1227

Triphenylphosphine Incorporation Reactions of Diynyl Complexes Containing a TpRu(NO) Fragment and Isomerization to Ruthenacyclobuta[b]naphthalene

Yasuhiro Arikawa,* Taiki Asayama, Chie Tanaka, Shin-ya Tashita, Misako Tsuji, Kenta Ikeda, Keisuke Umakoshi, and Masayoshi Onishi*

Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan

Received October 13, 2007

Nitrosylruthenium arylbutadiynyl complexes having a Tp ligand (Tp = BH(pyrazol-1-yl)₃) were prepared, and their reactivities toward PPh₃ incorporation in the presence of HBF₄·Et₂O were described. The PPh₃ incorporation of mono(arylbutadiynyl) complex TpRuCl(C=C-C=C-C₆H₄Me)(NO) (1) resulted in the β -phosphonioalkenyl complex (*E*)-[TpRuCl(CH=C(PPh₃)-C=C-C₆H₄Me)(NO)]BF₄ (2·BF₄), whereas when bis(arylbutadiynyl) TpRu(C=C-C=C-C₆H₄Me)₂(NO) (3) was treated, monoand bis(β -phosphonioalkenyl) complexes (*E*)-[TpRu(C=C-C=C-C₆H₄Me)(CH=C(PPh₃)-C=C-C₆H₄Me)(NO)]BF₄ (4·BF₄) and (*E*, *E*)-[TpRu(CH=C(PPh₃)-C=C-C₆H₄Me)₂(NO)](BF₄)₂ {5·(BF₄)₂} were obtained depending on the reaction conditions. On the other hand, an unsymmetrically mixed (arylbutadiynyl)(3-hydroxyalkynyl) complex, TpRu(C=C-C=C-C₆H₄Me){C=CCPh₂(OH)}(NO) (6), was allowed to react with PPh₃ in the presence of the protic acid to give the α -phosphonioallenyl [TpRu(C= C-C=C-C₆H₄Me){C(PPh₃)=C=CPh₂}(NO)]BF₄ (7·BF₄). Interestingly, thermal isomerization of 7·BF₄ to a ruthena-2-PPh₃-cyclobuta[*b*]naphthalene [TpRu{CH(PPh₃)[3-Ph-8-(MeC₆H₄-C=C)-C₁₀H₄]}(NO)]BF₄ (8·BF₄) was observed.

Introduction

Transition-metal-mediated transformations of simple organic molecules to highly valuable products are of much interest in synthetic chemistry.¹ One candidate for the simple molecules is alkynes, which are useful and versatile organic resources.² In particular, terminal alkynes are attractive because of their relevance to vinylidene and allenylidene species on the transition metals.³ Our research of alkynyl complexes derived from the terminal alkynes has focused on nitrosylruthenium having trispyrazolylborate (Tp),⁴ which has led us to isolate a few unusual complexes. For example, the mutual coupling of two

alkynyl groups with concomitant incorporation of H₂O has brought about the formation of unique five- or four-membered metallacycles.^{4b,e} The latter metallacycles have shown their interesting ring-opening reactions upon HCl addition.^{4e} Moreover, selective proton-assisted PPh₃ incorporations of the alkynyl complexes have been also observed.^{4c}

We embarked upon a program to introduce arylbutadiyne chemistry with the TpRu(NO) fragment and, in this paper, deal with mono(arylbutadiynyl) TpRuCl(C=C-C=C-C₆H₄Me)-(NO) (1), the bis(arylbutadiynyl) TpRu(C \equiv C-C \equiv C-C₆H₄Me)₂-(NO) (3), and the unsymmetrically mixed (arylbutadiynyl)(3hydroxyalkynyl) TpRu(C=C-C=C-C₆H₄Me){C=CCPh₂(OH)}-(NO) (6). Reactions of 1, 3, and 6 with PPh₃ in the presence of protic acid (HBF₄·Et₂O) were carried out to give β -addition products (from 1 and 3) and α -addition product (from 6). The latter product thermally isomerized to a novel naphthalene derivative-fused four-membered metallacycle (i.e., a ruthenacyclobuta[b]naphthalene). Although the obtained results, formation of β - and α -addition products themselves, are precedented, ^{4c,5,9} the reactivity of arylbutadiynyl complexes is worth investigating owing to the scarcity of their studies. Especially, the synthesis and reactivity of an unsymmetrically disubstituted complex such as 6, which contains two different types of versatile alkynyl

^{*} Corresponding authors. E-mail: arikawa@nagasaki-u.ac.jp; onishi@nagasaki-u.ac.jp.

^{(1) (}a) Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998, 98, 2599–2660. (b) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067–2096. (c) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731–1769. (d) Bruneau, C.; Dixneuf, P. H. Topics in Organometallic Chemistry 11, Ruthenium Catalysts and Fine Chemistry; Springer-Verlag: Berlin, 2004. (e) Murahashi, S.-I. Ruthenium in Organic Synthesis; Wiley-VCH: Weinheim, 2004. (f) Schmid, R.; Kirchner, K. Eur. J. Inorg. Chem. 2004, 2609–2626. (g) Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. Angew. Chem., Int. Ed. 2005, 44, 6630–6666.

⁽²⁾ Diederich, F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry; Wiley-VCH: Weinheim, 2004.

^{(3) (}a) Bruce, M. I. Chem. Rev. 1991, 91, 197–257. (b) Bruce, M. I. Chem. Rev. 1998, 98, 2797–2858. (c) Puerta, M. C.; Valerga, P. Coord. Chem. Rev. 1999, 193–195, 977–1025. (d) Cadierno, V.; Garmasa, M. P.; Gimeno, J. Eur. J. Inorg. Chem. 2001, 571–591. (e) Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2006, 45, 2176–2203. (f) Matsuzawa, H.; Miyake, Y.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2007, 46, 6488–6491.

^{(4) (}a) Arikawa, Y.; Nishimura, Y.; Kawano, H.; Onishi, M. Organometallics 2003, 22, 3354–3356. (b) Arikawa, Y.; Nishimura, Y.; Ikeda, K.; Onishi, M. J. Am. Chem. Soc. 2004, 126, 3706–3707. (c) Nishimura, Y.; Arikawa, Y.; Inoue, T.; Onishi, M. Dalton Trans. 2005, 930–937. (d) Arikawa, Y.; Asayama, T.; Onishi, M. J. Organomet. Chem. 2007, 692, 194–200. (e) Arikawa, Y.; Ikeda, K.; Asayama, T.; Nishimura, Y.; Onishi, M. Chem.-Eur. J. 2007, 13, 4024–4036.

^{(5) (}a) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Borge, J.; García-Granda, S. *Organometallics* **1997**, *16*, 3178–3187. (b) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; González-Bernardo, C.; Pérez-Carreño, E.; García-Granda, S. *Organometallics* **2001**, *20*, 5177–5188. (c) Yamamoto, Y.; Ogata, K.; Kuge, K.; Tatsumi, K. *Inorg. Chem. Commun.* **2002**, *5*, 862–864. (d) Zhang, H.; Xia, H.; He, G.; Wen, T. B.; Gong, L.; Jia, G. Angew. Chem., *Int. Ed.* **2006**, *45*, 2920–2923. (e) Ogata, K.; Seta, J.; Yamamoto, Y.; Kuge, K.; Tatsumi, K. *Inorg. Chim. Acta* **2007**, *360*, 3296–3303. (f) Zhang, H.; Feng, L.; Gong, L.; Wu, L.; He, G.; Wen, T.; Yang, F.; Xia, H. *Organometallics* **2007**, *26*, 2705–2713.

groups, are interesting, in addition to the unprecedented thermal conversion to the ruthenacyclobuta[*b*]naphthalene.

