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The ligand knowledge base approach has been extended to capture the properties of 108 bidentate
P,P- and P,N-donor ligands. This contribution describes the design of the ligand set and a range of DFT-
calculated descriptors, capturing ligand properties in a variety of chemical environments. New challenges
arising from ligand conformational flexibility and donor asymmetry are discussed, and descriptors are
related to other parameters, such as the ligand bite angle. A novel map of bidentate ligand space, potentially
useful in catalyst design and discovery, has been derived from principal component analysis of the resulting
LKB-PP descriptors. In addition, a range of multiple linear regression models have been derived for
both experimental and calculated data, considering ligand bite angles in square-planar palladium complexes
and ligand dissociation energies from octahedral chromium complexes, respectively. These data sets
were fitted with models based on LKB descriptors to explore the transferability of descriptors to different
coordination environments and to illustrate potential applications of such models in catalyst design, allowing
predictions about novel or untested ligands.

Introduction

Ligands with phosphorus(III) donor atoms represent perhaps
the most widely used ligand class in homogeneous catalysis,
evidence of their synthetic stability and the comparative ease
with which their properties can be modified synthetically. By
choosing an appropriate ligand, the properties and structures of
the organometallic and coordination complexes they form can
be modified extensively. This process of identifying a suitable
ligand can be put on a more quantitative basis by the determi-
nation of appropriate structural and electronic parameters, which
can then be used both to map chemical space and to predict the
properties of novel ligands and their complexes. Various
experimental and computational approaches have been devel-
oped that seek to capture and quantify the steric and σ- and
π-electronic properties of P-donor ligands; these have been
summarized in a number of publications (see, e.g., refs 5–11
and work cited therein).

Complexes of chelating ligands are often more stable than
those of related monodentate ligands. The origin of and detailed
contributions to this “chelate effect” continue to be investi-
gated.12 In addition to this enhanced stability, asymmetry can
be introduced easily into bidentate ligands and hence their

complexes, through use of chiral backbones/substituents and
different donor atoms.7,13,14While chelating ligands have been
applied extensively in reactions such as cross-coupling, allylic
alkylation, hydroformylation, hydrogenation, and CO/ethene co-
polymerization (reviewed, e.g., in refs 9, 13–16), few descriptors
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have been derived for multiple bidentate ligands,6–9,11,15–19with the
L-M-L bite angle a commonly considered parameter.6–9,15,16,18–20

We have recently described the development of computational
descriptors for monodentate phosphorus(III) donor ligands,
collated in a ligand knowledge base (LKB-P).2 In this context
we have explored potential applications of such descriptors in
maps of chemical space and predictive models and discussed
suitable statistical analysis techniques.2,4 Here we apply this
approach to the development of a ligand knowledge base for
chelating P,P- and P,N-donor ligands (LKB-PP), aimed at
exploring bidentate ligand space. We describe the design of
novel descriptors to capture metal–ligand binding for bidentate
ligands and discuss the challenges arising from capturing
conformationally flexible ligands in a knowledge-based ap-
proach. In addition, we present the first map of bidentate ligand
space and illustrate potential applications of such maps and
predictive regression models derived from these descriptors in
ligand and catalyst design.

Knowledge Base Design and Development

Ligand Set. For the initial testing of descriptors we wanted
to limit conformational noise (vide infra) while introducing some
electronic variability to the ligand set. The map of ligand space
generated for our prototype monodentate LKB-P2 suggested that
changing from methyl to trifluoromethyl substitution captures
considerable electronic variation, and we have combined a range
of common chelating ligand backbones with these auxiliary
substituents (Me: 1–14, CF3: 15–24, Figure 1). In contrast, many
synthetically relevant ligands have very similar aryl groups as
auxiliary substituents, but widely varied backbones. We have
thus also included a range of ligand backbones with phenyl
substituents (25–38, 50, 52–59, 62, 63, 74–76, 78–81). Fur-
thermore, ligands have been considered to improve overlap with
available experimental data sets (39–49, 51, 60, 61, 64–73, 82).

Mixed donor ligands have emerged as a synthetically valuable
way of introducing both steric and electronic asymmetry to a
range of reactions.13,21 Furthermore, the different donor atoms
introduce electronic asymmetry close to the metal center, which
poses a challenging test for our descriptors. We have thus
included a number of prototypical P,N-donor ligands to represent
this subset (83–108). The full set of ligands considered in this
work is represented in Charts 1–3, while detailed ligand numbers
are given in the Supporting Information (Table S1).

