Properties and Reactivities of the Hydrido Ligands in Iridium Sulfido Clusters Relevant to Activation and Production of H₂

Hidetake Seino,* Akihiro Saito, Hidenobu Kajitani, and Yasushi Mizobe*

Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan

Received December 3, 2007

Sulfido-hydrido clusters whose cores consist of three to six iridium atoms, $[(Cp*Ir)_3(\mu_3-S)(\mu_2-H)_3][BF_4]$ (2), $[(Cp*Ir)_4(\mu_3-S)_2(\mu_2-H)_3][BF_4]$ (3), $[(Cp*IrH)_2(Cp*Ir)(\mu_3-S)(\mu_2-H)_2]$, $[(Cp*IrH)_4(\mu_4-S)(\mu_2-H)_2]$, and [(Cp*Ir)₅Ir(μ_3 -S)₅H], were isolated from the reactions of [(Cp*Ir)₂(μ_2 -H)₃][BF₄] (Cp* = η^5 -C₅Me₅) with NaSH in MeOH. Treatment of **2** with KOBu' afforded the deprotonated product $[(Cp*Ir)_3(\mu_3-S)(\mu-H)_2]$ (7), which was protonated by HBF₄ to give 2 reversibly. Addition of HBF₄ to 3 formed the dicationic cluster [(Cp*Ir)₄(μ_3 -S)₂(μ -H)₂][BF₄]₂ (10) with concurrent evolution of H₂, which was converted back to 3 under H_2 atmosphere in the presence of excess pyridine at 50 °C. In contrast, reactions of 10 with H_2 conducted in the presence of various alkylamines at 20-50 °C afforded the mixtures of 3 and its stereoisomer 11. Conversion of 10 into 3 was also achieved by the reaction with 2 equiv of Cp_2Co in the presence of $[Et_3NH][BF_4]$, which furnished the cycle of reducing H⁺ into H₂ mediated by the Ir₄S₂ cluster. Cluster 10 readily reacted with CO (1 atm) at 20 °C to give $[(Cp*Ir)_4(\mu_3-S)_2(\mu-H)_2(CO)][BF_4]_2$ (13), where the CO ligand was bound in an end-on fashion to one of the two Ir centers connected to two μ_3 -sulfido ligands. Analogous adduct formation was observed in the reaction of **10** with 1 equiv of XyNC (Xy = 2,6-dimethylphenyl), yielding two stereoisomers of $[(Cp*Ir)_4(\mu_3-S)_2(\mu-H)_2(CNXy)][BF_4]_2$, one of which was the analogue of 13 and the other had the XyNC ligand coordinating to the same Ir site but with the inverted orientation around the metal. On the other hand, treatment of 10 with excess N_2H_4 gave the hydrazine cluster $[(Cp*Ir)_4(\mu_3-S)_2(\mu_2-H)_2(N_2H_4)_2][BF_4]_2$, in which two terminal hydrazine ligands were bonded to one of two Ir sites supported by only one μ_3 -sulfido ligand. On the basis of these findings about the adduct formations, reaction pathways of 10 with H_2 in the presence of bases are discussed. Structures of all new clusters reported here were determined by spectroscopic methods and, except for 7, by X-ray crystallography.

Introduction

Metal sulfur clusters are known to play important roles in certain industrial and biological catalyses.¹ In these systems, activation and/or production of H₂ are involved as the key step. Thus, hydrodesulfurization of crude oil as a core process in the petroleum industry is catalyzed most commonly by the Co- or Ni-modified Mo sulfide, converting organosulfur compounds into hydrocarbons and H₂S through hydrogenolysis.² The active site is believed to consist of certain Co(Ni)-Mo mixed-metal sulfido clusters. On the other hand, in many microorganisms, reduction of protons to H₂ and its reverse reaction, separating H₂ into protons and electrons, are catalyzed by metalloenzymes called hydrogenases, whose active sites contain thiolato-bridged dinuclear Fe2 or FeNi centers.³ Nitrogen-fixing enzymes, nitrogenases, having a Fe_7MoS_9X (X = N, O, or C) mixedmetal sulfido cluster at their active site also function as hydrogenases, yielding not only ammonia but also H₂ gas by the uptake of protons and electrons.⁴

However, in spite of the recent rapid progress in the elucidation of the active site structures of these industrial and biological catalysts, detailed mechanisms operating at these sites for the activation and production of H_2 as well as the substrate reduction are yet uncertain. Preparation of transition-metal sulfido-hydrido clusters and clarification of the properties of their hydrido ligands as well as the reactivities of these clusters toward H_2 gas can therefore provide important information for understanding these catalyses^{5,6} and lead potentially to the development of new hydrodesulfurization and hydrogen fuel technology. It is to be noted that although transition-metal hydrido complexes have been studied extensively as the key

^{*} Corresponding author. E-mail: ymizobe@iis.u-tokyo.ac.jp.

 ⁽a) Weber, T., Prins, R., van Santen, R. A., Eds. *Transition Metal Sulphides*; Kluwer Academic Publishers: Dordrecht, 1998. (b) Stiefel, E. I., Matsumoto, K., Eds. *Transition Metal Sulfur Chemistry: Biological and Industrial Significance*; American Chemical Society: Washington, DC, 1996.
 (c) Rees, D. C. *Annu. Rev. Biochem.* 2002, *71*, 221.

^{(2) (}a) Startsev, A. N. J. Mol. Catal. A **2000**, 152, 1. (b) Kabe, T.; Ishihara, A.; Qian, W. Hydrodesulfurization and Hydrodenitrogenation; Kodansha Ltd. and Wiley-VHC: Tokyo, 1999. (c) Topsøe, H.; Clausen, B. S.; Massoth, F. E. In Catalysis: Science and Technology; Anderson, J. R., Boudart, M.,Eds.; Springer-Verlag: Berlin, Vol. 11, 1996. (d) Chianelli, R. R.; Daage, M.; Ledoux, M. J. Adv. Catal. **1994**, 40, 177.

^{(3) (}a) Coord. Chem. Rev. 2005, 249, issues 15–16. (b) Vincent, K. A.;
Cracknell, J. A.; Parkin, A.; Armstrong, F. A. Dalton Trans. 2005, 3397.
(c) Volbeda, A.; Fontecilla-Camps, J. C. Dalton Trans. 2003, 4030. (d) Evans, D. J.; Pickett, C. J. Chem. Soc. Rev. 2003, 32, 268.

^{(4) (}a) Burgess, B. K.; Lowe, D. J. *Chem. Rev.* **1996**, *96*, 2983. (b) Thorneley, R. N. F.; Lowe, D. J. *J. Biol. Inorg. Chem.* **1996**, *1*, 576. (c) Sellmann, D.; Fürsattel, A.; Sutter, J. *Coord. Chem. Rev.* **2000**, *200–202*, 545. (d) Igarashi, R. Y.; Laryukhin, M.; Dos Santos, P. C.; Lee, H.-I.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. J. Am. Chem. Soc. **2005**, *127*, 6231.

^{(5) (}a) Clusters for hydrodesulfurization model: Brorson, M.; King, J. D.;
Kiriakidou, K.; Prestopino, F.; Nordlander, E. In *Metal Clusters in Chemistry*; Braunstein, P., Oro, L. A., Raithby, P. R. Eds.; Wiley-VHC:
Weinheim, 1999; Chapter 2.6. (b) Curtis, M. D.; Druker, S. H. J. Am. Chem. Soc. 1997, 119, 1027. (c) Rakowski Dubois, M. Polyhedron 1997, 16, 3089. (d) Angelici, R. J. Polyhedron 1997, 16, 3073. (e) Curtis, M. D. In Transition Metal Sulfur Chemistry: Biological and Industrial Significance; Stiefel, E. I., Matsumoto, K., Eds.; American Chemical Society: Washington, DC, 1996; Chapter 8. (f) Wiegand, B. C.; Friend, C. M. Chem. Rev. 1992, 92, 491.

intermediates in catalytic homogeneous hydrogenation,⁷ chemistry of the hydrido-sulfido clusters is still poorly advanced.^{8,9}

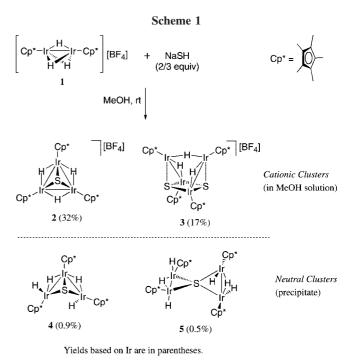
Our recent research has focused on syntheses of transitionmetal sulfido clusters and exploration of their reactivities to activate small molecules effectively.^{10–15} For the systems using metal sulfido clusters, it may be expected that reaction proceeds with retention of their multimetallic core structures even under relatively forcing conditions, owing to the presence of firmly bonded sulfido bridges. In this paper, we wish to describe the structures and reactivities of a series of new Ir sulfido clusters having hydrido ligands, which have been synthesized from the reactions of the Ir hydrido complex [(Cp*Ir)₂(μ -H)₃][BF4] (1; Cp* = η^5 -C₅Me₅) with controlled amount of the sulfido source. Interestingly, the features of the hydrido ligands in these clusters vary significantly from *hydridic* to *protic*, as demonstrated by their reactivities toward acids and bases. The factors determining their features are also discussed.

Results and Discussion

Preparation of the Sulfido-Hydrido Clusters of Iridium. When 0.67 equiv of NaSH was added slowly (over >5 h) to a MeOH solution of **1** at room temperature, a mixture of several Ir sulfido-hydrido clusters was formed (Scheme 1). Two major products from this reaction of Ir/S = 3 are the cationic triiridium

(7) (a) Humphries, A. P.; Kaesz, H. D. Prog. Inorg. Chem. 1979, 25, 145.
(b) Plasseraud, L.; Süss-Fink, G. J. Organomet. Chem. 1997, 539, 163.
(c) Ferrand, V.; Süss-Fink, G.; Neels, A.; Stoeckli-Evans, H. J. Chem. Soc., Dalton Trans. 1999, 3825.
(d) Nagashima, H. Monatsh. Chem. 2000, 131, 1225.
(e) Süss-Fink, G.; Faure, M.; Ward, T. R. Angew. Chem., Int. Ed. 2002, 41, 99.
(f) Adams, R. D.; Captain, B. J. Organomet. Chem. 2004, 689, 4521.
(g) Adams, R. D.; Captain, B.; Zhu, L. J. Am. Chem. Soc. 2004, 126, 3042.

(8) (a) Reactions of sulfido clusters with H₂: Adams, R. D.; Wang, S. Organometallics 1986, 5, 1272. (b) Adams, R. D.; Babin, J. E.; Tasi, M.; Wolfe, T. A. New J. Chem. 1988, 12, 481. (c) Vaartstra, B. A.; Cowie, M. Inorg. Chem. 1989, 28, 3138. (d) Matsubara, K.; Inagaki, A.; Tanaka, M.; Suzuki, H. J. Am. Chem. Soc. 1999, 121, 7421. (e) Ohki, Y.; Matsuura, N.; Marumoto, T.; Kawaguchi, H.; Tatsumi, K. J. Am. Chem. Soc. 2003, 125, 7978. (f) Takei, I.; Suzuki, K.; Enta, Y.; Dohki, K.; Suzuki, T.; Mizobe, Y.; Hidai, M. Organometallics 2003, 22, 1790. (g) Justice, A. K.; Linck, R. C.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 2004, 126, 13214. (h) Tschan, M.; Therrien, B.; Chérioux, F.; Süss-Fink, G. J. Mol. Struct. 2005, 743, 177. (i) Takei, I.; Kobayashi, K.; Dohki, K.; Nagao, S.; Mizobe, Y.; Hidai, M. Chem. Lett. 2007, 36, 546.


(9) (a) Interactions of H₂ with μ -sulfido ligands in certain dinuclear complexes: Casewit, C. J.; Coons, D. E.; Wright, L. L.; Müller, W. K.; Rakowski DuBois, M. Organometallics **1986**, 5, 951. (b) Laurie, J. C. V.; Duncan, L.; Haltiwanger, R. C.; Weberg, R. T.; Rakowski DuBois, M. J. Am. Chem. Soc. **1986**, 108, 6234. (c) Bianchini, C.; Melli, C.; Meli, A.; Sabat, M. Inorg. Chem. **1986**, 25, 4618. (f) Linck, R. C.; Pafford, R. J.; Rauchfuss, T. B. J. Am. Chem. Soc. **2001**, 123, 8856. (g) Kato, H.; Seino, H.; Midai, M. J. Chem. Soc. Dalton Trans. **2002**, 1494. (h) Ienco, A.; Calhorda, M. J.; Reinhold, J.; Reineri, F.; Bianchini, C.; Peruzzini, M.; Vizza, F.; Mealli, C. J. Am. Chem. Soc. **2004**, 126, 11954.

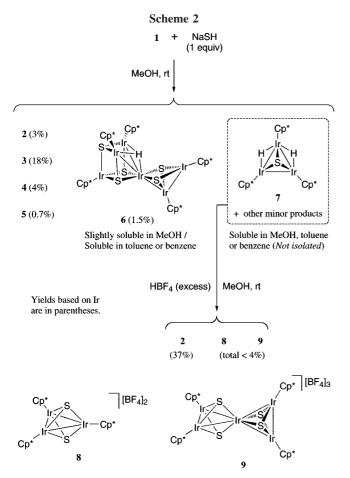
(10) (a) Masumori, T.; Seino, H.; Mizobe, Y.; Hidai, M. *Inorg. Chem.* **2000**, *39*, 5002. (b) Seino, H.; Masumori, T.; Hidai, M.; Mizobe, Y. *Organometallics* **2003**, *22*, 3424.

(11) (a) Takagi, F.; Seino, H.; Hidai, M.; Mizobe, Y. *Organometallics* **2003**, *22*, 1065. (b) Kajitani, H.; Seino, H.; Mizobe, Y. *Organometallics* **2005**, *24*, 6260.

(12) Yoshizawa, K.; Kihara, N.; Shiota, Y.; Seino, H.; Mizobe, Y. Bull. Chem. Soc., Jpn. 2006, 79, 53.