Results and Discussion

Preparations of Arylbutadiynyl Complexes Containing a TpRu(NO) Fragment. Treatment of TpRuCl₂(NO) with HC=C-C=C-C₆H₄Me in the presence of Et₃N and catalytic amounts of CuI in refluxing CH₂Cl₂ afforded the mono(arylbutadiynyl) TpRuCl(C=C-C=C-C₆H₄Me)(NO) (1) (35%) and the bis(arylbutadiynyl) TpRu(C=C-C=C-C₆H₄Me)₂(NO) (3) (38%). The unsymmetrically mixed (arylbutadiynyl)(3-hydroxyalkynyl) TpRu(C=C-C=C-C₆H₄Me){C=C-CPh₂(OH)}(NO) (6) was prepared from the mono(3-hydroxyalkynyl) TpRuCl-{C=CCPh₂(OH)}(NO) with the arylbutadiyne under similar reaction conditions. The IR spectra of these complexes indicate the appearance of C=C stretching bands in addition to ν (NO). Complexes 1, 3, and 6 were also characterized by ¹H NMR, MS spectra, and elemental analyses.

Proton-Assisted Reactions of 1 and 3 with PPh3. Complex 1 was reacted with PPh₃ in the presence of $HBF_4 \cdot Et_2O$ to give the β -phosphonioalkenyl complex (E)-[TpRuCl(CH= $C(PPh_3)-C \equiv C-C_6H_4Me(NO)BF_4$ (2·BF₄) in 71% yield (Scheme 1). The ¹H NMR spectrum of $2 \cdot BF_4$ exhibits a characteristic vinylic proton as a doublet at δ 9.32 (J = 27 Hz) coupled with the ³¹P nuclei. This coupling constant is comparable to those of (E)-[TpRuCl(CH=C(PPh₃)Ph)(NO)]BF₄^{4c} and other related complexes,⁵ indicating cis configuration of the vinylic proton to the phosphorus nuclei. In the ¹³C{¹H} NMR spectrum, the ruthenium-linked α -carbon in the alkenyl moiety resonates at δ 198.5. Unfortunately, although single crystals of $2 \cdot BF_4$ were not obtained, the phenylbutadiyne derivative (*E*)- $[TpRuCl(CH=C(PPh_3)-C=C-Ph)(NO)]BF_4$ (2' · BF₄) crystallized satisfactorily and the molecular structure was determined by a single-crystal X-ray structural analysis.

Its ORTEP drawing and selected structural data are shown in Figure 1 and Table 1, respectively. The cis/trans C=C configuration of the moiety in the crystals is in accord with its ¹H NMR data in the solution state. The Ru–C10 bond distance (2.057(7) Å) is comparable to that of (*E*)-[TpRuCl(CH=C-(PPh₃)Ph)(NO)]BF₄ (2.048(2) Å).^{4c} The bond lengths of 1.33(1) Å (C10–C11) and 1.20(1) Å (C12–C13) are regarded to be typical C–C double and triple bonds, respectively.

Reaction of **3** with PPh₃ in the presence of HBF₄ in refluxing CH₂Cl₂ for 4 h gave the mono(β -phosphonioalkenyl) (*E*)-[TpRu-(C=C-C=C-C₆H₄Me)(CH=C(PPh₃)-C=C-C₆H₄Me)(NO)] BF₄ (**4**•BF₄) in 84% yield, along with a trace amount of the bis(β -phosphonioalkenyl) (*E*,*E*)-[TpRu(CH=C(PPh₃)-C=C-C₆H₄Me)₂(NO)](BF₄)₂ {**5**•(BF₄)₂} (Scheme 2). Prolonged reaction time (3 days) led to enhanced formation of the latter species (34%). The ¹H NMR spectra of **4**•BF₄ and **5**•(BF₄)₂ show three and two sets of resonances for the pyrazolyl groups, respectively, and characteristic vinylic proton signals at δ 9.19 (d, *J* = 27 Hz) for **4**•BF₄ and 9.05 (d, *J* = 28 Hz) for **5**•(BF₄)₂. These

Figure 1. Molecular structure of 2', with thermal ellipsoids at the 40% probability level.

Table 1. Selected Bond Lengths (Å) and Angles (deg) for Complex $2' \cdot BF_4$

2 • 66 4			
Ru-Cl	2.357(2)	O-N1	1.129(7)
Ru-N1	1.736(6)	C10-C11	1.33(1)
Ru-C10	2.057(7)	C11-C12	1.41(1)
P-C11	1.791(7)	C12-C13	1.20(1)
Ru-N1-O	171.6(6)	C10-C11-C12	125.4(7)
Ru-C10-C11	128.4(5)	C11-C12-C13	175.6(8)
P-C11-C10	121.7(6)		

coupling constants indicate the cis configuration of the protons to PPh₃, respectively.^{4c} The FAB-MS spectra exhibit the parent molecular ion signals of $[4]^+$ at m/z 886.3 and $[5 + BF_4]^+$ at m/z 1236.4.

Key intermediates in the formation of $2 \cdot BF_4$, $4 \cdot BF_4$, and $5 \cdot (BF_4)_2$ would be π -alkyne species (Scheme 3). Protonation of the arylbutadiynyl group can lead to the vinylidene ([Ru]=C=CH-C=C-C_6H_4Me) or butatrienylidene ([Ru]=C=C=CH-C_6H_4Me) intermediates.⁶ But these species

would rapidly isomerize to the π -alkynes, because of the presence of the strong π -accepter ligand NO⁺. The electronpoor metal center tends to destabilize the vinylidene and butatrienylidene intermediates.⁷ This propensity has been realized in H₂O or PPh₃ addition reactions to the alkynyl complexes TpRuCl(C=CR)(NO).^{4a,c} During the formation of these β -phosphonioalkenyl complexes, another C=C part remains intact.

Proton-Assisted Reaction of 6 with PPh3. The unsymmetrically mixed complex $TpRu(C \equiv C - C \equiv C - C_6H_4M_e) \{C \equiv C = C = C - C_6H_4M_e\}$ $C-CPh_2(OH)$ (NO) (6) was allowed to react with PPh₃ and HBF₄ · Et₂O in THF at room temperature to afford the α -phosphonioallenyl [TpRu(C=C-C=C-C₆H₄Me){C(PPh₃)=C= CPh_2 {(NO)]BF₄ (7 · BF₄) in 96% yield (Scheme 4). When the reaction proceeded in CH₂Cl₂, column chromatographic separation gave $7 \cdot BF_4$ (63%) and a brown minor byproduct, which is unfortunately uncharacterized. The ¹H NMR spectrum of $7 \cdot BF_4$ exhibits the absence of a vinylic proton, which is observed for $2 \cdot BF_4$, $4 \cdot BF_4$, and $5 \cdot (BF_4)_2$. Furthermore, in the $^{13}C{^{1}H}$ NMR spectrum, characteristic signals at δ 215.7 (d, $J_{\rm CP} = 3.3$ Hz, C β), 107.5 (d, $J_{\rm CP} = 21$ Hz, C γ), and 86.6 (d, $J_{\rm CP} = 36$ Hz, C α) are observed, indicating the allenvl skeleton. These NMR data are comparable to those of the previous α -phosphonioallenyl complex [TpRuCl{C(PPh₃)=C=CPh₂}-(NO)]BF₄.^{4c}

The structure of $7 \cdot BF_4$ was confirmed by a single-crystal X-ray structural analysis, and the ORTEP view of its cationic part 7 is shown in Figure 2. Selected bond lengths and angles are summarized in Table 2. Structural analysis of $7 \cdot BF_4$ determines the bond lengths of Ru1–C10, C10–C11, and C11–C12 in the allenyl group to be 2.124(2), 1.312(4), and 1.318(4) Å, respectively. Further, the C10–C11–C12 angle is 176.8(3)°.