Descriptors. Our initial work on monodentate ligands (LKB-
P) has highlighted a number of desirable properties for descrip-
tors in a knowledge base.2 From a chemical point of view,
descriptors should ideally be representative of and transferable
to a variety of chemical environments and sample chemical
space extensively and evenly. Statistical data analysis techniques
usually implicitly assume a random and representative sample
has been drawn from an extensive population, and while this is
rarely practical in chemistry, we have calculated a range of
descriptors derived from metal complexes to capture metal–li-
gand bonding in different environments. The (approximately)
tetrahedral zinc dichloride [ZnCl2{LL}] fragment (where {LL}
represents P,P- and P,N-donor, bidentate ligands) was used as
an archetypal Lewis acid complex displaying the coordination
of two donor atoms. Donor-metal-donor angles in this
fragment are quite flexible, allowing for the adoption of a range
of ligand bite angles (vide infra). In contrast, the square-planar
palladium dichloride [PdCl2{LL}] fragment enforces a small
bite angle (close to 90°), and this fragment is closely related to
the [PdCl3L]- complexes used in the monodentate ligand
knowledge base LKB-P.2

We have also investigated using a tetrahedral [Pt(PH3)2{LL}]
complex, again analogous to LKB-P, but Pt(0)-N bonding is
weak and most of the P,N-donor ligands partially dissociated
on optimization, indicating a lack of computational robustness2

for these complexes. Calculations on P,N-donor ligands oc-
cupying two equatorial positions in a trigonal bipyramidal
rhodium(I) complex [RhH(CO)2{LL}] frequently led to dis-
sociation of the Rh(I)-N bonds, and these complexes were also
not considered further. Bulky ligands, such as 37, 49, 57, and
65, coordinated to an octahedral [Cr(CO)4{LL}] complex often
led to failed or slow to converge optimizations, so we have
excluded this complex from consideration as a source of
descriptors as well.

The metal–ligand distances are distinct for phosphorus and
nitrogen donor atoms and, if used as descriptors, show a
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Figure 1. Ligands 1–24.

Chart 1. General Ligand Structures (P,P-Donor)
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bimodal distribution, i.e., clustering around two different
average bond lengths. Principal component analysis (dis-
cussed in detail below) seeks to maximize the variation of
the data set in few dimensions, and such distinct bond length
preferences give rise to clearly separated clusters on ligand
maps, which may obscure more subtle similarities. Instead,

we have used the change in metal–ligand bond lengths
compared to those for a standard reference ligand (ligand 1
for P donors and ligand 83 (D2) for N donors) as the
metal–ligand bond length descriptors, ∆M-D.

In addition, we have extracted metal-chlorine bond lengths
from both metal fragments, which capture differences in ligand
steric and electronic influences on other ligands in these
complexes. We have also included structural parameters de-
scribing geometry changes of the ligands on complexation; these
are calculated as the difference in average ligand bond lengths
(D-A) and angles (A-D-A) between the complexed and free
ligand geometries.

For monodentate phosphorus donor ligands, frontier molecular
orbital energies and proton affinities (PA) are useful descriptors
of their electronic properties, correlating with the lone pair on
phosphorus (EHOMO, PA) and a potentially π-accepting ligand
orbital (ELUMO), respectively. For chelating ligands the orbitals
on the two donor atoms mix, and this relationship becomes more
complicated; likewise the calculation of proton affinities for two
donor atoms becomes conceptually more difficult and might be
affected by movement of the ligand backbone. However, these

Chart 2. Additional Ligands in LKB-PP

Chart 3. P,N-Donor Ligands in LKB-PP Scheme 1. Truncation of Ligands
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properties are mostly determined by the local environment of
the individual donor atom, with the character of the bridging
section (backbone) less important. We have therefore used some
simple rules to split and truncate the ligands and treat each donor
atom individually, allowing us to calculate these descriptors.
The truncation generally occurs after the bridge atom connected
directly to the donor, and the bridge is replaced with a
representative substituent, e.g., methyl for sp3 carbons, vinyl
for nonaromatic sp2 carbons, phenyl for aromatic groups
(including ferrocenes), methoxy for OR links, etc. The other
substituents on the donor atoms have usually been left un-
changed, with the exception of ligands 64–66, 71–73 (simplified
to OMe), 67–69, 77 (Me), and 51, 60, 61 (Ph). Scheme 1
illustrates some representative truncations, and Table S2 in the
Supporting Information shows the full list of split ligands used.