(13) Saito, A; Seino, H.; Kajitani, H.; Takagi, F.; Yashiro, A.; Ohnishi, T.; Mizobe, Y. J. Organomet. Chem. **2006**, 691, 5746.

cluster [(Cp*Ir)₃(μ_3 -S)(μ_2 -H)₃][BF₄] (**2**) and the tetrairidium cluster [(Cp*Ir)₄(μ_3 -S)₂(μ_2 -H)₃][BF₄] (**3**), which are both soluble in MeOH and were isolated as red and dark reddish-brown crystals, respectively, after the workup of the filtrate of the reaction mixture. The yield of the former was 32%, while that of the latter was 17%, based on the Ir charged. Two neutral clusters as minor products, [(Cp*IrH)₂(Cp*Ir)(μ_3 -S)(μ_2 -H)₂] (**4**) and [(Cp*IrH)₄(μ_4 -S)(μ_2 -H)₂] (**5**), were also obtained as dark red and orange crystals, respectively, in quite low yields by recrystallizing a small amount of solid precipitated from the reaction mixture. Clusters **2–5** were characterized by spectroscopic and elemental analysis data as well as X-ray crystallography (vide infra).


To improve the yield of **3**, the reaction of equimolar amounts of 1 and NaSH, viz., Ir/S = 2, was attempted. This resulted in the expected decrease in the yield of 2 (ca. 3%), but the yield of 3 increased only slightly (18-22%) regardless of the addition rate of NaSH (Scheme 2). On the other hand, two new clusters were also obtained as the products from this reaction mixture. One is the neutral hexainidium cluster $[(Cp*Ir)_5Ir(\mu_3-S)_5H]$ (6), which was isolated as dark green crystals in low yield (1.5%) and fully characterized. The other is another neutral cluster tentatively formulated as $[(Cp*Ir)_3(\mu_3-S)(\mu-H)_2]$ (7), which was present as the major component in the benzene extract from the evaporated residue of the filtrate of the reaction mixture, but its very high solubility in common organic solvents prevented further purification. By treatment with HBF4 in MeOH, 7 present in the benzene extract was converted to the well-defined **2**, which was isolated in 37% yield based on **1**. From this acidified mixture of benzene extract, cationic sulfido clusters with no hydrido ligands, $[(Cp*Ir)_3(\mu_3-S)_2][BF_4]_2$ (8)¹⁶ and $[(Cp*Ir)_4Ir(\mu_3-S)_4][BF_4]_3$ (9),¹⁷ were also obtained in ca. 4% combined yield. Thus, the increase in the molar ratio NaSH/1 from 0.67 to 1 resulted in the formation of 7 instead of 2 in significant yield as well as the production of relatively sulfur-rich clusters 6, 8, and 9 despite their low yields.

^{(6) (}a) Complexes for hydrogenase model: Tard, C.; Liu, X.; Ibrahim, S. K.; Bruschi, M.; De Gioia, L.; Davies, S. C.; Yang, X.; Wang, L.-S.; Sawers, G.; Pickett, C. J. *Nature* **2005**, *433*, 610. (b) van der Vlugt, J. I.; Rauchfuss, T. B.; Whaley, C. M.; Wilson, S. R. J. Am. Chem. Soc. **2005**, *127*, 16012. (c) Li, Z.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc. **2005**, *127*, 8950. (d) Mejia-Lodriguez, R.; Chong, D.; Reibenspies, J. H.; Soriaga, M. P.; Darensbourg, M. Y. J. Am. Chem. Soc. **2004**, *126*, 12004.

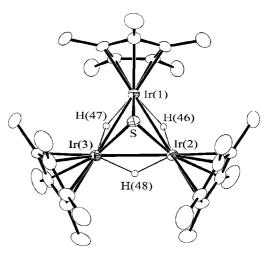
⁽¹⁴⁾ Kajitani, H.; Šeino, H.; Mizobe, Y. Organometallics 2007, 26, 3499.
(15) Mori, H.; Seino, H.; Hidai, M.; Mizobe, Y. Angew. Chem., Int. Ed. 2007, 46, 5431.

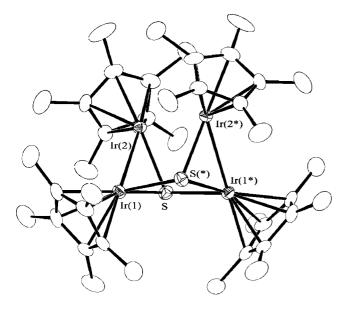
⁽¹⁶⁾ Nishioka, T.; Isobe, K. Chem. Lett. 1994, 1661.

⁽¹⁷⁾ Atom connecting scheme was confirmed by preliminary X-ray analysis. Crystallographic data are as follows: monoclinic, space group $P2_1/n$, a = 18.041(7) Å, b = 14.385(5) Å, c = 21.616(8) Å, $\beta = 108.472(2)^\circ$, V = 5321(3) Å³, Z = 4.

It might also be noteworthy that the reaction of **1** with NaSH in MeCN in place of MeOH gave a complicated mixture containing some uncharacterizable products in addition to **2–5**, whereas with the use of Na₂S as the sulfur source the major product of the reaction became the hydrido complex $[(Cp*Ir)_2(\mu_2-H)_2]^{.18}$

Characterization of the Clusters 2-6. The hydrido-sulfido clusters 2-6 have been characterized by combination of spectroscopic data and single-crystal X-ray diffraction studies as follows. The structure of the cationic part of 2 is shown in Figure 1. It has a triangular Ir₃ core capped by one μ_3 -sulfido ligand, and each Cp* ligand orients almost perpendicularly to the Ir₃ plane with deviations less than 2°. The Ir-Ir distances in the range 2.8619(7)-2.8638(6) Å are mutually in good agreement and the Ir-S bond lengths are also essentially identical (2.299(3)-2.305(3) Å), indicating the cation has pseudo- $C_{3\nu}$ symmetry in spite of the lack of any crystallographically imposed symmetry. The ¹H NMR spectrum of **2** in CDCl₃ shows one signal assignable to Cp* ligands at δ 2.24 as well as one singlet due to the hydrido ligands at δ -21.86 in a ratio of 15:1, which suggests the existence of one hydrido ligand per one Cp*Ir fragment. It seems reasonable to assume that three hydrido ligands bridge three Ir-Ir edges, and this has been confirmed by the appearance of three H atoms at the expected positions in the Fourier map (Ir-H, 1.7(1)–1.9(1) Å; Ir-H-Ir, 101(6)–117(7)°; S–Ir–H, 82(4)–91(3)°; H–Ir–H, 76(5)–81(5)°). Therefore, short Ir-Ir distances in 2 are attributable to the threecentered-two-electron bonds involving μ_2 -hydrido ligands. These bonds are longer than the Rh-Rh distances in the




Figure 1. Molecular structure of the cationic part of 2 (thermal ellipsoids at the 30% probability level). Hydrogen atoms in Cp* ligands are omitted for clarity. Bond distances (Å) and angles (deg): Ir(1)-Ir(2), 2.8638(6); Ir(1)-Ir(3), 2.8625(7); Ir(2)-Ir(3), 2.8619(7); Ir(1)-S, 2.305(3); Ir(2)-S, 2.299(3); Ir(3)-S, 2.301(3); Ir(2)-Ir(1)-Ir(3), 59.97(2); Ir(1)-Ir(2)-Ir(3), 59.99(2); Ir(1)-Ir(3)-Ir(2), 60.04(2); Ir(1)-S-Ir(2), 76.92(9); Ir(1)-S-Ir(3), 76.85(9); Ir(2)-S-Ir(3), 76.94(9).

homologous oxo cluster $[(Cp*Rh)_3(\mu_3-O)(\mu_2-H)_3][PF_6]$ at 2.755(1)–2.770(1) Å¹⁹ but only slightly longer than the Ir–Ir single bonds in the triangular Ir₃ bis(sulfido) clusters, such as **8** and its PF₆⁻ salt (2.832(1) and 2.8157(7)–2.8201(7) Å, respectively),^{16,20} and analogous to those in the other Cp*Ir complexes having mono- μ_2 -hydrido bridged Ir–Ir moieties, e.g., $[(Cp*IrCl)_2(\mu_2-SR)(\mu_2-H)]$ (R = Bu, 2-ethylphenyl, (η^3 -C₃H₃Me)IrCp*Cl) at 2.8859(4)–2.9139(3) Å,²¹ [(Cp*IrCl)_2(μ_2 -Cl)(μ_2 -H)] at 2.903(1) Å,²² [{Cp*Ir(CO)}_2(μ_2 -CO)(μ_2 -H)][OTf = CF₃SO₃) at 2.831(1) Å,²³ [{Cp*Ir(Ph)}($\mu_2-\eta^1,\eta^3$ -C₃H₄)(μ_2 -H)(IrCp*)] at 2.867(1) and 2.872(1) Å,²⁴ [(Cp*Ir)_2(μ_2 -dmpm)(μ_2 -L)(μ_2 -H)][OTf]₂ (dmpm = Me₂PCH₂PMe₂; L = η^1,η^2 -CBu=CH₂, η^1,η^2 -CH=CHPh,CNHPh) at 2.855(1)–2.9329(6) Å,²⁵ and [(Cp*Ir)_2(μ_2 -PPh₂)(μ_2 -C₆H₄)(μ_2 -H)] at 2.8901(4) Å.²⁶ The Ir–S distances in **2** are almost comparable to those in **8** (2.289(3) Å for BF₄ salt and 2.275(3)–2.294(3) Å for PF₆ salt).

The cationic part of **3** depicted in Figure 2 has a distorted trigonal-prismatic Ir₄S₂ core, which is defined by the Ir(1)–Ir(2)–S and Ir(1*)–Ir(2*)–S* basal planes connected each other by the Ir(2)–Ir(2*), Ir(1)–S*, and S–Ir(1*) edges. A crystallographic 2-fold axis passes through the midpoint of the Ir(1)–Ir(1*) and Ir(2)–Ir(2*) vectors. The Ir(1) atom is connected to two μ_3 -sulfido ligands S and S*, while the Ir(2) is bonded to only the S atom. Thus, two ¹H NMR signals of Cp* ligands appear at δ 1.97 and 2.03 in CDCl₃ at 20 °C corresponding to the inequivalent Ir centers. There are two more proton signals at δ –25.34 and –15.02, which are observed as a triplet and a

- (20) Venturelli, A.; Rauchfuss, T. B. J. Am. Chem. Soc. 1994, 116, 4824.
- (21) Vicic, D. A.; Jones, W. D. Organometallics 1997, 16, 1912.
- (22) Churchill, M. R.; Julis, S. A. Inorg. Chem. 1977, 16, 1488.
- (23) Heinekey, D. M.; Fine, D. A.; Barnhart, D. Organometallics 1997, 16, 2530.
- (24) McGhee, W. D.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 8428.
- (25) Fujita, K.; Nakaguma, H.; Hanasaka, F.; Yamaguchi, R. Organometallics 2002, 21, 3749.
- (26) Grushin, V. V.; Vymenits, A. B.; Yanovsky, A. I.; Struchkov, Y. T.; Vol'pin, M. E. Organometallics **1991**, *10*, 48.

⁽¹⁹⁾ Nutton, A.; Bailey, P. M.; Braund, N. C.; Goodfellow, R. J.; Thompson, R. S.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1980, 631.

Figure 2. Molecular structure of the cationic part of **3** (thermal ellipsoids at the 30% probability level). Hydrogen atoms are omitted for clarity. Interatomic distances (Å) and bond angles (deg): Ir(1)-Ir(2), 2.8662(7); $Ir(1)\cdots Ir(1^*)$, 3.6036(8); $Ir(1)\cdots Ir(2^*)$, 3.8104(8); $Ir(2)\cdots Ir(2^*)$, 3.1757(7); Ir(1)-S, 2.320(3), Ir(1)-S(*), 2.345(4); Ir(2)-S, 2.323(4); S-Ir(1)-S(*), 77.9(1); Ir(1)-S-Ir(2), 76.2(1); $Ir(1)-S-Ir(1^*)$, 101.1(1); $Ir(1^*)-S-Ir(2)$, 109.4(1).

doublet integrated to be 1H and 2H, respectively, and coupled to each other with $J \approx 2$ Hz. The former signal is presumably assignable to the hydrido ligand bridging the $Ir(2)-Ir(2^*)$ edge, and the latter is assignable to those at the Ir(1)-Ir(2) and $Ir(1^*)-Ir(2^*)$ edges, although they could not be located in the difference Fourier map. By the presence of these hydrido ligands, both Ir(1) and Ir(2) centers adopt three-legged pianostool geometries if Ir-Ir interactions are neglected. The Ir(1)-Ir(2) distance at 2.8662(7) Å is typical for threecentered-two-electron Ir-H-Ir bonding as found in 2. In contrast, the Ir(2)-Ir(2*) distance at 3.1757(7) Å is considerably elongated probably due to the steric repulsion between the Cp* ligands attached to these Ir atoms. Similar long Ir-Ir bonds with μ_2 -hydrido bridges have been found in some complexes such as $[(Tp^{Me2}IrH)_2(\mu_2-\eta^1,\eta^1-C,S-C_4H_3S)(\mu_2-H)]$ $(Tp^{Me2} =$ HB(3,5-Me₂C₃HN₂)₃) at 3.066(1) Å,²⁷ [(Cp*Ir)₂(μ_2 - η^1 , η^1 -4-methyl-1-pyrazolyl)₂(μ_2 -H)][PF₆] at 3.0670(4) Å,²⁸ and $[{Cp*Ir(CNBu')} (\mu_2-dmpm)(\mu_2-H){IrCp*(H)}][OTf]_2 at 3.168(1)$ Å.²⁵ Other Ir ···· Ir distances in **3** longer than 3.6 Å indicate the absence of any Ir-Ir bonding interactions or bridging hydrido ligands there, which is consistent with the cluster electron count of 66 bearing three Ir–Ir single bonds bridged by μ_2 -H ligands. The Ir-S bond distances at 2.320(3)–2.345(4) Å are slightly longer than those in 2 but not unusual for the Cp*Ir(III)-(μ_3 sulfido) single bonds, e.g., $[(Cp*Ir)_4(\mu_3-S)_4]$ at 2.367(3)–2.380(3) $Å^{29}$ and $[(Cp*Ir)_2(Cp^{\#}Ru)(\mu_3-S)(\mu_2-SCH_2CH_2CN)(L)]^+$ $(Cp^{\#}=$ Cp*, η^{5} -C₅H₅ (Cp); L = Cl⁻, CO, CNXy (Xy = 2,6dimethylphenyl)) at 2.369(1)-2.414(1) Å.¹¹

The structure of the neutral trinuclear cluster **4** is depicted in Figure 3, whose core consists of a nearly isosceles Ir_3 triangle capped by a μ_3 -sulfido ligand from one side. All four hydrido