In the formation of $7 \cdot BF_4$, protonation of the 3-hydroxyalkynyl group would induce dehydration to give the allenylidene intermediate ([Ru]=C=C=C(Ph)₂), and finally, addition of PPh₃ on the α carbon of the intermediate would give rise to $7 \cdot BF_4$.⁸ This preference in the addition position can be attributed to the steric hindrance between PPh₃ and two phenyl groups at the γ -carbon of the allenylidene moiety.⁹ A similar situation has

Figure 2. Molecular structure of **7**, with thermal ellipsoids at the 50% probability level.

Table 2. Selected Bond Lengths $({\mbox{\AA}})$ and Angles (deg) for Complex

$7 \cdot BF_4$			
Ru1-N1	1.735(2)	C10-C11	1.312(4)
Ru1-C10	2.124(2)	C11-C12	1.318(4)
Ru1-C43	2.013(3)	C43-C44	1.203(4)
P1-C10	1.796(3)	C44-C45	1.385(4)
O1-N1	1.154(3)	C45-C46	1.188(4)
Ru1-N1-O1	169.3(2)	P1-C10-C11	110.7(2)
Ru1-C10-P1	125.97(15)	C10-C11-C12	176.8(3)
Ru1-C10-C11	123.3(2)	C43-C44-C45	175.5(3)
Ru1-C43-C44	178.1(2)	C44-C45-C46	177.5(3)

been demonstrated in the formation of the previous α -phosphonioallenyl [TpRuCl{C(PPh₃)=C=CPh₂}(NO)]BF₄.^{4c} In these reaction conditions, the arylbutadiynyl group remains intact.

Thermal Isomerization of $7 \cdot BF_4$. It is noteworthy that $7 \cdot BF_4$ thermally isomerized to an unusual four-membered metallacycle of $8 \cdot BF_4$, as shown in Scheme 5. When a CDCl₃ solution of $7 \cdot BF_4$ was heated for 48 h, new ¹H NMR signals came out, which include a conspicuous resonance at δ 4.52 (d, J = 1.7 Hz). The FAB-MS spectral observation supports an unaltered mass value (m/z) for the detected parent ion peak. The structural assignment of $8 \cdot BF_4$ was performed by an X-ray diffraction study of single crystals grown from MeOH/Et₂O (Figure 3 and Table 3). The isomerized product was determined to be the ruthena-2-PPh₃-cyclobuta[b]naphthalene [TpRu{CH-(PPh₃)[3-Ph-8-(MeC₆H₄-C=C)C₁₀H₄]{(NO)]BF₄ (8 • BF₄).

^{(6) (}a) Bruce, M. I.; Hinterding, P.; Tiekink, E. R. T.; Skelton, B. W.; White, A. H. J. Organomet. Chem. **1993**, 450, 209–218. (b) Haquette, P.; Touchard, D.; Toupet, L.; Dixneuf, P. H. J. Organomet. Chem. **1998**, 565, 63–73. (c) Rigaut, S.; Perruchon, J.; Le Pichon, L.; Touchard, D.; Dixneuf, P. H. J. Organomet. Chem. **2003**, 670, 37–44. (d) Rigaut, S.; Olivier, C.; Costuas, K.; Choua, S.; Fadhel, O.; Massue, J.; Turek, P.; Saillard, J.-Y.; Dixneuf, P. H.; Touchard, D. J. Am. Chem. Soc. **2006**, 128, 5859–5876.

^{(7) (}a) Slugovc, C.; Sapunov, V. N.; Wiede, P.; Mereiter, K.; Schmid,
R.; Kirchner, K. J. Chem. Soc., Dalton Trans. 1997, 4209–4216. (b)
Tokunaga, M.; Suzuki, T.; Koga, N.; Fukushima, T.; Horiuchi, A.;
Wakatsuki, Y. J. Am. Chem. Soc. 2001, 123, 11917–11924. (c) Bustelo,
E.; Carbó, J. J.; Lledós, A.; Mereiter, K.; Puerta, M. C.; Valerga, P. J. Am.
Chem. Soc. 2003, 125, 3311–3321. (d) Wakatsuki, Y. J. Organomet. Chem.
2004, 689, 4092–4109.

⁽⁸⁾ The reaction mechanism would be that after the formation of the allenylidene intermediate, PPh₃ was initially added on the γ -carbon, followed by migration to the α -carbon. This reaction scheme has been verified in the TpRuCl{C=CC(Ph)₂OH}(NO) system. See ref 4c.

^{(9) (}a) Esteruelas, M. A.; Gómez, A. V.; López, A. M.; Modrego, J.; Oñate, E. Organometallics 1998, 17, 5434–5436. (b) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Lastra, E. J. Organomet. Chem. 1994, 474, C27–C29.
(c) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; López-González, M. C.; Borge, J.; García-Granda, S. Organometallics 1997, 16, 4453–4463. (d) Hansen, H. D.; Nelson, J. H. Organometallics 2000, 19, 4740–4755. (e) Jiménez-Tenorio, M.; Palacios, M. D.; Puerta, M. C.; Valerga, P. J. Organomet. Chem. 2004, 689, 2776–2785.

Figure 3. Molecular structure of 8, with thermal ellipsoids at the 50% probability level.

Table 3. Selected Bond Lengths (Å) and Angles (deg) for Complex $8 \cdot BF_4$

Ru1-N1	1.731(4)	C10-C11	1.520(6)
Ru1-C10	2.208(4)	C11-C12	1.419(6)
Ru1-C12	2.045(4)	C11-C20	1.387(6)
P1-C10	1.786(4)	C12-C13	1.375(6)
O1-N1	1.153(6)	C21-C22	1.200(8)
Ru1-N1-O1	171.4(4)	P1-C10-C11	120.1(3)
Ru1-C10-P1	123.5(2)	C10-C11-C12	103.4(3)
Ru1-C10-C11	89.5(2)	C11-C12-C13	121.5(4)
Ru1-C12-C11	99.2(3)	C13-C21-C22	173.4(6)

The molecule consists of the substituted naphthalene-fused four-membered metallacycle with Tp and NO ligands. The naphthalene possesses phenyl and arylalkynyl substituents at the 3- and 8-positions, respectively, and is fused with the metallacycle at the [*b*] position. The phosphine PPh₃ is bound to the four-membered ring at the 2-position. The bond length of Ru1–C10 (2.208(4) Å) is longer than that of Ru1–C12 (2.045(4) Å), and the C10–C11 and C11–C12 bond distances are 1.520(6) and 1.419(6) Å, respectively. The mean deviation from the least-squares plane (Ru1, C10, C11, and C12) is 0.0738 Å, and stereochemical dimensions of the naphthalic skeleton are similar to those of the free naphthalene molecule.