Calculations should use a reliable computational approach
to minimize the occurrence of spurious outliers. Computational
cost is also important, as extensive automation of both input
file generation and data extraction would facilitate expansion
of the knowledge base to cover a wide range of ligands. While
the chosen DFT methodology (BP86/6-31G* and LACV3P on
metals, see Computational Details) is well-established and
relatively inexpensive, achieving adequate conformational sam-
pling remains a computational challenge at this level of theory.

The bidentate ligands considered here display a range of flexible
backbones, and many have conformationally flexible substituents
on both donor atoms, so multiple low-energy conformers are
likely to occur.

Conformational searching remains beyond the reach of pure
DFT, and mining of structural databases such as the Cambridge
Structural Database (CSD)22 relies on the availability of suitable
crystal structure data for most of the ligands considered, which
may not always be possible. Molecular mechanical (MM)
conformational searches thus become the most viable option.
However, the conformational energy surfaces of DFT and MM
calculations are likely to differ substantially.23 This could be
addressed by force field reparameterization, but it would
significantly increase the computational effort required, and here
we have used default force field parameters only. For large
databases such as these ligand knowledge bases, conformational
noise thus remains difficult to eliminate; however, in most cases
descriptor values remain quite similar for low-energy conformers
of the free ligands, and conformational freedom is reduced on
coordination to metal fragments.
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Long, N. J. Chem. Soc. ReV. 2004, 33 (5), 313–328. (e) Chelucci, G.; Orru,
G.; Pinna, G. A. Tetrahedron 2003, 59 (48), 9471–9515. (f) Kranich, R.;
Eis, K.; Geis, O.; Muhle, S.; Bats, J. W.; Schmalz, H. G. Chem.-Eur. J.
2000, 6 (15), 2874–2894. (g) Helmchen, G.; Pfaltz, A. Acc. Chem. Res.
2000, 33 (6), 336–345. (h) Loiseleur, O.; Hayashi, M.; Keenan, M.;
Schmees, N.; Pfaltz, A. J. Organomet. Chem. 1999, 576 (1–2), 16–22.
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Figure 2. Relative energies of free ligand geometries (chelating - free, kcal mol-1) from DFT optimization of MM conformational search
results on free and chelated ligands.

Figure 3. He8_wedge geometry.
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We have used MM stochastic conformational searches
(described in computational details) to screen conformational
space for free ligands and their tetrahedral zinc complexes
(ZnCl2PP). These searches were aimed at eliminating strained,
high-energy conformers as input geometries, rather than reliably
locating the global minimum for both MM and DFT. The
conformer of lowest MM energy was then used as input for
DFT optimizations, modifying the metal fragment as required
for calculating other descriptors.

In addition to the lowest energy conformer found for the
free ligand, we have also optimized free ligands starting from
their chelating conformation in the zinc complex. This can
serve as a simple and fast test for discrepancies between MM
default force fields and DFT, suitable for large databases of
ligands. In general, the chelating conformer is likely to be
higher in energy than the free ligand minimum. However, if
the chelating conformer is considerably (>2–3 kcal mol-1)
lower in DFT energy than the free ligand minimum found
by MM conformational searching, this suggests problems with
the MM calculations (inadequate default force field param-
eters, e.g., neglecting anomeric stabilization of sterically
hindered conformers (P-O, P-N),24 or incomplete confor-
mational searching). Figure 2 shows the energy difference
between DFT-optimized ligand geometries starting from MM
conformational search results for the free and ZnCl2-chelated
ligand. Where optimization from the chelating starting
geometry gave lower energies, we have used this structure
for our descriptors.25

When comparing the optimized geometries of ligands
where the chelating starting geometry gave a considerably
lower energy conformer, it is often difficult to identify the

origin of this preference and hence whether inadequate
parameters or incomplete conformational sampling is to
blame, as multiple degrees of freedom can be involved.
However, these results suggest that for most ligands this
combination of MM conformational searches and DFT
optimizations will identify low-energy conformers, and we
estimate average conformational noise around 1–2 kcal mol-1

in this knowledge base, acceptable for a study of 108 li-
gands.