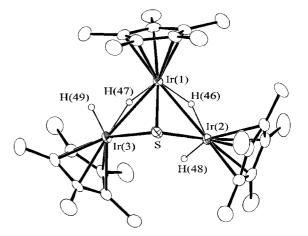
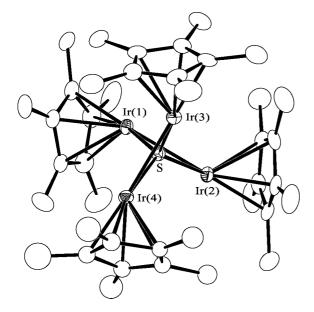
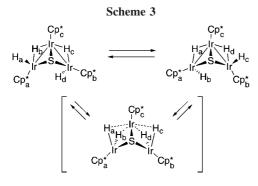


Figure 3. Molecular structure of 4 (thermal ellipsoids at the 30% probability level). Hydrogen atoms in Cp* ligands are omitted for clarity. Interatomic distances (Å) and bond angles (deg): Ir(1)–Ir(2), 2.8770(5); Ir(1)–Ir(3), 2.8665(6); Ir(2)···Ir(3), 3.7530(5); Ir(1)–S, 2.302(2); Ir(2)–S, 2.313(2); Ir(3)–S, 2.317(2); Ir(2)–Ir(1)–Ir(3), 81.60(2); Ir(1)–S–Ir(2), 77.13(6); Ir(1)–S–Ir(3), 76.72(6); Ir(2)–S–Ir(3), 108.3(1).

ligands were located in the difference Fourier map and successfully refined with isotropic parameters (Ir-H at 1.5(1)-1.84(9) Å and Ir-H-Ir at 105(5)°, 113(4)°). Two μ_2 -H ligands bridge the Ir(1)-Ir(2) and Ir(1)-Ir(3) edges, whose distances are 2.8770(5) and 2.8665(6) Å, respectively. In addition, there is a terminal hydrido ligand on each of the Ir(2) and Ir(3) atoms, which is confirmed by the IR bands at 2148 and 2104 cm⁻⁻ characteristic of the Ir-H stretching mode. Separation between Ir(2) and Ir(3) atoms at 3.7530(5) Å indicates the absence of bonding interaction in accordance with the cluster electron count of 50. If Ir-Ir bonds are excluded from consideration, each Ir center adopts three-legged piano-stool geometry with S-Ir-H and H-Ir-H angles at 78(2)-89(3)° and 78(6)-86(5)°, respectively. The Cp* ligands coordinated to Ir(1) and Ir(2) are oriented mutually cis with respect to the Ir(1)Ir(2)SH(46) moiety. In contrast, the Cp* ligands bound to Ir(1) and Ir(3) are located mutually at the opposite sides of the Ir(1)Ir(3)SH(47) plane. Among four hydride ligands in 4, only the terminal H(49) bonded to the Ir(3) atom exists on the same side of the μ_3 sulfide with respect to the Ir₃ plane, while the other three are on the opposite side.


The ¹H NMR spectrum of **4** in THF- d_8 at -20 °C exhibits three inequivalent Cp* and four distinct hydrido proton signals $(\delta -20 \text{ to } -15)$, being consistent with the crystal structure lacking any molecular symmetry. When the temperature was raised to 55 °C, fusion of two of the three Cp* signals and considerable broadening of all the hydride signals occurred. Spin saturation-transfer experiments at 30 °C confirmed that exchange of the hydrido ligands occurred only within each of two pairs (between the signals at δ -15.60 and -19.87 and those at δ -17.53 and -19.92) and not across these pairs. This fluxional behavior is likely to correspond to the motion dipicted in Scheme 3, where two terminal Cp*IrH₂ moieties concertedly rotate around the Ir-S axes under retention of the geometries around the Ir centers. The activation parameters of this motion has been estimated to be $\Delta H^{\ddagger} = 63 \pm 1 \text{ kJ mol}^{-1}$ and $\Delta S^{\ddagger} = -12 \pm 4$ J mol⁻¹ K⁻¹, based on line-shape analysis of the Cp* signals.

The tetranuclear cluster **5** has the core structure where a μ_4 -sulfido ligand assembles two diiridium subunits as shown in Figure 4. Two Cp*Ir centers in a subunit are separated by 2.8497(4) and 2.8437(6) Å, and the Cp* ligands bound to them


⁽²⁷⁾ Paneque, M.; Poveda, M. L.; Salazar, V.; Taboada, S.; Carmona, E.; Gutiérrez-Puebla, E.; Monge, A.; Ruiz, C. *Organometallics* **1999**, *18*, 139.

⁽²⁸⁾ Faure, M.; Onidi, A.; Neels, A.; Stoeckli-Evans, H.; Süss-Fink, G. J. Organomet. Chem. 2001, 634, 12.

⁽²⁹⁾ Dobbs, D. A; Bergman, R. G. Inorg. Chem. 1994, 33, 5329.

Figure 4. Molecular structure of **5** (thermal ellipsoids at the 30% probability level). Hydrogen atoms and the minor conformer of the disordered Cp* ligand bound to Ir(4) are omitted for clarity. Bond distances (Å) and angles (deg): Ir(1)–Ir(2), 2.8497(4); Ir(3)–Ir(4), 2.8437(6); other Ir…Ir, 4.1368(4)–4.1621(4); Ir(1)–S, 2.300(2); Ir(2)–S, 2.303(2); Ir(3)–S, 2.306(2); Ir(4)–S, 2.309(2); Ir(1)–S–Ir(2), 76.49(5); Ir(1)–S–Ir(3), 128.19(9); Ir(1)–S–Ir(4), 127.7(1); Ir(2)–S–Ir(3), 128.0(1); Ir(2)–S–Ir(4), 128.96(9); Ir(3)–S–Ir(4), 76.08(5).

are oriented mutually to the opposite sides with respect to the Ir₂S plane. The dihedral angle at 89° between two Ir₂S triangles makes the intersection of these planes a pseudo- S_4 axis, which is consistent with the observation that the ¹H NMR signal of four Cp* ligands appears as one singlet. Hydride resonances are observed as a doublet at δ -17.37 and a triplet at δ -19.06 with the intensities of 4H and 2H, respectively, and these are mutually coupling with $J \approx 3$ Hz. The IR absorption at 2080 cm^{-1} suggests the existence of terminal hydrido ligands. According to the molecular symmetry, it may be assumed that each Ir atom has a terminal hydrido ligand and that each Ir₂ subunit has a bridging hydride lying on the pseudo- S_4 axis. It is inferred from the conformation of the Cp* ligands that two terminal hydrides in a subunit are present at the opposite sides of the Ir₂S plane to each other. Such orientation of the hydrido ligands is observed in $[{Cp*IrH(PMe_3)}_2(\mu_2-H)][PF_6]^{30}$ and $[(Cp*Ir)_2(H)_3(BH_4)].^{31}$

Figure 5 shows the crystal structure of **6**. The molecule is regarded to consist of five Cp*Ir(III) fragments and one Ir(I) center together with five μ_3 -sulfido and one hydrido ligands. The cluster core is built up from an Ir₄ tetrahedron (Ir(1)–Ir(4)) and an Ir₃ triangle (Ir(1), Ir(5), and Ir(6)), sharing the Ir(1) vertex without the Cp* coligand. Three of four faces of the former Ir₄

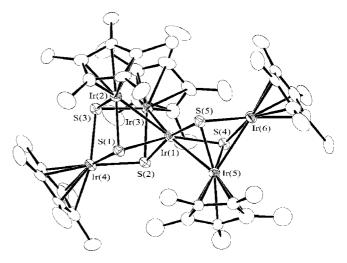


Figure 5. Molecular structure of 6 (thermal ellipsoids at the 30%) probability level). Hydrogen atoms and the minor conformer of the disordered Cp* ligand bound to Ir(5) are omitted for clarity. Bond distances (A) and angles (deg): Ir(1)-Ir(2), 2.8745(8); Ir(1)–Ir(3), 2.8667(6); Ir(1)–Ir(5), 2.7044(7); Ir(5)–Ir(6), 2.7825(9); $Ir(1) \cdots Ir(4)$, 3.5902(6); $Ir(1) \cdots Ir(6)$, 3.5704(6); $Ir(2) \cdots Ir(3)$, 3.5282(6); $Ir(2) \cdots Ir(4)$, 3.5463(7); $Ir(3) \cdots Ir(4)$, 3.5958(8); Ir(1)-S(1), 2.377(4); Ir(1)-S(2), 2.375(3); Ir(1)-S(4), 2.343(4);Ir(1)-S(5), 2.342(3); Ir(2)-S(1), 2.282(4); Ir(2)-S(3), 2.347(3); Ir(3)-S(2), 2.338(4); Ir(3)-S(3), 2.358(4); Ir(4)-S, 2.372(3)-2.375(4);Ir(5)-S,2.315(3),2.329(4);Ir(6)-S,2.295(4),2.312(3);S(1)-Ir(1)-S(2), 80.3(1); S(1)-Ir(1)-S(4), 156.0(1); S(1)-Ir(1)-S(5), 100.7(1); S(2)-Ir(1)-S(4),96.7(1);S(2)-Ir(1)-S(5),167.2(1);S(4)-Ir(1)-S(5),77.1(1); S(1)-Ir(2)-S(3), 82.2(1); S(2)-Ir(3)-S(3), 80.8(1); S-Ir(4)-S,79.8(1)-80.4(1);S(4)-Ir(5)-S(5),77.9(1);S(4)-Ir(6)-S(5),78.7(1).

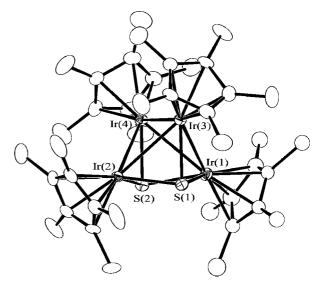
subunit are capped by μ_3 -sulfido ligands, and the shared Ir(1) atom resides at the uncapped face. This unit possesses a pseudomirror plane passing through atoms Ir(1), Ir(4), and S(3). Two more μ_3 -sulfides symmetrically cover both sides of the latter Ir₃ triangle, which is twisted by 9.4° against the pseudomirror plane of the Ir_4 unit. Four sulfur atoms bonded to the Ir(1)center are slightly deviated from planarity, and Ir(1) is apart from that least-squares plane by 0.37 Å toward the opposite side of Ir(5). The ¹H NMR spectrum of **6** in solution showing four signals assignable to the Cp* ligands in 1:1:1:2 intensity ratio indicates that the cluster has a C_s -symmetry where Ir(2) and Ir(3) are equivalent. One hydrido ligand, which appears at δ -13.31, exists probably somewhere on the Ir(1)Ir(2)Ir(3) face, although its crystallographic determination has been unsuccessful. The number of four intermetallic bonds in the cluster agrees with a 100 electron count.

Interconversion among Trinuclear Sulfido-Hydrido Clusters. As described above, although 7 was formed in the reaction of 1 with an equimolar amount of NaSH in moderate yield, isolation in a pure form was unsuccessful. However, since it has turned out that 7 is treated with HBF₄ to be converted into well-defined 2, reaction of 2 with base was attempted. Thus, when treated with excess KOBu' in THF at room temperature, 2 was transformed back to 7 cleanly as expected, which was isolated in high yield in pure form. The ¹H NMR spectrum of 7 in C₆D₆ shows two singlets at δ 2.16 and -20.98 assignable to three Cp* and two hydrido ligands, respectively, and no IR

^{(30) (}a) Gilbert, T. M.; Bergman, R. G. J. Am. Chem. Soc. 1985, 107, 3502.
(b) Burns, C. J.; Rutherford, N. M.; Berg, D. J. Acta Crystallogr. Sect. C 1987, C43, 229.


⁽³¹⁾ Gilbert, T. M.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1985, 107, 3508.

bands assignable to the terminal Ir–H bonds are observed in the region of $1800-2500 \text{ cm}^{-1}$. The IR spectrum also indicates the absence of BF₄⁻ anion, and its high solubility in nonpolar solvents is consistent with the neutral character. On the basis of these findings, the structure of **7** may be characterized to be that obtained by the elimination of one of three hydrido ligands in **2** as a proton, as shown in Scheme 2. Presumably, two hydrido ligands in **7** are both present at the Ir–Ir edges, or one is at the Ir₃ face and the other is at the Ir–Ir edge, which are rapidly migrating even at -70 °C, since three Cp* ligands are equivalently observed in the ¹H NMR spectrum.


Formation of **7** was also observed on UV irradiation of a C_6D_6 solution of **4** through dehydrogenation, although the reaction was quite slow at room temperature (50% conversion after 18 h) and afforded byproduct to some extent. On the other hand, reaction of **7** with H₂ does proceed only under drastic conditions (50 atm, 110 °C), yielding no **4** at all but Cp*IrH₄³¹ together with uncharacterized hydrido species. Transformation of these triiridium-monosulfide clusters is summarized in Scheme 4. Interconversion between 48-electron clusters **2** and **7** is reversible, accompanied by the change in the formal oxidation states between Ir(III)₃ and Ir(II)₂Ir(III), respectively. Attempts to prepare the 50-electron cluster **4** from **2** by hydride reduction also failed.

Interconversion among Tetranuclear Sulfido-Hydrido **Clusters.** The cationic triiridium cluster **2** was not amenable to further protonation, whereas tetrairidium cluster 3 readily reacted with HBF₄ to give the dicationic cluster $[(Cp*Ir)_4(\mu_3-S)_2(\mu H_{2}$ [BF₄]₂ (10) in high yield (eq 1). In the course of this reaction, concomitant evolution of H_2 (0.67–0.76 equiv of 3) was observed. The ¹H NMR spectrum of **10** showed two Cp* signals, each integrated for 30H and a singlet for two hydrido ligands. Single-crystal X-ray analysis has revealed the details of the molecular structure of 10, whose cationic part is shown in Figure 6. The cluster consists of an Ir₄ tetrahedron, with two μ_3 -sulfido ligands capping two faces. The Ir atoms are classified into two types: those bound to two S atoms (Ir(1) and Ir(2))and those bound with only one Ir-S bond (Ir(3) and Ir(4)), as observed in the parent cluster 3. These Ir atoms are denoted as $Ir(\alpha)$ and $Ir(\beta)$, respectively, for any Ir_4S_2 clusters below throughout this article.