The formation of $8 \cdot BF_4$ would be rationalized according to Scheme 6. Thermal stimulation would lead to the [4+2] cycloaddition of two C=C bonds (the allenyl ligand and one of Ph substituents) and one C=C bond (the arylbutadiynyl ligand), affording the intermediate, which is transformed into $8 \cdot BF_4$ via a 1,5-hydrogen shift with concomitant aromatization. Although two diastereomeric conformations are conceivable from the presence of the chiral carbon center C10, only one isomer, where PPh₃ is directed toward the Tp ligand, was obtained. The reason for its selective formation is unclear, but it is probable that the nitrogen atom of the NO ligand would assist the migration to the C α in the transition state during the 1,5-hydrogen shift. Similar assistant behavior has been observed in our TpRu(NO) chemistry.^{4e}

Conclusions

In conclusion, we carried out the PPh3 incorporation reactions of mono(arylbutadiynyl) TpRuCl(C=C-C=C-C₆H₄Me)-(NO) (1), bis(arylbutadiynyl) TpRu(C≡C-C≡C-C₆H₄Me)₂-(NO) (3), and unsymmetrically mixed (arylbutadiynyl)(3hydroxyalkynyl) TpRu(C=C-C=C-C₆H₄Me){C=CCPh₂(OH)}-(NO) (6) in the presence of HBF4 • Et2O. For 1 and 3, the generation of π -alkyne intermediates would lead to the β -addition products (*E*)-[TpRuCl(CH=C(PPh₃)-C=C-C₆H₄Me) (NO)]BF₄ ($2 \cdot BF_4$), (E)-[TpRu(C=C-C=C-C_6H_4Me)(CH= $C(PPh_3)-C \equiv C-C_6H_4Me(NO)BF_4$ (4 · BF₄), and (*E*,*E*)-[TpRu $(CH=C(PPh_3)-C=C-C_6H_4Me)_2(NO)](BF_4)_2 \{5 \cdot (BF_4)_2\}. On$ the other hand, for 6, α -phosphonioallenyl [TpRu(C=C- $C \equiv C - C_6 H_4 Me \{ C(PPh_3) = C = CPh_2 \} (NO) BF_4 (7 \cdot BF_4) was$ obtained through the allenylidene intermediate. A facile dehydration process to the allenylidene has been previously shown in the similar (arylalkynyl)(3-hydroxyalkynyl) complex.^{4e} Intriguingly, the substituted naphthalene-fused metallacycle $[TpRu{CH(PPh_3)[3-Ph-8-(MeC_6H_4-C=C)-C_{10}H_4]}(NO)]BF_4$ $(8 \cdot BF_4)$ was obtained by thermal isomerization of $7 \cdot BF_4$. Isolation of $\mathbf{8} \cdot \mathbf{BF}_4$ would indicate a 6π -electrocyclization process and subsequent aromatization.

Experimental Section

Reactions were carried out under an atmosphere of dry dinitrogen, whereas subsequent workup was performed in air. Solvents were distilled from sodium/benzophenone ketyl (THF) or from CaH₂ (CH₂Cl₂). The starting material TpRuCl₂(NO)¹⁰ and arylbutadiynes (HC=C-C=C-R; R = C₆H₄Me, Ph)¹¹ were prepared by previously reported methods. All other organic solvents and reagents were commercially available and used without further purification.

NMR spectra in CDCl₃ were recorded with a Varian Gemini-300 and a JEOL JNM-AL-400 spectrometer. ¹H and ¹³C{¹H} NMR chemical shifts are quoted with respect to TMS and the solvent signals, respectively. ³¹P{¹H} NMR spectra are referenced to an external standard of 85% H₃PO₄. Infrared spectra in KBr pellets were obtained on a JASCO FT-IR-420 spectrometer. Electron ionization mass spectra (EI-MS) and fast atom bombardment mass spectra (FAB-MS) were recorded on a JEOL JMS-700N spectrometer. Elemental analyses (C, H, N) were performed on a Perkin-Elmer 2400II elemental analyzer.

TpRuCl(C≡C−C≡C−C₆H₄Me)(NO) (1) and **TpRu(C≡ C−C≡C−C₆H₄Me)₂(NO)** (3). To a solution of TpRuCl₂(NO) (423 mg, 1.02 mmol) dissolved in CH₂Cl₂ (15 mL) were added HC≡C−C≡C−C₆H₄Me (421 mg, 3.0 mmol/CH₂Cl₂ 5 mL), CuI (21.2 mg, 0.111 mmol), and Et₃N (1020 mg, 10.1 mmol), and then the mixture was refluxed for 3 h. After removal of the volatiles, the residue was separated on column chromatography of a silica gel by use of CH₂Cl₂ as an eluent to give TpRuCl-(C≡C−C≡C−C₆H₄Me)(NO) (1) (183 mg, 35%) and TpRu-(C≡C−C≡C−C₆H₄Me)₂(NO) (3) (241 mg, 38%). Complex 1: IR: ν(BH) 2513 (w), ν(C≡C) 2193 (w), 2078 (w), ν(N≡O) 1874 (s) cm⁻¹. ¹H NMR: δ 8.14 (d, *J* = 2.0 Hz, 1H of pz), 7.78 (d, *J* = 2.3 Hz, 1H of pz), 7.76 (d, *J* = 2.2 Hz, 1H of pz), 7.54 (d, *J* = 2.1 Hz, 1H

⁽¹⁰⁾ Onishi, M. Bull. Chem. Soc. Jpn. 1991, 64, 3039-3045.

^{(11) (}a) Dabdoub, M. J.; Baroni, A. C. M.; Lenardão, E. J.; Gianeti, T. R.; Hurtado, G. R. *Tetrahedron* **2001**, *57*, 4271–4276. (b) Brandsma, L., *Synthesis of Acetylenes, Allenes and Cumulenes, Methods and Techniques*; Elsevier, Ltd.: Oxford, 2004.