In addition to changing the backbone, the steric properties
of other substituents on the phosphorus are varied for several
examples (e.g., ligands 2, 16, 26, 40, 41 or 38, 47–49), and a
purely steric descriptor would be useful. We have therefore
adapted the He8_ring steric parameter described previously2 for
use with bidentate ligands. The original He8_ring descriptor is
an energetic measure of steric bulk and is calculated as the
interaction energy between the phosphorus(III) ligand and a ring
of eight helium atoms, designed to approximate the nonbonded
interactions of the ligand with the cis ligands in an octahedral
complex. For chelating ligands, a comparable interaction is better
represented by a wedge of eight helium atoms positioned to
mimic the closest approach of ligands in an octahedral complex
(Figure 3). Four of the helium atoms take the positions of other
ligands in an octahedral complex at a distance of 2.28 Å from
a metal center (X) and with ideal angles (90°/180°) between
them, with a further four helium atoms inserted between these
positions to prevent meshing with bulky groups on the bidentate
ligand. The ligand starting geometry is derived from the
tetrahedral zinc complex, with metal-donor distances adjusted
to 2.28 Å for P donor atoms and 2 Å for N donors. For ligands
with very large bite angles, such short distances cannot be
achieved (ligands 8, 13, 14, 24, 32, 37, 43–46, 49, 107, 108),
and in those cases the shortest possible metal-donor distances
are used. The metal atom is then removed and the positions of
the ligand donor atoms and all helium atoms are frozen, while
the rest of the ligand is optimized. This procedure changes the
bite angle, but maintains the same distance between the donor

(24) Belyakov, A. V.; Dalhus, B.; Haaland, A.; Shorokov, D. J.; Volden,
H. V. J. Chem. Soc., Dalton Trans. 2002, 3756–3762.

(25) Out of 108 ligands, only 9 showed a difference of more than 1.5
kcal mol-1, with a further 9 ligands between 1 and 1.5 kcal mol-1 in favor
of the chelating input geometry. 21 ligands favored the chelating input
geometry by less than 1 kcal mol-1. In contrast, the chelating starting
geometry was more than 1 kcal mol-1 higher in energy for 43 ligands,
with a total of 69 ligands favoring the free ligand conformation.

Table 1. Calculated Descriptors in LKB-PP ({LL} represents P,P- and P,N-donor bidentate ligands; note that for P,N ligands, D1 ) P,
D2 ) N)

descriptora derivation (units)

Split ligands (LD1, LD2)
EHOMO_D1, EHOMO_D2 energy of highest occupied molecular orbital (hartrees)
ELUMO_D1, ELUMO_D2 energy of lowest unoccupied molecular orbital (hartrees)
PA_D1, PA_D2 proton affinity, PA ) E(LDn) - E([HLDn]+) (kcal mol-1)
Free ligands ({LL})
He8_wedge interaction energy between ligand in chelating conformation and wedge

of 8 He atoms,b EHe8w ) E(He8.{LL}) - [E(He8) + E({LL})] (kcal
mol-1) (Figure 3)

Zinc complexes ([ZnCl2{LL}])
BE(Zn) bond energy for dissociation of {LL} from fragment (kcal mol-1)c

Zn-Cl r(Zn-Cl) (Å)
∠ D1-Zn-D2 ligand bite angle in complex (deg)
∆D1-A(Zn), ∆D2-A(Zn) change in av r(D-A) cf. {LL} (Å)
∆A-D1-A(Zn), ∆A-D2-A(Zn) change in av ∠ (A-D-A) cf. {LL} (deg)
∆Zn-D1, ∆Zn-D2 change in r(Zn-D) cf. PP01 (D1), PN01 (D2 ) N) (Å)
Q(Zn) NBO charge on [ZnCl2] fragment
Palladium complexes ([PdCl2{LL}])
BE(Pd) bond energy for dissociation of {LL} from fragment (kcal mol-1)c

Pd-Cl r(Pd-Cl) (Å)
∠ D1-Pd-D2 ligand bite angle in complex (deg)
∆D1-A(Pd), ∆D2-A(Pd) change in av r(D-A) cf. free {LL} (Å)
∆A-D1-A(Pd), ∆A-D2-A(Pd) change in av ∠ (A-D-A) cf. free {LL} (deg)
∆Pd-D1, ∆Pd-D2 change in r(Pd-D) cf. PP01 (D1), PN01 (D2 ) N) (Å)
Q(Pd) NBO charge on [PdCl2] fragment

a All calculations were performed on isolated molecules. b Based on metal-P distance ) 2.28 Å, metal-N distance ) 2 Å. c BE ) [E(metal
fragment) + E({LL})] - E(complex).
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atoms as for the zinc fragment. The interaction energy is then
calculated with reference to the lowest energy free ligand
conformer.