The Ir₄S₂ framework of 10 possesses two pseudomirror

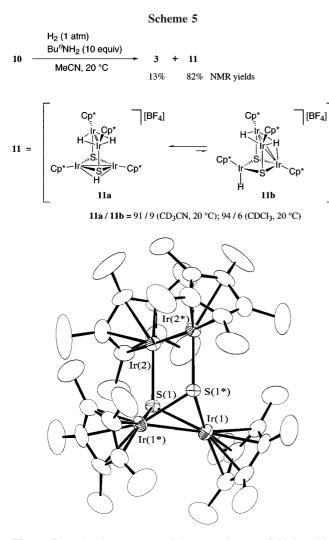
planes, one of which passes through two $Ir(\alpha)$ atoms and the midpoint of two $Ir(\beta)$ atoms, and the other through two $Ir(\beta)$ and two S atoms. For the Ir_4 tetrahedron, only the separation between two $Ir(\alpha)$ atoms at 3.5353(8) Å is out of the range of the Ir–Ir bonding interaction. Among the remaining five Ir–Ir edges, the distance between two $Ir(\beta)$ atoms at 2.9348(8) Å is the shortest, and the four $Ir(\alpha)$ – $Ir(\beta)$ distances are elongated to 2.9982(7)–3.0377(7) Å. By including four Cp* ligands and two hydrido ligands, the electron count of the cluster becomes 64, which requires formally the presence of four Ir–Ir bonds

Figure 6. Molecular structure of the cationic part of **10** (thermal ellipsoids at the 30% probability level). Hydrogen atoms and the minor conformer of the disordered Cp* ligand bound to Ir(1) are omitted for clarity. Interatomic distances (Å) and bond angles (deg): Ir(1)–Ir(3), 3.0377(7); Ir(1)–Ir(4), 2.9982(7); Ir(2)–Ir(3), 3.0330(8); Ir(2)–Ir(4), 3.0131(8); Ir(3)–Ir(4), 2.9348(8); Ir(1)…Ir(2), 3.5353(8); Ir(1)–S(1), 2.337(3); Ir(1)–S(2), 2.330(4); Ir(2)–S(1), 2.336(4); Ir(2)–S(2), 2.337(3); Ir(3)–S(1), 2.290(2); Ir(4)–S(2), 2.295(2); S(1)–Ir(1)–S(2),79.3(1); S(1)–Ir(2)–S(2),79.2(1); Ir(1)–S(1)–Ir(2), 98.3(2); Ir(1)–S(1)–Ir(3), 82.1(1); Ir(2)–S(1)–Ir(3), 81.9(1); Ir(1)–S(2)–Ir(2),98.5(2); Ir(1)–S(2)–Ir(4),80.8(1); Ir(2)–S(2)–Ir(4), 81.2(1).

to satisfy the electron-precise structure. The crystal structure of **10**, having five intermetallic bonding interactions, is indicative of the delocalization of these bonds, as is suggested by the Ir–Ir distances longer than those observed in **2–6** (<2.9 Å). The hydrides are presumably residing at each of two Ir(α)Ir(β)₂ triangles, most probably as the capping ligands. The 64e cluster [{(η^6 -C₆H₆)Ru}₄(μ_3 -S)₂(μ_3 -H)₂]Cl₂ with a closely related core structure is precedented, for which the hydrides have been located crystallographically as the μ_3 -ligands.³²

Under 1 atm of H₂, **10** was converted into **3** at 50 °C in the presence of pyridine. It should be emphasized that **10** remained intact when treated with either H₂ or pyridine alone. In the course of the reaction, the pyridinium cation formed, whose amount was almost comparable to that of **3**, as shown by the ¹H NMR spectra. When 100 equiv of pyridine was charged, the reaction proceeded almost cleanly without forming any cluster byproduct, yielding 95% of **3** after 16 h (eq 2). In contrast, the similar reaction using 10 equiv of pyridine occurred more slowly and reached an equilibrium mixture of **3** and **10** in a 7:3 ratio after 50 h, which is attributable to the weak acidity of pyridinium cation.

On the other hand, when *n*-butylamine was employed as an


$$H_{2} (1 \text{ atm})$$

$$Pyridine (100 \text{ equiv})$$

$$H_{2} (1 \text{ atm})$$

additive, reaction of 10 with H_2 provided not only 3 but also its isomer 11 as the major product (Scheme 5). For 11, the existence of two species 11a and 11b equilibrating in solution was revealed from the ¹H NMR spectra (vide infra). The reaction

⁽³²⁾ Chérioux, F.; Therrien, B.; Süss-Fink, G. Chem. Commun. 2004, 204.

Figure 7. Molecular structure of the cationic part of **11** found in the cocrystals of **11** and **3** (90.5:9.5). Thermal ellipsoids are drawn at the 30% probability level, and hydrogen atoms are omitted for clarity. Interatomic distances (Å) and bond angles (deg): $Ir(1)-Ir(1^*)$, 2.7471(7); $Ir(2)-Ir(2^*)$, 2.7165(5); $Ir(1)\cdots Ir(2)$, 3.9531(8); $Ir(1)\cdots Ir(2^*)$, 4.0076(8); Ir(1)-S(1), 2.342(3); $Ir(1)-S(1^*)$, 2.340(3); Ir(2)-S(1), 2.339(3); $S(1)-Ir(1)-S(1^*)$, 80.3(1); $Ir(1)-S(1)-Ir(1^*)$, 71.84(8); Ir(1)-S(1)-Ir(2), 115.2(1); $Ir(2)-S(1)-Ir(1^*)$, 117.8(1).

smoothly proceeded even at 20 °C under 1 atm of H₂, and **10** was completely consumed within 50 h in the presence of 10fold molar *n*-butylamine to form **11** and **3** in 82% and 13% NMR yields, respectively. Crystallization of these products gave a mixture of **11** and **3**, whose ratio was 7:1 in bulk, and single crystals selected from this batch were applied to an X-ray crystallographic study. The crystals were found to be isomorphous to those of **3** and to contain 9–15% of **3** versus **11**. Despite the disorders mainly due to the cocrystallization with **3**, the atom-connecting scheme of **11** could be disclosed as the main component (>85%) in the crystals (Figure 7).

The cluster part of **11** belongs to the C_2 group crystallographically, but its molecular symmetry is essentially higher, $C_{2\nu}$, in contrast to the finding that the cation of **3** has only C_2 symmetry. Therefore, the structure of **11** is well interpreted on the basis of that of **10**, which is also $C_{2\nu}$. Both **10** and **11** have the same Ir-S bonding schemes, but the cluster core of **11** is elongated along the C_2 axis in comparison with that of **10**. In **11**, short Ir-Ir distances are found between two Ir(α) atoms (Ir(1) and Ir(1*)) and between two Ir(β) atoms (Ir(2) and Ir(2*)), while the Ir(α) · · · · Ir(β) separations larger than 3.9 Å indicate no Ir-Ir bondings between them. The major tautomer 11a existing in solution (>90%) exhibits two 30H signals assignable to Cp* ligands in ¹H NMR spectrum, which correspond well to the above crystal structure of 11. The hydrido resonances of **11a** are observed as two singlets of 1H and 2H intensities at δ -15.69 and -12.99, respectively. It might be presumed that the $Ir(\alpha) - Ir(\alpha')$ and $Ir(\beta) - Ir(\beta')$ edges are bridged by one and two hydrido ligands, respectively, in 11a and solid state 11. By taking the quality of X-ray analysis into account, the calculated bond distances in 11 should be regarded to contain some ambiguities. However, the $Ir(1)-Ir(1^*)$ and $Ir(2)-Ir(2^*)$ distances at 2.7471(7) and 2.7165(5) Å, respectively, are not exceptional in comparison with those in $[(Cp*Ir)_2(\mu_2-SPr^i)_2(\mu_2-$ H)][OTf] at 2.7720(5) Å,³³ [(Cp*Ir)₂(μ_2 -S-cyclo-C₆H₁₁)(μ_2 -H)₂][BPh₄] at 2.6085(9) Å,³⁴ [(Cp*Ir)₂(μ_2 - η^1 , η^1 -1-pyrazolyl)(μ_2 -H)₂][BF₄] at 2.663(1) Å,³⁵ and [(Cp*Ir)₂(μ_2 -dmpm)(μ_2 -H)₂][OTf]₂ at 2.7236(8) Å.²⁵

In contrast to the symmetric **11a**, the ¹H NMR resonances of **11b** reveal the existence of three kinds of Cp* ligands (1: 1:2) and three inequivalent hydrido ligands, which appear at δ -16.80, -11.65, and -12.67. Small H-H coupling (J = 3.2 Hz) is observed between the former two signals. Because **11b** is the tautomer of **11a** and shows an NMR spectrum similar to that of cluster **15** (vide infra), the structure of **11b** might be characterized as that shown in Scheme 5.

On the other hand, it is expected that supplying two electrons and one proton to 10 also provides 3; therefore, chemical reduction of 10 has been investigated. When 10 was reacted with 2 equiv of Cp₂Co in the presence of [Et₃NH][BF₄] as a proton source, formation of 3 in 81% yield was confirmed by NMR measurement (eq 3). The cyclic voltammogram of 10 measured in 0.1 mol L⁻¹ solution of [Bu₄N][BF₄] in MeCN exhibited a irreversible reduction peak at -1.47 V vs Cp₂Fe/ Cp₂Fe⁺, which was slightly more negative than the Cp₂Co/ Cp₂Co⁺ couple at -1.35 V.³⁶ Nevertheless, an almost quantitative conversion of Cp₂Co into Cp₂Co⁺ in the above reaction proves that two electrons have been transferred to one cluster. Presumably the protonation of 10 occurs prior to the reduction in this proton- and electron-transfer system. In fact, the reaction of 10 with Cp₂Co in MeCN without any proton source gave a complex mixture containing a small amount of **3** but no Cp_2Co^+ . Although Cp*₂Co $(0/+1 \text{ at } -1.91 \text{ V})^{37}$ is strong enough to reduce 10, reaction between them in MeCN provided not the reduced form of 10 but $[(Cp*Ir)_3(\mu_3-S)_2]$ (12)³⁸ and a mixture of Ir-hydride species through cluster-core degradation (eq 4).

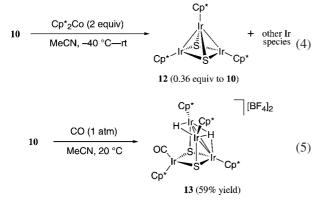
$$10 \xrightarrow{\text{Cp}_2\text{Co} (2 \text{ equiv})}{\text{[Et}_3\text{NH}][\text{BF}_4] (1.1 \text{ equiv})} \xrightarrow{3 + 11 + 10} (3)$$

$$81\% \quad 3\% \quad 2\%$$
NMR yields

As observed for the monosulfido-capped triiridium clusters, the interconversion among the tetrairidium clusters **3**, **10**, and

(36) Stojanovic, R. S.; Bond, A. M. Anal. Chem. 1993, 65, 56.

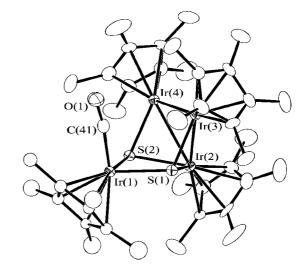
⁽³³⁾ Iwasa, T.; Shimada, H.; Takami, A.; Matsuzaka, H.; Ishii, Y.; Hidai, M. Inorg. Chem. **1999**, *38*, 2851.

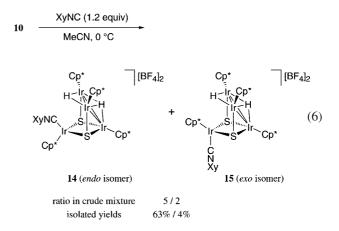

⁽³⁴⁾ Nishio, M.; Mizobe, Y.; Matsuzaka, H.; Hidai, M. Inorg. Chim. Acta 1997, 265, 59.

⁽³⁵⁾ Oro, L. A.; Carmona, D.; Puebla, M. P.; Lamata, M. P.; Foces-Foces, C.; Cano, F. H. *Inorg. Chim. Acta* **1986**, *112*, L11.

⁽³⁷⁾ Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877.

⁽³⁸⁾ Cluster **12** has been previouly prepared by reduction of **8**, although its solid-state structure has not been revealed yet.²⁰ We have crystallographically determined **12**, and the result is added in the Supporting Information.




11 proceeds with retention of all Ir–S bonds in spite of the changes in the coordination mode of the hydrido ligands. If the reaction converting 10 to 3 by a protonation and two-elecron reduction (eq 3) is coupled with that regenerating 10 from 3 by a protonation and subsequent liberation of H₂ (eq 1), it turns out that production of H₂ gas from two protons and two electrons is accomplished. Interestingly, cluster 10 not only mediates this H₂ production but also proves effective to the heterolytic cleavage of H₂ into a hydride and a proton.³⁹ To elucidate the interaction mechanisms between 10 and H₂, further coordination chemistry of 10 has been investigated as described below.

Reactivities of 10 toward σ **-Donor Ligands.** When an MeCN solution of 10 was stirred under CO atmosphere at room temperature, one CO molecule was incorporated to form the cluster $[(Cp*Ir)_4(\mu_3-S)_2(\mu-H)_2(CO)][BF_4]_2$ (13) (eq 5). The molecular structure of 13 has been determined unambiguously by X-ray analysis, and Figure 8 shows the structure of one of two crystallographically independent but essentially identical cluster cations. The CO ligand coordinates to one of two $Ir(\alpha)$ atoms (Ir(1)) in an end-on fashion and oriented in the direction syn to the $Ir(\beta)$ atoms (Ir(3) and Ir(4)) with respect to the $Ir(1)Ir(2)S_2$ ring (endo form). As a result, the Ir(1) atom is separated from two Ir(β) centers further by ~0.9 Å, canceling the bonding interactions. Three Ir–Ir bonds inside the Ir(2)Ir(β)₂ triangle are retained, being decreased to 2.8523(6)-2.8863(7) Å in comparison with those in 10. The ¹H NMR spectrum of 13 exhibits three Cp* signals with an intensity ratio of 1:1:2 assignable to two inequivalent $Ir(\alpha)$ and two equivalent $Ir(\beta)$ sites. Two hydrido ligands are observed as two separated signals at δ -16.75 and -10.95 mutually coupling with 4.4 Hz, which are assumed to be at the $Ir(\beta)_2$ edge and at the $Ir(2)Ir(\beta)_2$ face. The bonding parameters of the CO ligands as well as its IR absorption at 1992 cm⁻¹ are typical of the terminal ones,⁴⁰ indicating the absence of semibridging or other secondary interactions.