Triphenylphosphine Incorporation Reactions

of pz), 7.33 (d, J = 8.0 Hz, 2H of C₆ H_4 Me), 7.08 (d, J = 8.0 Hz, 2H of C₆ H_4 Me), 6.41 (t, J = 2.6 Hz, 1H of pz), 6.40 (t, J = 2.4Hz, 1H of pz), 6.22 (t, J = 2.2 Hz, 1H of pz), 2.33 (s, 3H of Me). ¹³C{¹H} NMR: δ 145.1 (s, pz), 143.9 (s, pz), 142.3 (s, pz), 138.3 (s, C₆H₄Me), 136.8 (s, pz), 136.0 (s, pz), 135.0 (s, pz), 132.4 (s, C₆H₄Me), 128.9 (s, C₆H₄Me), 119.9 (s, C₆H₄Me), 107.7 (s, pz), 107.2 (s, pz), 106.4 (s, pz), 97.8 (s, C=C), 92.9 (s, C=C), 75.2 (s, C=C), 74.0 (s, C=C), 21.5 (s, C₆H₄Me). EI-MS (m/z): 519 ([M]⁺), 489 ($[M - (NO)]^+$), 385 ($[M - (pz)_2]^+$). Anal. Calcd for C₂₀H₁₇N₇BClORu: C, 46.31; H, 3.30; N, 18.90. Found: C, 46.63; H, 3.19; N, 18.44. Complex 3: IR: *v*(BH) 2512 (w), *v*(C≡C) 2193 (w), 2075 (w), ν (N=O) 1875 (s) cm⁻¹. ¹H NMR: δ 8.15 (d, J =2.2 Hz, 1H of pz), 7.95 (d, J = 2.0 Hz, 2H of pz), 7.74 (d, J = 2.4 Hz, 2H of pz), 7.50 (d, *J* = 2.2 Hz, 1H of pz), 7.34 (d, *J* = 8.1 Hz, 4H of C₆ H_4 Me), 7.07 (d, J = 8.2 Hz, 4H of C₆ H_4 Me), 6.38 (t, J =2.2 Hz, 2H of pz), 6.19 (t, J = 2.3 Hz, 1H of pz), 2.33 (s, 6H of Me). ${}^{13}C{}^{1}H$ NMR: δ 145.8 (s, pz), 143.1 (s, pz), 138.1 (s, *C*₆H₄Me), 135.9 (s, pz), 135.0 (s, pz), 132.3 (s, *C*₆H₄Me), 128.9 (s, C₆H₄Me), 120.1 (s, C₆H₄Me), 107.0 (s, pz), 106.2 (s, pz), 99.5 $(s, C \equiv C)$, 93.2 $(s, C \equiv C)$, 75.6 $(s, C \equiv C)$, 73.6 $(s, C \equiv C)$, 21.5 $(s, C \equiv C)$, 21.5 (s, C), 21.5 $(s, C \equiv C)$, 21.5 (s, C), 21.5 $(s, C \equiv C)$, 21.5 (s, C), 21.5 $(s, C \equiv C)$, 21.5 (s, C), 21.5 $(s, C \equiv C)$, 21.5 $(s, C \equiv C)$, 21.5 $(s, C \equiv C)$, 21.5 (s, C), 21.5 (s C_6H_4Me). EI-MS (m/z): 623 ([M]⁺), 593 ([M - (NO)]⁺). Anal. Calcd for C₃₁H₂₄N₇BORu: C, 59.82; H, 3.89; N, 15.75. Found: C, 59.33; H, 3.72; N, 15.53.

(E)-[TpRuCl(CH=C(PPh₃)-C=C-C₆H₄Me)(NO)]BF₄ (2. **BF**₄). To a THF solution (5 mL) of TpRuCl(C=C-C=C-C₆H₄Me)(NO) (1) (50.3 mg, 0.097 mmol) and PPh₃ (130 mg, 0.496 mmol) was added HBF4·Et2O (65.8 µL, 0.48 mmol), and the mixture was refluxed overnight. After the protic acid remaining in the solution was quenched by a solid powder of NaHCO₃, the mixture was filtered and the filtrate was evaporated to dryness. The residue was chromatographed on a silica gel column using CH2Cl2/ acetone (10:1) as an eluent to give (E)-[TpRuCl(CH=C(PPh₃)- $C = C - C_6 H_4 Me)(NO) BF_4$ (2 · BF₄) (60.2 mg, 71%). IR: $\nu(BH)$ 2529 (w), ν (C≡C) 2197 (m), ν (N≡O) 1855 (s) cm⁻¹. ¹H NMR: δ 9.32 (d, $J_{\rm PH} = 27$ Hz, 1H of RuCH), 7.96 (d, J = 2.1 Hz, 1H of pz), 7.89-7.63 (m, 4H of pz and 15H of Ph), 7.32 (d, J = 2.2 Hz, 1H of pz), 7.08 (d, J = 8.1 Hz, 2H of C₆H₄Me), 6.98 (d, J = 8.1Hz, 2H of C₆ H_4 Me), 6.57 (t, J = 2.3 Hz, 1H of pz), 6.36 (t, J =2.2 Hz, 1H of pz), 6.15 (t, J = 2.3 Hz, 1H of pz), 2.32 (s, 3H of Me). ${}^{13}C{}^{1}H$ NMR: δ 198.5 (s, RuCH), 143.8 (s, pz), 141.7 (s, pz), 141.5 (s, pz), 140.2 (s, C₆H₄Me), 137.7 (s, pz), 136.4 (s, pz), 136.3 (s, pz), 135.3 (d, J = 3.3 Hz, PPh₃), 134.3 (d, J = 10 Hz, PPh_3), 131.2 (d, J = 2.0 Hz, C_6H_4Me), 130.3 (d, J = 13 Hz, PPh_3), 129.3 (s, C_6H_4Me), 118.1 (d, J = 88 Hz, PPh_3), 117.7 (d, J = 3.4Hz, C_6H_4Me), 109.5 (d, J = 80 Hz, RuCH=C), 108.6 (s, pz), 107.1 (s, pz), 106.6 (s, pz), 97.4 (d, J = 8.1 Hz, C=C), 85.4 (d, J = 17Hz, C=C), 21.5 (s, C₆H₄Me). ${}^{31}P{}^{1}H{}$ NMR: δ 20.6 (s). FAB-MS (m/z): 782.2 ([M]⁺), 380.0 ([TpRuCl(NO)]⁺). Anal. Calcd for C38H33N7B2ClF4OPRu: C, 52.53; H, 3.83; N, 11.29. Found: C, 52.59; H, 3.81; N, 11.44.

