added via syringe to a suspension of (pentamethyl)ferrocene (1.11 g, 4.3 mmol) in hexane (30 mL) at room temperature. The resulting mixture was heated to reflux for 6 h and the released HBr condensed into a cold trap cooled with liquid nitrogen. The reaction mixture was filtered through a frit while still hot. The filtrate was evaporated to dryness *in* V*acuo* to give **¹** as a red to purple microcrystalline solid; further purification was not required. Yield: 2.17 g (84%). Dark violet single crystals for X-ray diffraction analysis were grown from hexane at -30 °C over a period of 2 weeks. ${}^{11}B[{^{1}H}]$ NMR
(96.3 MHz, CcDc): δ 53.8 ($h_{12} = 340$ Hz) ${}^{1}H$ NMR (300.0 MHz) (96.3 MHz, C₆D₆): δ 53.8 ($h_{1/2} = 340$ Hz). ¹H NMR (300.0 MHz,
C-D- δ 1.56 (s. 15H, C-Me-), 4.47 (d. 2H, ⁴ $l_{\text{true}} = 1.1$ Hz, H4.5) C_6D_6): δ 1.56 (s, 15H, C₅Me₅), 4.47 (d, 2H, ⁴J_{HH} = 1.1 Hz, H4,5),
4.97 (tr. 1H⁴*I_{mn}* = 1.1 Hz, H2), ¹³C/¹H₁</sub> NMR (100.6 MHz) 4.97 (tr, 1H, ${}^{4}J_{\text{HH}} = 1.1$ Hz, H2). ${}^{13}C({}^{1}H)$ NMR (100.6 MHz, C-D-): δ 10.4 (C-Me-): 83.5 (C-Me-): 87.1 (C4.5): 88.3 (C2): n.o. C_6D_6): δ 10.4 (C_5Me_5), 83.5 (C_5Me_5), 87.1 (C4,5), 88.3 (C2), n.o. (CB). The identity of the single crystal used for the structure determination and the bulk material was confirmed by X-ray powder diffractometry.

Synthesis of 2. Cymantrene (4.92 g, 24.00 mmol) was dissolved in neat BBr3 (20 mL) and the mixture refluxed for 44 h. The released HBr was condensed into a cold trap cooled with liquid nitrogen. The reaction mixture was allowed to cool to room temperature, a brown precipitate was removed by filtration, and the filtrate was slowly evaporated *in vacuo* to give 2 in the form of yellow crystals.

⁽⁴³⁾ Venkatasubbaiah, K.; Nowik, I.; Herber, R. H.; Jäkle, F. *Chem. Commun.* **2007**, 2154–2156.

⁽⁴⁴⁾ Braunschweig, H.; Kraft, M.; Schwarz, S.; Seeler, F.; Stellwag, S. *Inorg. Chem.* **2006**, *45*, 5275–5277.

⁴, 1680–1682.

Yield: 12.06 g (93%). IR (toluene, cm⁻¹): \tilde{v} (CO) 2038 (s), 1967 (s). ¹¹B{¹H} NMR (128.4 MHz, C₆D₆): δ 51.0 (*h*_{1/2} = 250 Hz). ¹H NMR (250 1 MHz, C_cD_c): δ 4.66 (d, 2H⁴ L_{ux} = 1.0 Hz, H4.5). H NMR (250.1 MHz, C₆D₆): δ 4.66 (d, 2H, ⁴J_{HH} = 1.0 Hz, H4,5),
67 (n r 1H H2), ¹³C¹¹H) NMR (100.6 MHz, C-D_c): δ 96.5 5.67 (n.r., 1H, H2). ¹³C{¹H} NMR (100.6 MHz, C₆D₆): δ 96.5 (C4,5), 106.2 (C2), n.o. (CO, CB). The identity of the single crystal used for the structure determination and the bulk material from which the crystal was selected was confirmed by X-ray powder diffractometry.

X-ray Crystal Structure Analysis of 1 and 2. Data were collected on a STOE IPDS II two-circle diffractometer with graphite-monochromated Mo $K\alpha$ radiation. Empirical absorption corrections were performed using the MULABS 51 option in PLATON.⁵² The structures were solved by direct methods using the program $SHELXS⁵³$ and refined against $F²$ with full-matrix least-squares techniques using the program SHELXL-97.⁵⁴ Compound **1** crystallizes with two crystallographically independent molecules in the asymmetric unit $(1_A, 1_B)$. The Cp^{*} ring of 1_B is disordered over two sites with site occupation factors of 0.45(1) and 0.55(1). Bond lengths of the two disordered moieties were restrained to be equal to those of the ordered molecule **1A**.

CCDC reference numbers: 662925 (**1**) and 662924 (**2**).

Acknowledgment. M.W. is grateful to the Deutsche Forschungsgemeinschaft (DFG) and the Fonds der Chemischen Industrie (FCI) for financial support. We wish to thank Prof. Dr. A. Terfort for a generous donation of (pentamethyl)ferrocene.

Supporting Information Available: Crystallographic data of **1** and **2** in the Crystallographic Information File (CIF) format. This material is available free of charge via the Internet at http:// pubs.acs.org.

OM700995Q

⁽⁵¹⁾ Blessing, R. H. *Acta Crystallogr. Sect. A* **1995**, *51*, 33–38.

⁽⁵²⁾ Spek, A. L. *Acta Crystallogr. Sect. A* **1990**, *46*, C34.

⁽⁵³⁾ Sheldrick, G. M. *Acta Crystallogr. Sect. A* **¹⁹⁹⁰**, *⁴⁶*, 467–473. (54) Sheldrick, G. M. *SHELXL-97. A Program for the Refinement of Crystal Structures*; Universität Göttingen, 1997.