In contrast to the exclusive formation of **13** from **10** and CO, addition of 1 equiv of XyNC to **10** smoothly proceeded at 0 °C to give two kinds of adducts (~5:2 in the crude mixture). Standing the solution at higher temperatures or addition of an excess amount of XyNC led to slow decomposition of the products, yielding **8** and uncharacterized complexes. Crystallization of the products at -20 °C afforded dark red prisms and red platelets, X-ray diffraction study of which clearly disclosed their structures as endo (**14**) and exo (**15**) isomers of [(Cp*Ir)₄(μ_3 -S)₂(μ -H)₂(CNXy)][BF₄]₂, respectively (eq 6). Each

Figure 8. One of two independent cations in the crystal structure of **13** (thermal ellipsoids at the 30% probability level). Hydrogen atoms and the minor conformer of the disordered Cp* ligand bound to Ir(1) are omitted for clarity. Interatomic distances (Å) and bond angles (deg) with the corresponding values in the second cation, where Ir(β) denotes Ir(3) or Ir(4): Ir(2)–Ir(β), 2.8761(7)–2.8863(7); Ir(3)–Ir(4), 2.8523(6), 2.8561(6); Ir(1) ••• Ir(2), 3.6961(6), 3.6957(6); Ir(1) ••• Ir(β), 3.9233(6)–3.9285(6); Ir(1)–S, 2.375(3)–2.392(3); Ir(2)–S, 2.343(3)–2.356(3); Ir(β –S, 2.311(3)–2.322(3); Ir(1)–C(41), 1.85(2), 1.87(2); O(1)–C(41), 1.15(2), 1.16(2); S–Ir(1)–S, 75.6(1), 75.6(1); S–Ir(1)–C(41), 94.8(7)–95.2(4); S–Ir(2)–S, 77.0(1), 76.9(1); Ir(1)–S–Ir(β), 75.9(1)–76.7(1); Ir(1)–C(41)–O(1), 171(1), 171(1).

isomer exhibits a ¹H NMR spectral pattern analogous to 13 except for those of the XyNC ligand, and isomerization between the major 14 and the minor 15 does not occur in solution at room temperature. The molecular structure of 14 depicted in Figure 9 is analogous to that of 13, where XyNC coordinates to the Ir(1) atom instead of CO. The bonding parameters of the cluster cores of 13 and 14 are essentially identical, although the $Ir(1) \cdots Ir(\beta)$ distances in 14 are slightly elongated, owing to incorporation of a larger XyNC molecule. The Ir₄S₂ framework in 15 is also the same as those of 13 and 14, but only the stereochemistry around the Ir(1) center differs in 15, as shown in Figure 10. Thus, the coordinated XyNC resides at the side anti to the $Ir(\beta)$ atoms with respect to the $Ir(\alpha)_2 S_2$ ring. Between 14 and 15, remarkable differences in bond lengths and angles are not found in the Ir-CNXy moieties, while the IR absorptions for the C≡N stretching mode are observed at 2089 and 2118 cm⁻¹, respectively. Concomitant producion of the exo-isomer 15 in the reaction with XyNC is probably because the endo-

^{(39) (}a) Kubas, G. J. Adv. Inorg. Chem. 2004, 56, 127. (b) Morris, R. H. Can. J. Chem. 1996, 74, 1907. (c) Brothers, P. Prog. Inorg. Chem. 1981, 28, 1.

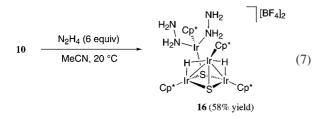

⁽⁴⁰⁾ The C=O stretching frequencies of the related complexes are 1974–2021 cm^{-1,11}

Figure 9. Molecular structure of the cationic part of 14 (thermal ellipsoids at the 30% probability level). Hydrogen atoms are omitted for clarity. Interatomic distances (Å) and bond angles (deg): Ir(2)-Ir(3), 2.8954(5); Ir(2)-Ir(4), 2.8572(4); Ir(3)-Ir(4), 2.8461(6); $Ir(1)\cdots Ir(2)$, 3.6696(6); $Ir(1)\cdots Ir(3)$, 3.9900(5); $Ir(1)\cdots Ir(4)$, 4.0009(6); Ir(1)-S(1), 2.366(3); Ir(1)-S(2), 2.397(3); Ir(1)-C(41), 1.92(1); Ir(2)-S(1), 2.348(3); Ir(2)-S(2), 2.360(2); Ir(3)-S(1), 2.296(3); Ir(4)-S(2), 2.338(3); N(1)-C(41), 1.16(1); N(1)-C(42), 1.40(1); S(1)-Ir(1)-S(2), 76.03(9); S(1)-Ir(1)-C(41), 104.8(4); S(2)-Ir(1)-C(41), 91.9(4); S(1)-Ir(2)-S(2), 77.08(9); Ir(1)-S(1)-Ir(2), 102.23(9); Ir(1)-S(1)-Ir(3), 117.70(9); Ir(2)-S(1)-Ir(3), 77.1(1); Ir(1)-S(2)-Ir(2), 100.94(8); Ir(1)-S(2)-Ir(4), 115.3(1); Ir(2)-S(2)-Ir(4), 74.92(8); Ir(1)-C(41)-N(1), 166(1); C(41)-N(1)-C(42), 167(1).

coordination of sterically large XyNC is less advantageous than that of CO. In addition, higher C=N stretching frequency of 15 than that of 14 may suggest the weaker π -back-donating ability to XyNC in the exo-form, and for the coordination of the strong π -acceptor such as CO the exo-form is disfavored.

It was also found that ${\bf 10}$ slowly reacted with excess N_2H_4 in

MeCN solution at room temperature to afford the 1:2 adduct $[(Cp*Ir)_4(\mu_3-S)_2(\mu_2-H)_2(N_2H_4)_2][BF_4]_2$ (16) (eq 7). Surprisingly, this reaction is quite specific for N₂H₄, and neither substituted hydrazines nor other N-donors listed in Table 1 (vide infra) react with 10.⁴¹ Coordination of N₂H₄ in 16 is not so strong that partial regeneration of 10 by releasing N₂H₄ occurs in solution at ambient temperature. X-ray crystallography revealed the structure of the dication of 16 as presented in Figure 11. The most remarkable feature is that one of the Ir(β) sites, Ir(3), binds two N₂H₄ each in an η^1 -fashion. The Ir(3) fragment is connected to the Ir₃ cluster scaffold only by an Ir–S bond and adopts a three-

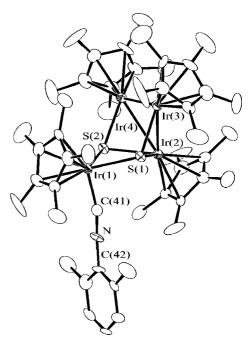
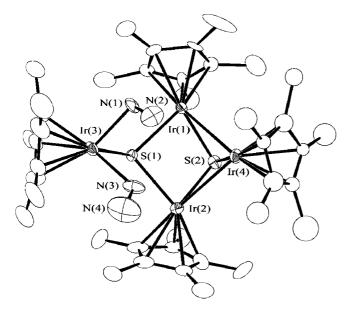


Figure 10. Molecular structure of the cationic part of 15 (thermal ellipsoids at the 30% probability level). Hydrogen atoms are omitted for clarity. Interatomic distances (Å) and bond angles (deg): Ir(2)–Ir(3), 2.8965(7); Ir(2)–Ir(4), 2.9102(7); Ir(3)–Ir(4), 2.8235(7); Ir(1)····Ir(2), 3.6228(6); Ir(1)····Ir(3), 4.0550(7); Ir(1)····Ir(4), 4.0580(7); Ir(1)–S(1), 2.385(3); Ir(1)–S(2), 2.393(3); Ir(1)–C(41), 1.91(1); Ir(2)–S(1), 2.362(3); Ir(2)–S(2), 2.363(3); Ir(3)–S(1), 2.330(3); Ir(4)–S(2), 2.317(4); N–C(41), 1.20(2); N–C(42), 1.38(2); S(1)–Ir(1)–S(2); 77.0(2); S(1)–Ir(1)–C(41), 91.8(4); S(2)–Ir(1)–C(41), 90.7(4); S(1)–Ir(2)–S(2), 78.1(1); Ir(1)–S(1)–Ir(2), 99.5(1); Ir(1)–S(1)–Ir(3), 118.6(2); Ir(2)–S(1)–Ir(3), 76.3(1); Ir(1)–S(2)–Ir(2), 99.2(1); Ir(1)–S(2)–Ir(4), 119.0(2); Ir(2)–S(2)–Ir(4), 76.9(1); Ir(1)–C(41)–N, 166(1); C(41)–N–C(42), 171(2).

legged piano-stool geometry with 18-electron configuration. The Ir-N bond lengths at 2.16(2) and 2.15(2) Å are normal in comparison with other hydrazine complexes.^{42,43} Separations between the Ir(4) atom and each of two Ir(α) centers at 2.907(1) and 2.940(1) Å suggest that each $Ir(4)-Ir(\alpha)$ edge is presumed to possess a μ_2 -hydrido ligand. The Ir-S(1) bonds are elongated by ~ 0.1 Å or more in comparison with the Ir–S(2) bond. The ¹H NMR spectrum of **16** consistently shows three Cp* signals in a 1:1:2 ratio together with one singlet assignable to two hydrido ligands. The noncoordinated NH₂ protons of hydrazine ligands are slightly shifted to lower field at δ 3.80 in comparison with free N₂H₄ (δ 2.94), while the inner NH₂ protons are diastereotopically observed at δ 5.63 and 6.29. In addition, the IR spectrum exhibits the ν (N-H) bands in the region of $3260-3390 \text{ cm}^{-1}$. Although we cannot rationally explain the reason why only N₂H₄ adds to 10 among many N-donors, the adduct may be stabilized by intramolecular hydrogen bonds between two coordinated N₂H₄ inside the bowl-like space. The existence of the intramolecular N-H ···· N bonds in cis, trans- $[IrH_2(PCy_3)_2(N_2H_4)_2]^+$ (Cy = cyclo-C₆H₁₁) has been claimed.⁴⁴


In summary of this section, it has been proved that **10** readily opens the coordination sites by cleavage of the Ir $-\mu$ -H bonds. On the contrary, all Ir-S bonds are retained during the coordination of any σ -donors, which prevents the Ir₄ assembly

(44) Xu, W.; Lough, A. J.; Morris, R. H. Inorg. Chem. 1996, 35, 1549.

⁽⁴¹⁾ Formation of only the analogous NH₃ adduct $[(Cp*Ir)_4(\mu_3-S)_2(\mu_2-H)_2(NH_3)_2][BF_4]_2$ was confirmed spectoscopically, but 55% of unreacted **10** remained after 110 h at room temperature even when 10-fold molar excess of NH₃ was added. ¹H NMR (CD₃CN): δ –18.14 (s, 2H, hydride), 1.63, 2.23 (s, 15H each, Cp*), 1.83 (s, 30H, Cp*).

⁽⁴²⁾ Bergs, R.; Sünkel, K.; Robl, C.; Beck, W. J. Organomet. Chem. 1997, 533, 247.

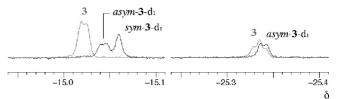

⁽⁴³⁾ Hoffmüller, W.; Polborn, K.; Krossing, I.; Nöth, H.; Beck, W. J. Organomet. Chem. **1999**, 577, 93.

Figure 11. Molecular structure of the cationic part of **16** (thermal ellipsoids at the 30% probability level). Hydrogen atoms and the minor conformer of the disordered Cp* ligand bound to Ir(4) are omitted for clarity. Interatomic distances (Å) and bond angles (deg): Ir(1)–Ir(4), 2.907(1); Ir(2)–Ir(4), 2.940(1); Ir(1)····Ir(2), 3.527(1); Ir(1)····Ir(3), 4.204(1); Ir(2)···Ir(3), 4.181(1); Ir(1)–S(1), 2.419(5); Ir(1)–S(2), 2.320(6); Ir(2)–S(1), 2.413(5); Ir(2)–S(2), 2.319(5); Ir(3)–S(1), 2.450(5); Ir(3)–N(1), 2.16(2); Ir(3)–N(3), 2.15(2); Ir(4)–S(2), 2.308(6); N(1)–N(2), 1.46(3); N(3)–N(4), 1.38(4); S(1)–Ir(1)–S(2),81.0(2);S(1)–Ir(2)–S(2),81.2(2);S(1)–Ir(3)–N(1), 87.9(6); S(1)–Ir(3)–N(3), 83.5(6); N(1)–Ir(3)–N(3), 82.8(8); Ir(1)–S(1)–Ir(2),93.8(2);Ir(1)–S(1)–Ir(3),119.4(2);Ir(2)–S(1)–Ir(3), 118.6(2); Ir(1)–S(2)–Ir(2), 99.0(2); Ir(1)–S(2)–Ir(4), 77.8(2); Ir(2)–S(2)–Ir(4), 78.9(2);Ir(3)–N(1)–N(2),112(1);Ir(3)–N(3)–N(4), 120(2).

from degrading. The nature of the donor molecule probably determines the site to bind among the two distinct centers, $Ir(\alpha)$ and $Ir(\beta)$. From the number of coordinated sulfido ligands, the former center is estimated to be more π -donating than the latter. Thus, π -acceptor ligands such as CO and XyNC bind to $Ir(\alpha)$ exclusively. Coordination of hydrazine to the $Ir(\beta)$ suggests the potential availability of this center for binding certain good σ -donor ligands, which provides two coordination sites by removing two Ir– μ -H bonds.