 H_4Me)(NO)]BF₄ (4·BF₄) and (*E*,*E*)-[TpRu(CH=C(PPh_3)- $C \equiv C - C_6 H_4 Me_2(NO)](BF_4)_2 \{5 \cdot (BF_4)_2\}$. Bis(arylbutadiynyl) $TpRu(C = C - C = C - C_6H_4Me)_2(NO)$ (3) (30.4 mg, 0.0488 mmol) in CH₂Cl₂ (5 mL) was treated with PPh₃ (255 mg, 0.972 mmol) and HBF₄·Et₂O (131.5 μ L, 0.96 mmol), and the mixture was refluxed for 4 h. After addition of NaHCO₃ powder, filtration, and evaporation of the filtrate, the residue was chromatographed on silica gel with CH₂Cl₂/acetone (50:1) to yield (E)-[TpRu(C=C-C= $C-C_{6}H_{4}Me$)(CH=C(PPh_{3})-C=C-C_{6}H_{4}Me)(NO)]BF₄ (4 · BF₄) (40 mg, 84%) and a trace amount of (E,E)-[TpRu(CH=C(PPh₃)-C= $C-C_6H_4Me_2(NO)](BF_4)_2 \{5 \cdot (BF_4)_2\}$. In analogous procedures to the above-mentioned reaction, the reaction mixture, containing 3(69 mg, 0.111 mmol), PPh3 (585 mg, 2.23 mmol), and HBF4 • Et2O (304 μ l, 2.22 mmol), was refluxed for 3 days to give 5 · (BF₄)₂ (49.6 mg, 34%). Complex 4 · BF₄: IR: ν (BH) 2497 (w), ν (C=C) 2193 (w), 1957 (w), ν (N=O) 1868 (s) cm⁻¹. ¹H NMR: δ 9.19 (d, $J_{PH} =$ 27 Hz, 1H of RuCH), 7.96 (d, J = 1.9 Hz, 1H of pz), 7.86 (d, J =1.9 Hz, 2H of pz), 7.84-7.72 (m, 1H of pz and 15H of Ph), 7.58 (d, J = 2.2 Hz, 1H of pz), 7.37 (d, J = 8.1 Hz, 2H of C₆H₄Me), 7.34 (d, J = 2.1 Hz, 1H of pz), 7.13 (d, J = 8.0 Hz, 2H of C₆H₄Me), 7.08 (d, J = 2.0 Hz, 4H of C₆H₄Me), 6.52 (t, J = 2.3 Hz, 1H of pz), 6.35 (t, *J* = 2.2 Hz, 1H of pz), 6.11 (t, *J* = 2.3 Hz, 1H of pz), 2.36 (s, 3H of Me), 2.33 (s, 3H of Me). ${}^{13}C{}^{1}H$ NMR: δ 198.5 (s, RuCH), 143.0 (s, pz), 142.5 (s, pz), 142.2 (s, pz), 140.0 (s, C₆H₄Me), 138.4 (s, C₆H₄Me), 136.8 (s, pz), 136.2 (s, pz), 136.1 (s, pz), 135.2 (d, J = 3.1 Hz, PPh₃), 134.3 (d, J = 9.4 Hz, PPh₃), 132.1 (s, C_6H_4Me), 131.2 (d, J = 2.5 Hz, C_6H_4Me), 130.3 (d, J =13 Hz, PPh_3), 129.3 (s, C_6H_4Me), 129.0 (s, C_6H_4Me), 119.7 (s, C_6H_4Me), 118.4 (d, J = 88 Hz, PPh₃), 118.0 (d, J = 2.5 Hz, C_6H_4Me), 108.8 (d, J = 80 Hz, RuCH=C), 107.8 (s, pz), 107.0 (s, pz), 106.5 (s, pz), 100.3 (s, C=C), 97.3 (d, J = 8.1 Hz, C=C), 93.9 (s, C=C), 86.4 (d, J = 18 Hz, C=C), 75.3 (s, C=C), 73.7 (s, C=C), 21.7 (s, C₆H₄Me), 21.6 (s, C₆H₄Me). ³¹P{¹H} NMR: δ 20.3 (s). FAB-MS (m/z): 886.3 $([M]^+)$. Anal. Calcd for C₄₉H₄₀N₇B₂F₄OPRu: C, 60.51; H, 4.15; N, 10.08. Found: C, 60.34; H, 4.06; N, 9.88. Complex $5 \cdot (BF_4)_2$: IR: $\nu(BH)$ 2513 (w), $\nu(C \equiv C)$ 2193 (w), ν (N=O) 1862 (s) cm⁻¹. ¹H NMR: δ 9.05 (d, $J_{PH} = 28$ Hz, 2H of RuC*H*), 7.91 (d, *J* = 1.6 Hz, 2H of pz), 7.82–7.77 (m, 2H of pz and 6H of Ph), 7.69-7.59 (m, 24H of Ph), 7.53 (d, J =2.0 Hz, 1H of pz), 6.94-6.90 (m, 1H of pz and 4H of C₆H₄Me), 6.78 (d, J = 8.0 Hz, 4H of C₆H₄Me), 6.43 (t, J = 2.0 Hz, 2H of pz), 6.30 (t, J = 2.1 Hz, 1H of pz), 2.28 (s, 6H of Me). ¹³C{¹H} NMR: δ 196.3 (s, RuCH), 142.3 (s, pz), 140.8 (s, pz), 140.0 (s, C_6H_4Me), 136.9 (s, pz), 136.6 (s, pz), 135.3 (d, J = 2.5 Hz, PP h_3), 134.0 (d, J = 9.4 Hz, PPh₃), 131.0 (d, J = 2.5 Hz, C₆H₄Me), 130.3 (d, J = 13 Hz, PPh₃), 129.2 (s, C₆H₄Me), 118.0 (d, J = 87 Hz, PPh_3), 117.6 (d, J = 2.9 Hz, C_6H_4Me), 110.3 (d, J = 78 Hz, RuCH=*C*), 107.7 (s, pz), 107.6 (s, pz), 98.3 (d, *J* = 8.2 Hz, C≡C), 86.4 (d, J = 18 Hz, C=C), 21.6 (s, C₆H₄Me). ³¹P{¹H} NMR: δ 21.1 (s). FAB-MS (m/z): 1236.4 ($[M^{2+} + BF_4^{-}]^+$), 1149.4 ($[M]^+$), 886.3 ($[M - (PPh_3) - 1]^+$), 747.2 ($[M - (CH=C(PPh_3) C \equiv C - C_6 H_4 Me)$]⁺). Anal. Calcd for $C_{67} H_{56} N_7 B_3 F_8 OP_2 Ru: C, 60.84;$ H, 4.27; N, 7.41. Found: C, 60.61; H, 4.27; N, 7.03.

 $TpRu(C \equiv C - C \equiv C - C_6H_4Me) \{C \equiv CCPh_2(OH)\}(NO) (6).$ Arylbutadiyne HC≡C−C≡C−C₆H₄Me (430 mg, 3.07 mmol), CuI (8.20 mg, 0.043 mmol), and Et_3N (316 mg, 3.12 mmol) were added to a CH₂Cl₂ solution (15 mL) of TpRuCl{C≡CC(Ph)₂OH}(NO) (232 mg, 0.395 mmol). The solution was refluxed for 3 h and was concentrated to dryness. The residue was chromatographed on a silica gel column using CH₂Cl₂ as an eluent to give $TpRu(C = C - C = C - C_6H_4Me) \{C = CCPh_2(OH)\}(NO) (6) (176 mg,$ 65%). IR: $\nu(BH)$ 2496 (w), $\nu(C \equiv C)$ 2191 (w), 2137 (w), 2075 (w), ν (N=O) 1872 (s) cm⁻¹. ¹H NMR: δ 8.00 (d, J = 2.0 Hz, 1H of pz), 7.94 (d, *J* = 1.9 Hz, 1H of pz), 7.80 (d, *J* = 1.9 Hz, 1H of pz), 7.78-7.71 (m, 6H of Ph), 7.46 (d, J = 2.3 Hz, 1H of pz), 7.35 (d, J = 8.1 Hz, 2H of C₆ H_4 Me), 7.30–7.14 (m, 2H of pz and 4H of Ph), 7.07 (d, J = 8.0 Hz, 2H of C₆ H_4 Me), 6.34 (t, J = 2.2 Hz, 1H of pz), 6.29 (t, J = 2.1 Hz, 1H of pz), 6.05 (t, J = 2.2 Hz, 1H of pz), 2.95 (s, 1H of OH), 2.32 (s, 3H of Me). ${}^{13}C{}^{1}H$ NMR: δ 147.1 (s, Ph), 147.0 (s, Ph), 145.6 (s, pz), 142.9 (s, pz), 142.9 (s, pz), 137.9 (s, C₆H₄Me), 135.7 (s, pz), 135.7 (s, pz), 134.7 (s, pz), 132.2 (s, C₆H₄Me), 128.8 (s, C₆H₄Me), 127.7 (s, Ph), 127.7 (s, Ph), 126.7 (s, Ph), 126.6 (s, Ph), 126.2 (s, Ph), 126.2 (s, Ph), 120.2 (s, C_6H_4Me), 112.5 (s, C=C), 106.9 (s, pz), 106.7 (s, pz), 105.7 (s, pz), 100.7 (s, C≡C), 96.1 (s, C≡C), 93.2 (s, C≡C), 75.7 (s, C≡C), 75.2 (s, CPh₂(OH)), 73.4 (s, C=C), 21.6 (s, C₆H₄Me). FAB-MS (m/z): 692.2 $([M + 1]^+)$, 674.2 $([M - (OH)]^+)$. Anal. Calcd for C₃₅H₂₈N₇BO₂Ru: C, 60.88; H, 4.09; N, 14.20. Found: C, 61.19; H, 3.93; N, 13.79.