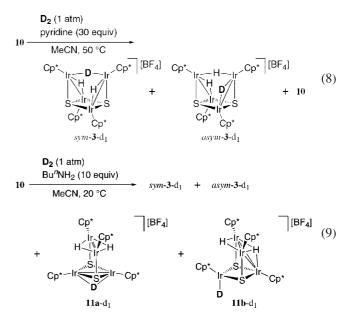

Mechanisms Proposed for the Hydrido Incorporation to 10. Taking the above findings into consideration, the mechanism for the reactions of 10 with H_2 in the presence of base is discussed here. To clarify the origin of hydrido ligands in the products 3 and 11, these reactions were carried out by using D_2 . When 10 was treated with D_2 and pyridine as shown in eq 8, the reaction mixture contained monodeuterated 3 and nondeuterated 10 after 25 h.45 The hydrido region of the ¹H NMR spectrum depicted in Figure 12 clearly indicates the presence of two $3-d_1$ species, for which the deuterated positions differ from each other. The ratio of these symmetric (sym) and asymmetric (asym) isomers of $3-d_1$ coincides with the statistic distribution of 1:2. The absence of either nondeuterated or multiply deuterated 3 is also confirmed from the shape and integration of the hydrido signals. When the reaction of 10 with *n*-butylamine was conducted under D_2 , one deuterido ligand was selectively incorporated into the $Ir(\alpha)_2$ edge of **11a**, and deuteration of the hydrido bridges at the $Ir(\beta)_2$ site was not

Figure 12. ¹H NMR spectrum (hydrido region) of the mixture of *sym-* and *asym-***3**-*d*₁ obtained after 25 h under conditions indicated in eq 8. The spectrum of nondeuterated **3** is overlaid in gray lines, and intensities of both spectra are normalized based on the Cp* signals.

observed at all (eq 9). Similarly, only the signal of the terminal hydride (δ -12.67) disappeared in the ¹H NMR spectrum of **11b**, and *sym*- and *asym*-**3**-*d*₁ were concurrently formed in a 1:2 ratio.

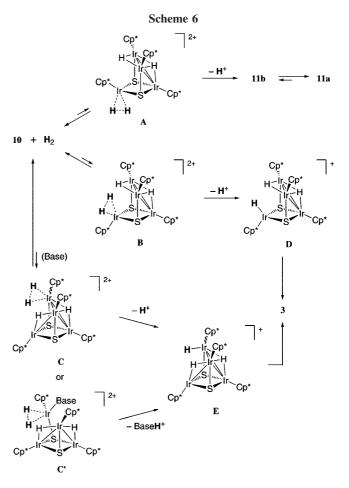
The reactions of 10 with H_2 were also promoted by other

aliphatic amines. Although the reaction rates and the **3/11** ratios considerably varied, all the reactions with aliphatic amines proceeded until **10** was completely converted, and the **3/11** ratio was almost constant during the course of the reactions. The effects of various organonitrogen additives were compared under the same conditions as shown in Table 1, in which representative data were collected. There is a tendency that conversion rates are not influenced by the basicity of amines but remarkably retarded by the steric hindrance around nitrogen atom. It is also found that sterically emcumbered amines generally lower the selectivities of **11**. Reactions with bases much weaker than alkylamines ($pK_b = 3-4$), such as pyridine and aniline ($pK_b = 8.64$ and 9.38, respectively), are slower and do not afford **11**.

Incorporation of the hydrido ligand into **10** undoubtedly proceeds via formation of the intermediary adduct of **10** and H_2 followed by deprotonation.⁴⁶ The experiments using D_2 demonstrate that one D atom of a D_2 molecule and both of two hydrido ligands of **10** are contained in **3** or **11**, indicating that proton abstraction occurs strictly for the H atoms originated

⁽⁴⁵⁾ The reverse reaction was negligible at that period, since attaining equilibrium of 3 and 10 took a much longer time (> 50 h).

⁽⁴⁶⁾ The reaction that proceeds in a sequence different from this proposal has been known. Thus, $[{Cp*Ir(CO)}_2(\mu-H)_2]^{2+}$ is deprotonated by base to afford $[{Cp*Ir(CO)}_2(\mu-H)]^+$, which then reacts with H₂ to form $[{Cp*IrH(CO)}_2(\mu-H)]^+$. Heinekey, D. M.; Fine, D. A.; Barnhart, D. *Organometallics* **1997**, *16*, 2530.


Table 1. Reactions of 10 with Organic Bases under H₂ Atmosphere^a

base	time (h)	ratio of clusters ^{b} (3:11:10)
pyridine	50	41:0:59
PhNH ₂	25	6:0:94
Et ₃ N	75	48:24:28
Et ₂ NH	75	51:33:16
pyrrolidine	25	19:73:8
Bu ⁿ NH ₂	25	8:85:7
EtMe ₂ CNH ₂	75	58:21:21
$H_2N(CH_2)_2NH_2$	25	15:85:0

 a Conditions: **10** (0.010 mmol), base (0.030 mmol), MeCN (3 mL), H₂ (1 atm), 50 °C. b Determined by $^1\rm H$ NMR.

from the H₂ molecule before it exchanges with the hydrido ligands. It is also certain that hydrido ligands in **10** as well as **3** and **11** do not exchange with D₂ under these conditions. Because coordination of some donor molecules to **10** occurs at a single Ir center without any direct interaction with hydrido ligands, the first interaction with H₂ is also presumed to take place at only one Ir atom. This postulation is supported by the fact that heterolytic cleavage of a H₂ molecule on the Ir(III) centers has ubiquitously been found.⁴⁷ Some of such reactions have been disclosed to proceed definitely by deprotonation of η^2 -H₂ complexes.⁴⁸

Although the H_2 adducts of **10** have not been detectable, several modes of interaction can be proposed as illustrated in Scheme 6. Binding of H_2 to the $Ir(\alpha)$ atom from the exo direction forms A, whose deprotonation is the most probable pathway to 11, as suggested by selective incorporation of the deuterido ligand on the $Ir(\alpha)_2$ edge. On the other hand, several intermediates leading to 3 can be assumed such as B or C (and its derivative C'), in which H_2 is bound to the $Ir(\alpha)$ center in an endo form or rather to the $Ir(\beta)$ center, respectively. Statistic distribution of D in $3-d_1$ is probably the consequence of intramolecular site exchange between hydrido ligands in 3 and is not likely, indicating the reaction pathway. Whether the H₂ molecule is only attached as a dihydrogen ligand or it is cleaved to dihydride, the $Ir(\beta)$ center is estimated to be able to activate the hydrogen atom to a more strongly acidic one than the $Ir(\alpha)$ due to the difference in electron density at the metal. Therefore, the acidity of A may be too weak to be deprotonated by pyridine. Although basicities of alkylamines are strong enough to deprotonate A, bulky amines are not so reactive probably due to the steric barrier of Cp* ligands at the $Ir(\alpha)$ sites. In this regard, deprotonation of **B** is certainly much more retarded by steric effects, so it is likely that formation of 3 proceeds via C or less hindered C', where the structure of the latter is closely related to 16. The fact that A becomes the major pathway in the reactions with small alkylamines may be rationalized by more facile formation of A than C or C'.

Conclusion

In this work, we have shown different characteristics of the hydrido ligands in the various sulfido clusters consisting of only Ir(III) centers. The hydrido ligand in tetranuclear cluster 3 appears to be *hydridic* from the reactivity in evolving H₂ by protonation. In contrast, the hydrido ligand in trinuclear 2 is *protic* and can be abstracted by base instead of undergoing protonation to release H_2 . In fact, 2 can be prepared by protonation of 7, whose hydrido ligands do not undergo protonation to form H₂. Reversible deprotonation of the μ -hydrido ligands in the cationic Ir(III)₂ complexes has been demonstrated previously for $[(Cp*Ir)_2(\mu-SPr^i)_2(\mu-SPr$ H)]⁺ and $1.^{33,49,50}$ With respect to the cluster composition, 3 is built up by adding a neutral Cp*IrS unit to 2, which is recognized further to consist of 1 and a Cp*IrS. This implies that reactivities of the hydrido ligands are related to the number of the core Ir and S atoms. Expansion of the cluster core increases intermetallic d-orbital overlappings which probably stabilize the state of fewer cluster-electrons. Thus, loss of H₂ is readily compensated by Ir-Ir bond formation. It is noteworthy that previous reports on the mononuclear complexes $[Cp^{#}IrH_{2}(L)]$ ($Cp^{#} = Cp$ or pentaalkylated Cp; L = CO, phosphines, phosphites) have revealed, by contrast, that protonation affords the Ir(V) complex $[Cp^{#}IrH_{3}(L)]^{+}$ at first, hydrogen loss from which is accelerated as the electron density at the metal decreased. 30a,51,52

^{(47) (}a) White, C.; Oliver, A. J.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1973, 1901. (b) Gill, D. S.; Maitlis, P. M. J. Organomet. Chem. 1975, 87, 359. (c) Maitlis, P. M. Acc. Chem. Res. 1978, 11, 301. (d) Ogo, S.; Nakai, H.; Watanabe, Y. J. Am. Chem. Soc. 2002, 124, 597.

^{(48) (}a) Crabtree, R. H. Acc. Chem. Res. **1990**, 23, 95. (b) Esteruelas, M. A.; Herrero, J.; López, A. M.; Oro, L. A.; Schulz, M.; Werner, H. Inorg. Chem. **1992**, 31, 4013. (c) Albinati, A.; Bakhmutov, V. I.; Caulton, K. G.; Clot, E.; Eckert, J.; Eisenstein, O.; Gusev, D. G.; Grushin, V. V.; Hauger, B. E.; Klooster, W. T.; Koetzle, T. F.; McMullan, R. K.; O'Loughlin, T. J.; Pélissier, M.; Ricci, J. S.; Sigalas, M. P.; Vymenits, A. B. J. Am. Chem. Soc. **1993**, 115, 7300. (d) Bianchini, C.; Moneti, S.; Peruzzini, M.; Vizza, F. Inorg. Chem. **1997**, 36, 5818. (e) Gruet, K.; Clot, E.; Eisenstein, O.; Lee, D. H.; Patel, B.; Macchioni, A.; Crabtree, R. H. New J. Chem. **2003**, 27, 80.

⁽⁴⁹⁾ Nishio, M.; Matsuzaka, H.; Mizobe, Y.; Hidai, M. Inorg. Chim. Acta 1997, 263, 119.

⁽⁵⁰⁾ Hou, Z.; Koizumi, T.; Fujita, A.; Yamazaki, H.; Wakatsuki, Y. J. Am. Chem. Soc. 2001, 123, 5812.

⁽⁵¹⁾ Heinekey, D. M.; Millar, J. M.; Koetzle, T. F.; Payne, N. G.; Ziilm, K. W. J. Am. Chem. Soc. **1990**, 112, 909.

On the other hand, modeling the function of hydrogenase is receiving much attention from its potential in the new and efficient H₂ production process. Active sites of metalloenzymes that accomplish proton reduction or other electron-transfer reactions often consist of sulfur-bridged polymetallic chromophores. Electrochemical reduction of protons has been investigated intensively by using thiolate-bridged diiron complexes, while some studies on clusters of larger cores such as Fe₄S₄ have also appeared.⁵³ In this work, we have found stepwise reduction of protons into H2 on the tetrairidium cluster 10. Electrochemical reactions mediated by large clusters like this are of much interest because larger cluster cores are expected to have an advantage in multiple electron transfer over smaller ones. For instance, more than six electrons are required in biological reduction of N₂ to NH₃, which is catalyzed by nitrogenase having the active site of a MoFe₇S₉ core. Electrocatalytic proton reduction using 10 as well as electron transfer to the small molecules coordinated to 10 are now under investigation.

Experimental Section

General Considerations. All manipulations were performed under nitrogen atmosphere using standard Schlenk techniques. Solvents were dried by common procedures and distilled under nitrogen before use. Complex 1 was prepared according to a literature method.^{47a} Other reagents were commercially available and used as received. Yields were calculated on the basis of the iridium atom except for those stated otherwise.

¹H NMR spectra (400 MHz) were recorded on a JEOL alpha-400 spectrometer, and chemical shifts were referenced using those of residual solvent resonances (CDCl₃ at 7.26, C₆D₆ at 7.15, and CD₃CN at 1.93). Line-shape analysis of the VT ¹H NMR spectra was carried out with the gNMR program package.⁵⁴ IR and mass spectra were recorded on JASCO FT/IR-420 and JEOL JMS600H spectrometers. Elemental analyses were done with a Perkin-Elmer 2400 series II CHN analyzer. Quantitative analyses of H₂ in the gas phase were performed on a Shimadzu GC-14B gas chromatograph equipped with a molecular sieve 13X column. Cyclic voltammograms were measured on a BAS CV-50W electrochemical analyzer using a glassy carbon working electrode with a scan rate of 100 mV s⁻¹.

Reaction of 1 with NaSH (Ir/S = 3:2). A MeOH (3 mL) solution of NaSH (21 mg, 0.38 mmol) was added dropwise to a solution of 1 (426 mg, 0.571 mmol) in MeOH (15 mL) at room temperature over a period of 5 h. After the mixture was stirred for a further 15 h, the deposited dark red solid was filtered off and recrystallized from toluene (1 mL)/MeOH (10 mL) at -20 °C to give dark red prisms of $[(Cp*IrH)_2(Cp*Ir)(\mu_3-S)(\mu_2-H)_2]$ (4; 4 mg, 0.9% yield) and orange prisms of $[(Cp*IrH)_4(\mu_4-S)(\mu_2-H)_2]$ (5; 2 mg, 0.5% yield). The above dark brown filtrate containing 2 and 3 in a \sim 5:3 molar ratio was evaporated to dryness, and the residue was washed repeatedly with benzene (\sim 15 mL) and then extracted with THF (45 mL). The remaining solid was dissolved in CH₂Cl₂ (3 mL), and addition of hexane (50 mL) to the filtered CH_2Cl_2 solution afforded reddish-brown prisms of $[(Cp*Ir)_4(\mu_3-S)_2(\mu_2-$ H)₃][BF₄] (3, 71 mg, 17% yield). The above THF extract was dried, and the residue was crystallized from MeCN (1 mL)/ether (18 mL) to give red plates of $[(Cp*Ir)_3(\mu_3-S)(\mu_2-H)_3][BF_4] \cdot 0.5(Et_2O)$ (2 • 0.5(Et₂O), 139 mg, 32% yield). 2 • 0.5(Et₂O): ¹H NMR (CDCl₃): δ -21.86 (s, 3H, hydride), 2.24 (s, 45H, Cp*), 1.11 (t, 3H, CH₃ of Et₂O), 3.41 (q, 2H, CH₂ of Et₂O). FAB MS (*m*-nitrobenzyl alcohol): 1017 (cation with correct isotopic pattern). Anal. Calcd for C₃₂H₅₃O_{0.5}BF₄SIr₃: C, 33.68; H, 4.68. Found: C, 33.30; H, 4.74. 3: ¹H NMR (CDCl₃): δ -25.34 (br t, 1H, $J \sim 2$ Hz, hydride), -15.02 (br d, 2H, J ~ 2 Hz, hydride), 1.97, 2.03 (s, 30H each, Cp*). FAB MS (m-nitrobenzyl alcohol): 1377 (cation with correct isotopic pattern). Anal. Calcd for C₄₀H₆₃BF₄S₂Ir₄: C, 32.82; H, 4.34. Found: C, 32.73; H, 4.22. 4: ¹H NMR (THF- d_8 , -20 °C): δ -19.90, -19.84, -17.47, -15.53 (br s, 1H each, hydride), 1.91, 2.00, 2.09 (s, 15H each, Cp*). ¹H NMR (THF- d_8 , 55 °C): δ -19.91 (vbr, 2H, hydride), -17.57, -15.64 (vbr, 1H each, hydride), 1.97 (vbr, 30H, Cp*), 2.10 (s, 15H, Cp*). IR (KBr): v(Ir-H) 2148, 2104 cm⁻¹. Anal. Calcd for C₃₀H₄₉SIr₃: C, 35.38; H, 4.85. Found: C, 35.37; H, 4.93. **5**: ¹H NMR (C₆D₆): δ –19.06 (br t, 2H, $J \sim$ 3 Hz, bridging hydride), -17.37 (br d, 4H, $J \sim 3$ Hz, terminal hydride), 1.97 (s, 60H, Cp*). IR (KBr): v(Ir-H) 2080 cm⁻¹. Anal. Calcd for C40H66SIr4: C, 35.64; H, 4.94. Found: C, 35.64; H, 5.03.

Reaction of 1 with NaSH (Ir/S = 1:1). To a MeOH solution (40 mL) of **1** (1.125 g, 1.51 mmol) was added a MeOH solution of NaSH (85 mg, 1.5 mmol) dropwise over 5 h at room temperature. After stirring the mixture for a further 15 h, a dark red solid was filtered off and recrystallized from toluene (2 mL)/MeOH (15 mL) at -20 °C to afford crystals of **4** (40 mg, 4% yield) and **5** (7 mg, 0.7% yield). The above MeOH filtrate was evaporated under vacuum, and the residue was extracted with benzene (20 mL). From the remaining solid, crystals of **2** • 0.5(Et₂O) (30 mg, 3% yield) were obtained by extraction with THF (35 mL) followed by crystallization from MeCN (1 mL)/ether (18 mL), and **3** (196 mg, 18% yield) was isolated by further extraction with CH₂Cl₂ (5 mL) and slow diffusion of hexane (15 mL) to this extract.

The former benzene extract was dried, and MeOH (8 mL) was added to the residue. A small amount of black solid was filtered off and recrystallized repeatedly from toluene/MeOH at -20 °C to provide dark green crystals of $[(Cp*Ir)_5Ir(\mu_3-S)_5H] \cdot 0.5$ (toluene) $(6 \cdot 0.5$ (toluene), 10 mg, 1.5% yield). To the MeOH filtrate containing $[(Cp*Ir)_3(\mu_3-S)H_2]$ (7) as the major product was added $[Et_2OH][BF_4]$ (140 μ L, 1.02 mmol), and the mixture was stirred at room temperature for 18 h. The volatiles of the resulting solution were evaporated under vacuum, and the residual oily material was washed repeatedly with benzene (20 mL) and then extracted with CHCl₃ (20 mL). The residual dark brown oil was crystallized from MeCN (4 mL)/ether (16 mL) to give a mixture (total 40 mg) of yellow crystals of $[(Cp*Ir)_3(\mu_3-S)_2][BF_4]_2$ (8) and dark brown plates of $[(Cp*Ir)_4Ir(\mu_3-S)_4][BF_4]_3$ (9). Crystallization of the above CHCl₃ extract from MeCN (1 mL)/ether (18 mL) afforded crystals of $2 \cdot 0.5$ (Et₂O) (429 mg, 37% yield). $6 \cdot 0.5$ (toluene): ¹H NMR (C₆D₆): δ -13.31 (s, 1H, hydride), 1.75, 1.92, 2.74 (s, 15H each, Cp*), 2.10 (s, 30H, Cp*). Anal. Calcd for C_{53.5}H₈₀S₅Ir₆: C, 31.55; H, 3.96. Found: C, 31.96; H, 3.83. 8: ¹H NMR (CD₃CN): δ 2.26 (s, 45H, Cp*). FAB MS (*m*-nitrobenzyl alcohol): 1133 ($[8-BF_4]^+$), 1046 $([8-(BF_4)_2]^+)$, 523 $([8-(BF_4)_2]^{2+})$, all ions showed consistent isotopic patterns. 9: ¹H NMR (CD₃CN): δ 2.39 (s, 60H, Cp*). FAB MS (*m*-nitrobenzyl alcohol): $1803 ([9-BF_4]^+) 1716 ([9-(BF_4)_2]^+),$ $1629 ([9-(BF_4)_3]^+), 814.5 ([9-(BF_4)_3]^{2+}), all ions showed consistent$ isotopic patterns. Anal. Calcd for C40H60B3F12S4Ir4: C, 25.41; H, 3.20. Found: C, 25.37; H, 3.20.

Preparation of 7. A mixture of $2 \cdot 0.5$ (Et₂O) (387 mg, 0.339 mmol) and KOBu' (93 mg, 0.83 mmol) in THF (30 mL) was stirred at room temperature for 10 h. The resulting dark brown solution was evaporated to dryness, and the residue was successively extracted with hexane (total 70 mL). Evaporation of the solvent under vacuum afforded 7 as a dark brown solid (311 mg, 90% yield). ¹H NMR (C₆D₆): δ –20.98 (s, 2H, hydride), 2.16 (s, 45H, Cp*). Anal. Calcd for C₃₀H₄₇SIr₃: C, 35.45; H, 4.66. Found: C, 35.20; H, 4.65.

Reaction of 7 with HBF₄. To a benzene solution (5 mL) of 7 (52 mg, 0.051 mmol) was added [Et₂OH][BF₄] (8.0 μ L, 0.058

⁽⁵²⁾ Heinekey, D. M.; Fine, D. A.; Harper, T. G. P.; Michel, S. T. *Can. J. Chem.* **1995**, *73*, 1116.

^{(53) (}a) Henderson, R. A. *Coord. Chem. Rev.* **2005**, *249*, 1841. (b) Henderson, R. A. *Chem. Rev.* **2005**, *105*, 2365.

⁽⁵⁴⁾ Budzelaar, P. H. M. *gNMR* 4.1.0; Charwell Scientific: The Magdalen Centre, Oxford Science Park, Oxford OX4 4GA, U.K.,1995–1999.

Hydrido Ligands in Iridium Sulfido Clusters

mmol) at room temperature. The dark brown solution gradually turned red on stirring, and a brown oil deposited. After 2.5 h, the resulting mixture was dried, and the residue was successively washed with Et₂O. Crystallization of the remaining solid from MeCN/Et₂O afforded reddish-orange plates of $2 \cdot 0.5$ (Et₂O) (41 mg, 71% yield).

Preparation of [(**Cp*****Ir**)₄(μ_3 -**S**)₂(μ -**H**)₂][**BF**₄]₂ (**10**). To a solution of **3** (74 mg, 0.051 mmol) in CH₂Cl₂ (5 mL) was added [Et₂OH][BF₄] (8.5 μ L, 0.062 mmol) at room temperature with stirring. After the evolution of gas ceased, the resultant solution was stirred for 2 h. The solvent was evaporated in vacuo, and the residue was washed with THF (6 mL). Recrystallization from CH₂Cl₂ (3 mL)/hexane (15 mL) gave black plates of [(Cp*Ir)₄(μ_3 -S)₂(μ -H)₂][BF₄]₂ • 0.5(CH₂Cl₂) (**10** • 0.5(CH₂Cl₂), 75 mg, 93% yield). ¹H NMR (CD₃CN): δ –19.63 (s, 2H, hydride), 1.95, 2.19 (s, 30H each, Cp*), 5.44 (s, 1H, CH₂Cl₂). FAB MS (*m*-nitrobenzyl alcohol): 1463 ([**10**–BF₄]⁺ with correct isotopic pattern). Anal. Calcd for C_{40.5}H₆₃B₂F₈S₂ClIr₄: C, 30.56; H, 3.99. Found: C, 30.49; H, 3.98.

Reaction of 10 with H₂ in the Presence of Pyridine. An MeCN (2 mL) solution containing **10** \cdot 0.5(CH₂Cl₂) (12 mg, 7.7 μ mol) and pyridine (62 μ L, 0.77 mmol) was stirred under 1 atm of H₂ atmosphere at 50 °C for 16 h. Determination by ¹H NMR spectroscopy using Ph₃CH as an internal standard revealed that yields of formed **3** and remaining **10** were 95% and 2%, respectively.

Reaction of 10 with H₂ in the Presence of Bu"NH₂. To a solution of 10.0.5(CH₂Cl₂) (80 mg, 0.051 mmol) in MeCN (15 mL) was added BuⁿNH₂ (50 μ L, 0.51 mmol), and the mixture was stirred under 1 atm of H_2 at room temperature for 50 h. After evaporation of the volatiles, the resulting solid was washed with benzene (7 mL) and recrystallized from MeCN (1 mL)/ether (18 mL) to form black prisms (54 mg, 74% yield) containing 11 and 3 in a 7:1 ratio. In a different run, NMR yields of 11 and 3 in the reaction mixture were determined to be 82% and 13%, respectively. Cluster 11 formed an equilibrium mixture of two species, 11a and 11b, in solution, and the ratios of 11a/11b were 91:9 in CD₃CN and 94:6 in CDCl₃. ¹H NMR (CD₃CN): **11a**: δ -15.69 (s, 1H, hydride), -12.99 (s, 2H, hydride), 1.71, 1.93 (s, 30H each, Cp*); **11b**: δ -16.80, -11.65 (d, J = 3.2 Hz, 1H each, hydride), -12.67 (s, 1H, hydride), 1.69, 1.80 (s, 15H each, Cp*), 2.00 (s, 30H, Cp*). Anal. Calcd for C40H63BF4S2Ir4: C, 32.82; H, 4.34. Found for 7:1 mixture of 11 and 3: C, 32.77; H, 4.21.

Reduction of 10 by Cp₂Co in the Presence of [Et₃NH][BF₄]. To a stirred MeCN (5 mL) solution containing 10 \cdot 0.5(CH₂Cl₂) (81 mg, 0.051 mmol) and [Et₃NH][BF₄] (11 mg, 0.056 mmol) was added Cp₂Co (20 mg, 0.11 mmol), and the mixture was stirred at room temperature for 2 h. Products were determined by ¹H NMR spectroscopy using Ph₃CH as an internal standard. Yields of 3, 11, and recovered 10 were 81%, 3%, and 2%, respectively, and quantitative conversion of Cp₂Co into Cp₂Co⁺ (δ 5.66 in CD₃CN) was also confirmed.

Reduction of 10 by Cp*₂Co without Additives. To a solution of 10 • 0.5(CH₂Cl₂) (80 mg, 0.050 mmol) in MeCN (5 mL) was added Cp*₂Co (34 mg, 0.10 mmol) at -40 °C, and the mixture was gradually warmed to room temperature over 6 h with stirring. The resulting reddish-brown solution containing black precipitate was evaporated to dryness and extracted with toluene (5 mL). The residual brown solid majorly consisted of [Cp*Co][BF₄] (δ 1.69 in CD₃CN) and also contained a complicated mixture of iridium clusters. Addition of MeCN to the dark bluish-green toluene solution afforded dark blue crystals of [(Cp*Ir)₃(μ_3 -S)₂] (12) after storage at -20 °C (19 mg, 36% yield vs Cl). ¹H NMR (C₆D₆): δ 1.90 (br, 30H, Cp*), 2.31 (br, 15H, Cp*). Anal. Calcd for C₃₀H₄₅S₂Ir₃: C, 34.43; H, 4.33. Found: C, 34.63; H, 4.26.

Preparation of $[(Cp*Ir)_4(\mu_3-S)_2(\mu-H)_2(CO)][BF_4]_2$ (13). A solution of $10 \cdot 0.5(CH_2Cl_2)$ (77 mg, 0.048 mmol) in MeCN (5 mL) was stirred at room temperature under CO atmosphere (1 atm) for

18 h. The resulting solution was concentrated to 3 mL, and ether (15 mL) was added. Black crystals of $[(Cp^*Ir)_4(\mu_3-S)_2(\mu-H)_2(CO)][BF_4]_2$ (13) were filtered, washed with ether, and dried under a stream of N₂ (45 mg, 59% yield). ¹H NMR (CD₃CN): δ –16.75, –10.95 (d, J = 4.4 Hz, 1H each, hydride), 2.03, 2.09 (s, 15H each, Cp*), 2.06 (s, 30H, Cp*). IR (KBr): ν (C=O) 1992 cm⁻¹. Anal. Calcd for C₄₁H₆₂OB₂F₈S₂Ir₄: C, 31.22; H, 3.96. Found: C, 30.92; H, 3.61.

Reaction of 10 with XyNC. To an MeCN solution (5 mL) of 10.0.5(CH₂Cl₂) (81 mg, 0.051 mmol) was added XyNC (8 mg, 0.06 mmol) at 0 °C. After stirring the solution at 0 °C for 1 h, the crude products were determined by NMR measurement, which showed presence of endo-[(Cp*Ir)₄(μ_3 -S)₂(μ -H)₂(CNXy)][BF₄]₂ (14), $exo-[(Cp*Ir)_4(\mu_3-S)_2(\mu-H)_2(CNXy)][BF_4]_2$ (15), 10, and 8 in a 66:27:6:1 ratio. The resulting dark red solution was concentrated to 3 mL, and after addition of ether (18 mL) it was kept at -20°C. Dark red crystals deposited were filtered off, throughly washed with ether, and dried under vacuum. Dark red prisms of 14 (47 mg, 63% yield) and red platelets of 15 (3 mg, 4% yield) were separated manually, and the remaining microcrystals (17 mg) contained 14 and 15 in a 1:1.8 ratio. 14: ¹H NMR (CD₃CN): δ -16.88, -10.80 (d, J = 3.8 Hz, 1H each, hydride), 1.90, 2.07 (s, 15H each, Cp*), 2.03 (s, 30H, Cp*), 2.51 (s, 6H, Me of Xy), 7.2−7.4 (m, 3H, C₆H₃). IR (KBr): ν (C≡N) 2089 cm⁻¹. Anal. Calcd for C₄₉H₇₁NB₂F₈S₂Ir₄: C, 35.02; H, 4.26; N, 0.83. Found: C, 34.58; H, 4.25; N, 0.72. **15**: ¹H NMR (CD₃CN): δ -16.93, -12.54 (d, J = 3.2 Hz, 1H each, hydride), 1.63, 1.93 (s, 15H each, Cp*), 2.05 (s, 30H, Cp*), 2.50 (s, 6H, Me of Xy), 7.2-7.4 (m, 3H, C₆H₃). IR (KBr): ν (C=N) 2118 cm⁻¹. Anal. Calcd for C₄₉H₇₁NB₂F₈S₂Ir₄: C, 35.02; H, 4.26; N, 0.83. Found: C, 35.12; H, 4.33; N, 0.74.