[TpRu(C≡C−C≡C−C₆H₄Me){C(PPh₃)=C=CPh₂}(NO)]BF₄ (7 • BF₄). A mixture of TpRu(C≡C−C≡C−C₆H₄Me){C≡CCPh₂-(OH)}(NO) (6) (52.8 mg, 0.0765 mmol) and PPh₃ (99.3 mg, 0.379 mmol) in THF (5 mL) was treated with HBF₄ • Et₂O (49.6 μ L, 0.362

Table 4. Crystal Data for 2' · BF4, 7 · BF4 · EtOH, and 8 · BF4 · 0.5MeOH

Arikawa	et	al.

2' • BF ₄	$7 \cdot BF_4 \cdot EtOH$	8 • BF ₄ • 0.5MeOH
C37H31N7OB2ClF4PRu	$C_{53}H_{42}N_7OB_2F_4PRu \cdot EtOH$	C ₅₃ H ₄₂ N ₇ OB ₂ F ₄ PRu • 0.5MeOH
854.81	1068.69	1038.64
orthorhombic	monoclinic	orthorhombic
<i>Pbcn</i> (No. 60)	$P2_1/n$ (No. 14)	<i>Pbcn</i> (No. 60)
pink	red	red
14.667(2)	19.968(4)	28.9973(14)
20.8516(9)	12.346(2)	16.8723(9)
25.4182(6)	21.254(4)	21.1493(11)
	95.1910(5)	
7773.8(9)	5218.0(17)	10347.3(9)
8	4	8
1.461	1.360	1.333
5.72	3.936	3.942
55.0	55.0	55.0
8665	11 879	11 847
0.073	0.030	0.060
467	683	681
0.072	0.0516	0.0601
0.151	0.0732	0.1201
0.202	0.1509	0.1883
0.93	1.002	1.005
	$\begin{array}{c} 2' \cdot \mathrm{BF_4} \\ \hline C_{37}\mathrm{H_{31}}\mathrm{N_7OB_2ClF_4PRu} \\ 854.81 \\ orthorhombic \\ Pbcn (No. 60) \\ pink \\ 14.667(2) \\ 20.8516(9) \\ 25.4182(6) \\ \hline \end{array}$	$\begin{array}{cccc} 2' \cdot \mathrm{BF}_4 & 7 \cdot \mathrm{BF}_4 \cdot \mathrm{EtOH} \\ \hline C_{37} \mathrm{H}_{31} \mathrm{N}_7 \mathrm{OB}_2 \mathrm{CIF}_4 \mathrm{PRu} & \mathrm{C}_{53} \mathrm{H}_4 \mathrm{N}_7 \mathrm{OB}_2 \mathrm{F}_4 \mathrm{PRu} \cdot \mathrm{EtOH} \\ & 854.81 & 1068.69 \\ & \text{orthorhombic} & \text{monoclinic} \\ P bcn (\mathrm{No.} 60) & P_{21} / n (\mathrm{No.} 14) \\ & \text{pink} & \mathrm{red} \\ & 14.667(2) & 19.968(4) \\ & 20.8516(9) & 12.346(2) \\ & 25.4182(6) & 21.254(4) \\ \hline & & 95.1910(5) \\ \hline & & 7773.8(9) & 5218.0(17) \\ & 8 & 4 \\ & 1.461 & 1.360 \\ & 5.72 & 3.936 \\ & 55.0 & 55.0 \\ & 8665 & 11 879 \\ & 0.073 & 0.030 \\ & 467 & 683 \\ & 0.072 & 0.0516 \\ & 0.151 & 0.0732 \\ & 0.202 & 0.1509 \\ & 0.93 & 1.002 \\ \hline \end{array}$

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| \sum |F_{o}|. {}^{b}R = \sum |F_{o}|^{2} - F_{c}^{2}| \sum F_{o}|^{2} - F_{c}^{2}|^{2} \sum w(F_{o}|^{2} - F_{c}|^{2})^{2} \sum w(F_{o}|^{2})^{2} |^{1/2}. {}^{d} \operatorname{GOF} = [\{\sum w(|F_{o}| - |F_{c}|)^{2}\}/(N_{o} - N_{p})]^{1/2}, \text{ where } N_{o} = N_{$

mmol). After stirring for 10 min, followed by addition of NaHCO₃ powder, the mixture was filtered and evaporated to dryness. The residue was separated on column chromatography (SiO₂) to give $[TpRu(C \equiv C - C \equiv C - C_6H_4Me) \{C(PPh_3) = C = CPh_2\}(NO)]BF_4(7 \cdot$ BF₄) (75.5 mg, 96%) from a CH₂Cl₂/acetone (20:1) eluent. The use of CH₂Cl₂ reaction solvent under the same reaction conditions (6 (30.1 mg, 0.0436 mmol), PPh₃ (117 mg, 0.446 mmol), and HBF₄•Et₂O (60 µL, 0.438 mmol)) gave rise to 7•BF₄ (28.1 mg, 63%) and an uncharacterized brown powder (13.6 mg). IR: ν (BH) 2513 (w), ν (C=C) 2189 (w), 2071 (w), ν (N=O) 1866 (s) cm⁻¹ ¹H NMR: δ 7.98 (d, J = 2.0 Hz, 1H of pz), 7.94–7.89 (m, 6H of aryl), 7.83 (d, J = 2.2 Hz, 1H of pz), 7.69–7.65 (m, 3H of aryl), 7.63 (d, J = 2.3 Hz, 1H of pz), 7.60 (d, J = 1.8 Hz, 1H of pz), 7.59–7.55 (m, 1H of pz and 6H of aryl), 7.50 (d, J = 2.0 Hz, 1H of pz), 7.28-7.13 (m, 10H of aryl), 6.53 (t, J = 2.3 Hz, 1H of pz), 6.49-6.47 (m, 2H of aryl), 6.40 (d, J = 7.9 Hz, 2H of C₆H₄Me), 6.23 (t, J = 2.3 Hz, 1H of pz), 5.86 (t, J = 2.3 Hz, 1H of pz), 2.38 (s, 3H of Me). ${}^{13}C{}^{1}H$ NMR: δ 215.7 (d, J = 3.3 Hz, Ru-C=Cβ=C), 145.4 (s, pz), 144.6 (s, pz), 142.2 (s, pz), 138.5 (s, aryl), 136.5 (s, pz), 136.0 (s, pz), 135.8 (s, pz), 134.7 (d, J = 9.8 Hz, PPh₃), 134.1 (d, J = 3.2 Hz, PPh₃), 132.0 (s, C₆H₄Me), 129.6 (d, J = 12 Hz, PPh₃), 129.0 (s, aryl), 128.9 (d, J = 4.6 Hz, PPh₃), 128.4 (s, aryl), 128.3 (s, aryl), 128.0 (s, aryl), 128.0 (s, aryl), 128.0 (s, aryl), 127.9 (s, aryl), 122.0 (s, aryl), 121.2 (s, aryl), 119.6 (s, aryl), 108.4 (s, pz), 107.5 (d, J = 21 Hz, Ru–C=C= $C\gamma$), 107.0 (s, pz), 106.5 (s, pz), 101.9 (d, J = 2.5 Hz, C=C), 98.4 (s, C=C), 86.6 (d, J = 36 Hz, Ru- $C\alpha = C = C$), 74.8 (s, C = C), 74.6 (s, C = C), 21.7 (s, C₆H₄Me). ³¹P{¹H} NMR: δ 27.7 (s). FAB-MS (m/z): 936.3 $([M]^+)$, 674.2 $([M - (PPh_3)]^+)$. Anal. Calcd for $C_{53}H_{42}N_7$ -