Preparation of [(Cp*Ir)₄(μ_3 -S)₂(μ_2 -H)₂(N₂H₄)₂][BF₄]₂ (16). Anhydrous hydrazine (56 μ L, 1.8 mmol) was added to an MeCN solution (15 mL) of **10** · 0.5(CH₂Cl₂) (460 mg, 0.289 mmol), and the mixture was stirred at room temperature for 96 h. After concentration of the resulting red solution to 10 mL, addition of ether (50 mL) formed red crystals of [(Cp*Ir)₄(μ_3 -S)₂(μ_2 -H)₂(N₂H₄)₂][BF₄]₂ (**16**, 270 mg, 58% yield). ¹H NMR (CD₃CN): δ – 18.04 (s, 2H, hydride), 1.66, 2.25 (s, 15H each, Cp*), 1.85 (s, 30H, Cp*), 3.80 (br dd, 4H, *J* = 5.4, 4.2 Hz, terminal NH₂), 5.63 (br dt, 2H, *J* = 9.5, 4.2 Hz, coordinated NH₂), 6.29 (br dt, 2H, *J* = 9.5, 5.4 Hz, coordinated NH₂). IR (KBr): ν(N-H) 3268, 3301, 3363, 3388 cm⁻¹. Anal. Calcd for C₄₀H₇₀N₄B₂F₈S₂Ir₄: C, 29.77; H, 4.37; N, 3.47. Found: C, 29.62; H, 4.14; N, 3.16.

Crystallography. Single crystals of 3, 4, 5, 6 • 0.5(toluene), 11, 13, 14 · 2(MeCN), 15, and 16 were obtained by the procedures stated above except for those of 14.2(MeCN), which were used immediately as picked up from the mother liqour. Recrystallization of 2 from CH₂Cl₂/hexane and 10 from acetone/hexane provided single crystals of $2 \cdot 0.5$ (CH₂Cl₂) and $10 \cdot$ acetone, respectively, which were suitable for X-ray analysis.55 Those were sealed in glass capillaries under argon and measured at ambient temperature by using a graphite-monochromatized Mo Ka source. Data collections of 2 · 0.5(CH₂Cl₂), 3-5, 10 · acetone, 13, 15, and 16 were done on a Rigaku AFC7R diffractometer by $\omega - 2\theta$ scan techniques except for 13 (ω -scan), and the data were corrected for absorption (based on ψ -scans) and secondary extinction.⁵⁶ Diffraction data of 6.0.5(toluene), 11, and 14.2(MeCN) were measured on a Rigaku Mercury CCD diffractometer, processed using the CrystalClear program package⁵⁷ and corrected for absorption by empirical methods. Corrections for Lorentz and polarization effects were also applied to all data. For 10 · acetone, a decay was observed during

⁽⁵⁵⁾ $2 \cdot 0.5$ (CH₂Cl₂): Anal. Calcd for C_{30.5}H₄₉BF₄SClIr₃: C, 31.95; H, 4. Found: C, 32.24; H, 4.26. **10** · acetone: Anal. Calcd for C₄₃H₆₈OB₂F₈S₂Ir₄: C, 32.13; H, 4.26. Found: C, 32.00; H, 4.22.

⁽⁵⁶⁾ Larson, A. C. In *Crystallographic Computing*; Ahmed, F. R., Ed.; Munksgaard: Copenhagen, 1970; pp 291–294..

⁽⁵⁷⁾ CrystalClear 1.3.5; Rigaku Corporation, 1998–2003.

Seino et al.

Table 2. Crystallographic Data for 2.0.5(CH₂Cl₂), 3, 4, 5, 6.0.5(toluene), and 10.acetone

	$2 \cdot 0.5 (CH_2Cl_2)$	3	4	5	$6 \cdot 0.5$ (toluene)	10 · acetone
formula	C _{30.5} H ₄₉ BF ₄ SClIr ₃	$C_{40}H_{63}BF_4S_2Ir_4$	C30H49SIr3	C40H66SIr4	C53.5H80S5Ir6	$C_{43}H_{68}B_2OF_8S_2Ir_4$
fw	1146.70	1463.74	1018.44	1347.90	2036.84	1607.62
space group	$P2_1/c$ (no. 14)	C2/c (no. 15)	P1 (no. 2)	P1 (no. 2)	<i>P</i> 1 (no. 2)	<i>P</i> 1 (no. 2)
a, Å	11.173(2)	17.805(3)	11.029(3)	11.453(3)	11.301(2)	10.884(2)
<i>b</i> , Å	14.410(3)	15.405(3)	11.169(2)	11.645(2)	14.447(2)	12.317(2)
<i>c</i> , Å	22.428(1)	16.135(6)	15.158(2)	18.203(3)	19.471(4)	20.448(2)
α, deg	90	90	71.73(1)	76.79(1)	86.747(6)	91.34(1)
β , deg	103.447(7)	96.77(2)	73.04(2)	72.28(1)	84.344(6)	96.44(1)
γ , deg	90	90	63.92(2)	66.01(2)	68.362(5)	113.96(1)
$V, Å^3$ Z	3512(1)	4394(1)	1566.5(5)	2097.4(7)	2939.7(9)	2481.9(6)
Ζ	4	4	2	2	2	2
$\rho_{\rm calcd}, {\rm g \ cm^{-3}}$	2.169	2.212	2.159	2.134	2.301	2.151
μ , mm ⁻¹	11.547	12.246	12.830	12.759	13.775	10.865
cryst size, mm ³	$0.25 \times$	0.15 ×	0.3 ×	$0.4 \times$	0.3 ×	0.35 ×
	0.12×0.02	0.12×0.03	0.3×0.12	0.35×0.3	0.1×0.05	0.35×0.2
transmn factor	0.338-1.000	0.378-1.000	0.227-1.000	0.685-1.000	0.538-1.000	0.296-1.000
no. of reflns unique (R_{int})	8060 (0.028)	5041 (0.032)	9144 (0.032)	9606 (0.032)	13 363 (0.034)	11 380 (0.087)
no. of reflns obsd $(F_0^2 > 2\sigma(F_0^2))$	5175	3145	7575	8172	8881	7322
no. of variables	439	262	369	442	630	612
R_1^a	0.042	0.044	0.050	0.045	0.051	0.049
final value of minimized R_w^b or wR_2^c	0.052^{b}	0.053^{b}	0.055^{b}	0.056^{b}	0.149^{c}	0.057^{b}
gof ^d	1.012	1.013	1.028	1.057	1.001	1.030

 ${}^{a}R_{1} = \sum ||F_{0}| - |F_{0}||\sum |F_{0}| \text{ for } F_{0}^{2} > 2\sigma (F_{0}^{2}). {}^{b}R_{w} = [\sum w(|F_{0}| - |F_{c}|)^{2} \sum w(F_{0})^{2}]^{1/2} (w = [\sigma(F_{0}^{2}) + aF_{0}^{2} + b]^{-1}) \text{ for observed data. } {}^{c}wR_{2} = [\sum w(F_{0}^{2} - F_{c}^{2})^{2} \sum w(F_{0}^{2})^{2}]^{1/2} (w = [\sigma(F_{0}^{2}) + aF_{0}^{2} + b]^{-1}) \text{ for all unique data. } {}^{d}gof = [\sum w(|F_{0}| - |F_{c}|)^{2} / \{(\text{no. of reflns obsd}) - (\text{no. of variables})\}]^{1/2} \text{ or } [\sum w(F_{0}^{2} - F_{c}^{2})^{2} / \{(\text{no. of reflns obsd}) - (\text{no. of variables})\}]^{1/2}, \text{ when minimized parameter is } R_{w} \text{ or } wR_{2}, \text{ respectively.}$

Table 3. Cry	ystallographic	Data for	11, 13, 14	4 · 2(MeCN),	15, and 16
--------------	----------------	----------	------------	--------------	------------

	11	13	14 · 2(MeCN)	15	16
formula	$C_{40}H_{63}BF_4S_2Ir_4$	$C_{41}H_{62}B_2OF_8S_2Ir_4$	C53H77B2N3F8S2Ir4	C49H71B2NF8S2Ir4	$C_{40}H_{70}B_2N_4F_8S_2Ir_4$
fw	1463.74	1577.55	1762.82	1680.71	1613.63
space group	<i>C</i> 2/ <i>c</i> (no. 15)	$P2_1/c$ (no.14)	<i>P</i> 1 (no. 2)	P2 ₁ 2 ₁ 2 ₁ (no. 19)	$P2_1/n$ (no.14)
a, Å	16.568(5)	17.108(3)	13.265(5)	13.632(4)	13.004(1)
<i>b</i> , Å	16.443(5)	23.391(3)	15.434(6)	18.821(8)	17.453(4)
<i>c</i> , Å	16.309(5)	23.447(4)	15.850(7)	20.586(4)	21.917(2)
α, deg	90	90	82.61(1)	90	90
β , deg	91.138(4)	90.83(1)	73.72(1)	90	97.836(7)
γ, deg	90	90	70.58(1)	90	90
V, Å ³	4442(2)	9381(2)	2935(2)	5281(3)	4927(1)
Ζ	4	8	2	4	4
$\rho_{\rm calcd}, {\rm g \ cm^{-3}}$	2.189	2.234	1.994	2.114	2.175
μ , mm ⁻¹	12.116	11.495	9.197	10.216	10.945
cryst size, mm ³	$0.15 \times 0.1 \times 0.05$	$0.4 \times 0.4 \times 0.3$	$0.35 \times 0.3 \times 0.25$	$0.4 \times 0.25 \times 0.2$	$0.3 \times 0.3 \times 0.2$
transmn factor	0.550-1.000	0.328-1.000	0.510-1.000	0.499-1.000	0.691-1.000
no. of reflns unique (R_{int})	5309 (0.044)	16 489 (0.033)	12 666 (0.044)	7507 (0.043)	11 265 (0.103)
no. of reflns obsd $(F_0^2 > 2\sigma (F_0^2))$	2796	11 520	9909	7348	6082
no. of variables	297	1116	737	690	583
R_1^{a}	0.041	0.043	0.053	0.037	0.065
Final value of minimized $R_{\rm w}^{\ b}$ or $wR_2^{\ c}$	0.134^{c}	0.054^{b}	0.136 ^c	0.047^{b}	0.071^{b}
gof^d	1.012	1.017	1.004	1.001	1.011

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{o}|/\sum |F_{o}| \text{ for } F_{o}^{2} > 2\sigma(F_{o}^{2}). {}^{b}R_{w} = [\sum w(|F_{o}| - |F_{c}|)^{2}/\sum w(F_{o})^{2}]^{1/2} (w = [\sigma(F_{o}^{2}) + aF_{o}^{2} + b]^{-1}) \text{ for observed data. } {}^{c}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2}/\sum w(F_{o}^{2})^{2}]^{1/2} (w = [\sigma(F_{o}^{2}) + aF_{o}^{2} + b]^{-1}) \text{ for all unique data. } {}^{d}gof = [\sum w(|F_{o}| - |F_{c}|)^{2}/\{(\text{no. of reflns obsd}) - (\text{no. of variables})\}]^{1/2} \text{ or } [\sum w(F_{o}^{2} - F_{c}^{2})^{2}/\{(\text{no. of reflns obsd}) - (\text{no. of variables})\}]^{1/2}, \text{ when minimized parameter is } R_{w} \text{ or } wR_{2}, \text{ respectively.}$

the data collection (-13%), and a correction was done. Details of the X-ray diffraction study are listed in Tables 2 and 3.

Structure solution and refinements were carried out by using the CrystalStructure program package.⁵⁸ The positions of the non-hydrogen atoms were determined by Patterson methods (PATTY)⁵⁹ and subsequent Fourier synthesis (DIRDIF 99).⁶⁰ They were refined by full-matrix least-squares techniques with anisotropic thermal parameters except for some atoms in the disordered fragments, which were refined isotropically (Cp* ligands in 5, $6 \cdot 0.5$ (toluene), 10 · acetone, 13, and 16; BF₄ anions in 10 \cdot acetone, 15, and 16; toluene molecule in $6 \cdot 0.5$ (toluene)). The hydrido ligands in $2 \cdot 0.5(CH_2Cl_2)$ and 4 were found in difference Fourier maps and refined with isotropic parameters. The C-H hydrogen atoms except for those attached to the disordered fragments were placed at the calculated positions and included in the final stages of the refinements with fixed parameters. Analysis of 11 showed the existence of some disorder in the cluster core, which is presumably caused by cocrystallization with 3. One of two independent Ir atoms was split into two positions with 90.5% and 9.5% occupancies, representing 11 and 3, respectively. The S atom was also distributed at two positions, probably due to cocrystallization as well as the nearly D_{2d} -symmetrical (Cp*Ir)₄ framework of

⁽⁵⁸⁾ CrystalStructure 3.6.0, Crystal structure analysis package; Rigaku and Rigaku/MSC: The Woodlands, TX, 2000–2004.

⁽⁵⁹⁾ PATTY: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; Garcia-Granda, S.; Gould, R. O.; Smits, J. M. M.; Smykall, C. *The DIRDIF program system*; Technical Report of the Crystallography Laboratory; University of Nijmegen: The Netherlands, 1992.

⁽⁶⁰⁾ DIRDIF99:Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. *The DIRDIF-99 program system*; Technical Report of the Crystallography Laboratory; University of Nijmegen: The Netherlands, 1999.

Hydrido Ligands in Iridium Sulfido Clusters

11, and they were treated as 86.5% and 13.5% atomic probabilities. The absolute structure of **15** was determined by refinement of the Flack parameter (x = 0.06(2)).⁶¹

Acknowledgment. This work was supported by a Grantin-Aid for Scientific Research on Priority Area (No. 18065005, "Chemistry of Concerto Catalysis") from the Ministry of

(61) Flack, H. D. Acta Crystallogr., Sect. A 1983, A39, 876.

Education, Culture, Sports, Science, and Technology, Japan, and by CREST of JST (Japan Science and Technology Agency).

Supporting Information Available: X-ray crystallographic files in CIF format are available free of charge via the Internet at http://pubs.acs.org.

OM701207J