N, 9.44. **[TpRu{CH(PPh_3)[3-Ph-8-(MeC_6H_4-C=C)-C_{10}H_4]}(NO)]BF_4 (8 · BF_4).** A solution of [TpRu(C=C-C=C-C_6H_4Me){C(PPh_3)= C=CPh_2}(NO)]BF_4 (7 · BF_4) (30.8 mg, 0.0301 mmol) in CDCl_3 was heated at 55 °C for 48 h and then was evaporated. The residue was crystallized from MeOH/ether to afford [TpRu{CH(PPh_3)[3-Ph-8-(MeC_6H_4-C=C)-C_{10}H_4]}(NO)]BF_4 (8 · BF_4) (11.8 mg, 38%). IR: ν (BH) 2516 (m), ν (C=C) 2197 (w), 2071 (w), ν (N=O) 1850 (s) cm^{-1.} ¹H NMR: δ 8.06 (d, J = 1.9 Hz, 1H of pz), 7.96 (d, J =2.1 Hz, 1H of pz), 7.82 (d, J = 1.1 Hz, 1H of aryl), 7.78 (d, J =2.2 Hz, 2H of pz), 7.73 (d, J = 2.6 Hz, 1H of pz), 7.72–7.69 (m, 3H of aryl), 7.43–7.37 (m, 6H of aryl), 7.23–7.18 (m, 4H of aryl),

B₂F₄OPRu: C, 62.25; H, 4.14; N, 9.59. Found: C, 61.83; H, 4.34;

7.13-7.06 (m, 5H of aryl), 7.01-6.94 (m, 6H of aryl), 6.86 (d, J = 7.2 Hz, 1H of aryl), 6.71 (d, J = 8.0 Hz, 2H of C₆H₄Me), 6.27 $(t, J = 2.3 \text{ Hz}, 1 \text{H of pz}), 6.09 (t, J = 2.2 \text{ Hz}, 1 \text{H of pz}), 6.06 (d, J = 2.2 \text{ Hz}), 6.06 (d, J = 2.2 \text{$ J = 1.9 Hz, 1H of pz), 5.92 (t, J = 2.2 Hz, 1H of pz), 4.52 (d, J = 1.7 Hz, 1H of RuCH), 2.36 (s, 3H of Me). $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR: δ 187.3 (d, J = 3.1 Hz, aryl), 144.5 (d, J = 3.1 Hz, aryl), 144.2 (s, pz), 142.2 (s, pz), 142.2 (s, pz), 138.8 (s, aryl), 138.6 (d, J = 21Hz, PPh₃), 137.2 (s, pz), 136.1 (s, pz), 135.5 (s, pz), 134.4 (d, J = 3.1 Hz, PPh_3), 133.4 (d, J = 10 Hz, PPh_3), 131.4 (s, aryl), 129.9 (s, aryl), 129.8 (d, *J* = 13 Hz, PPh₃), 129.1 (s, aryl), 128.7 (s, aryl), 128.6 (s, aryl), 128.0 (s, aryl), 127.6 (s, aryl), 127.2 (s, aryl), 126.8 (s, C_6H_4Me), 125.9 (s, aryl), 122.7 (d, J = 1.7 Hz, aryl), 122.0 (s, aryl), 121.1 (s, aryl), 119.5 (s, aryl), 110.8 (d, J = 42 Hz, aryl), 107.1 (s, pz), 107.0 (s, pz), 106.4 (s, pz), 98.0 (s, C≡C), 87.8 (d, J = 4.2 Hz, C=C), 50.4 (d, J = 4.2 Hz, Ru-C α H), 21.6 (s, C_6H_4Me). ³¹P{¹H} NMR: δ 12.6 (s). FAB-MS (*m*/*z*): 936.3 ([M]⁺). Anal. Calcd for C₅₃H₄₂B₂F₄N₇OPRu • 0.5(MeOH): C, 61.87; H, 4.27; N, 9.44. Found: C, 61.45; H, 4.11; N, 9.51.

X-ray Crystal Structure Determinations. Crystal data and refinement parameters for the structurally characterized complexes are summarized in Table 4. Single crystals suitable for X-ray diffraction were obtained from CH₂Cl₂/AcOEt for 2' · BF₄, EtOH/ ether for $7 \cdot BF_4 \cdot EtOH$, and MeOH/ether for $8 \cdot BF_4 \cdot 0.5$ MeOH. Diffraction data were collected at room temperature on a Rigaku AFC7 diffractometer equipped with a MSC/ADSC Quantum CCD $(2' \cdot BF_4)$ or Rigaku Mercury CCD area detector $(7 \cdot BF_4 \cdot EtOH and$ 8 · BF₄ · 0.5MeOH) by using graphite-monochromated Mo K α radiation. Seven $(2' \cdot BF_4)$ or six $(7 \cdot BF_4 \cdot EtOH and 8 \cdot BF_4 \cdot$ 0.5MeOH) preliminary data frames were measured at 0.5° increments of ω , in order to assess the crystal quality and preliminary unit cell parameters. The intensity images were obtained at the exposure rate of 70 s/deg ($2' \cdot BF_4$) and 53.3 s/deg ($7 \cdot BF_4 \cdot EtOH$ and $8 \cdot BF_4 \cdot 0.5 MeOH$). The frame data were integrated using the MSC d*TREK program package (Quantum CCD) or the Rigaku CrystalClear program package (Mercury CCD), and the data sets were corrected for absorption using the REQAB program.

The calculations were performed with the TEXSAN $(2' \cdot BF_4)$ or the CrystalStructure $(7 \cdot BF_4 \cdot EtOH \text{ and } 8 \cdot BF_4 \cdot 0.5MeOH)$ software package. The structures were solved by direct methods (SIR92 or SIR97) and refined on F^2 by full-matrix least-squares methods. For $2' \cdot BF_4$, each asymmetric unit carries one entire molecule (2') along with two halves of BF₄. All non-hydrogen atoms

Triphenylphosphine Incorporation Reactions

except for one-half of BF_4 were refined anisotropically. For the BF_4 anion, the boron atom was isotropically refined and the florine atoms were fixed. In the case of $7 \cdot BF_4 \cdot EtOH$, the oxygen atom of the EtOH solvent molecule was disordered with occupancy factors of 0.7/0.3. All non-hydrogen atoms except for the EtOH solvent molecule were refined anisotropically. On the other hand, the structure of $8 \cdot BF_4$ contains a half of MeOH solvent molecule in each asymmetric unit, whose carbon atom was disordered with occupancy factors of 0.5/0.5. All non-hydrogen atoms were refined anisotropically. For all the structures, the hydrogen atoms were put at calculated positions with C–H distances of 0.97 Å, except for those of B–H, while the solvent molecules of $7 \cdot BF_4 \cdot EtOH$ and $8 \cdot BF_4 \cdot 0.5$ MeOH were not included in the calculations.

Acknowledgment. This work was supported by Grantin-Aid for Scientific Research on Priority Areas (No. 19028053, "Chemistry of Concerto Catalysis") and Young Scientists (B) (No. 18750050) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: CIF files for $2' \cdot BF_4$, $7 \cdot BF_4 \cdot EtOH$, and $8 \cdot BF_4 \cdot 0.5$ MeOH. This material is available free of charge via the Internet at http://pubs.acs.org.

OM701028R