The calculated descriptors (Table 1) therefore include:
• frontier molecular orbital energies and ligand proton

affinities for each donor atom, derived from “split” ligand
fragments,

• adduct binding energies,
• a range of structural parameters describing geometry

changes of ligands upon complexation, as well as the geometry
of the metal fragments and changes in metal–ligand donor atom
bond lengths compared to reference ligands,

• ligand bite angles in the metal complexes,
• metal fragment charges,
• a measure of steric bulk, He8_wedge (Figure 3).

Analysis

Descriptor Contextualization. Bite angles are frequently
reported descriptors for chelating ligands6–9,15,16,18–20 and capture
both steric and electronic ligand properties.9 When bite angles
and their accessible ranges are determined in a consistent fashion
from calculations15,16,19 or standardized searches of structural
databases, corrected for changes in M-P distances,15 these give
a good indication of the steric and electronic properties of
bidentate ligands, although they have recently been criticized.6

We have included donor-metal-donor angles (∠ D-M-D)
for both metal fragments considered here. These are not natural
bite angles, which are standardized to account for changes in
metal-donor distances (see, e.g., ref 15), but instead relaxation
may occur both through bite angle change and changes in the
metal-donor bond lengths when compared to a standard
reference ligand (∆M-D). By considering the effect of several
coordination environments on metal–ligand binding (∠ D-M-D,
∆M-D), ligand flexibility can be captured in an LKB context.

For the zinc fragment we observe a wide range of ∠ D-M-D
angles for the ligands investigated here (range: 63.4–136.3°,
mean 90.9°, standard deviation, std 18.8°), with no pronounced
clustering around 109° as might be expected if these complexes
showed a strong preference for a tetrahedral coordination
geometry. In addition, no pronounced linear relationship between
bite angles and the changes in metal-donor distances (∆Zn-D1,
∆Zn-D2) can be observed for this fragment (bivariate linear
correlation coefficients ) 0.033 (D1) and 0.138 (D2), where
values close to 1 indicate that the relationship between two
variables is described well by a linear equation, y ) ax + b),

although a scatter plot of ∆Zn-D1 versus ∠ D1-Zn-D2
(Figure 4) suggests that larger bond length increases occur for
very large and very small bite angles than in the middle of the
range. In contrast, the square-planar coordination geometry is
enforced in the palladium complex, giving a more limited range
of ∠ D1-Pd-D2 angles (range: 69.4–125.1°, mean 93.5°, std
13.2°), aswell asaclear linear relationshipbetween ∠ D1-Pd-D2
and the changes in metal donor distances (∆Pd-D1, ∆Pd-D2),
as shown in the scatter plot of ∆Pd-D1 versus ∠ D1-Pd-D2
in Figure 4 (bivariate linear correlation coefficients ) 0.758
(D1) and 0.771 (D2)). This suggests that some of the strain
introduced by rigid ligand backbones favoring large bite angles
is relieved by longer metal-donor bonds. The rigid ligand
backbones of ligands 107 and 108, combined with relatively
weaker Pd-N bonds, lead to partial dissociation of these ligands
for the palladium fragment, in agreement with experimental
observations for the xantphosamine ligand, 107.26 Figure 4
shows scatter plots of bond length changes (D1) versus bite
angles for both fragments.

While the ligand bite angle is a popular structural parameter
for bidentate ligands, it has only been determined consistently
for a limited number of ligands in our LKB-PP. Natural bite
angles from MM calculations have been reported for 13 ligands
(bite_m),15,16 whereas only 9 ligands from van Leeuwen’s
standardized surveys of the CSD15,16 are represented in the
LKB-PP (bite_x). We have also updated a survey of bite angles
in [PdCl2{LL}] complexes by Ney27 (see Supporting Informa-
tion for details), giving results for 15 ligands overlapping the
LKB-PP ligand set (bite_Pd). The relationship between these
external data sets and LKB-calculated ∠ D-M-D bite angles
is close to linear, and correlation coefficients are thus high (Table
2), as would be expected, but it is interesting to note that the
zinc ∠ D1-Zn-D2 data are more highly correlated with natural
bite angles than the palladium ∠ D1-Pd-D2 results, further

(26) van der Veen, L. A.; Keeven, P. K.; Kamer, P. C. J.; van Leeuwen,
P. W. N. M. Dalton Trans. 2000, 2105–2112.

(27) Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127 (24), 8644–
8651.

Figure 4. Bond length changes (D1) versus bite angles (∠ D-M-D) for zinc and palladium complexes in LKB-PP.

Table 2. Linear Bivariate Correlation Coefficients between
LKB-PP Descriptors and External Data

bite_m
(13 ligands)15,16

bite_x
(9 ligands)15,16

bite_Pd
(15 ligands)27

∠ D1-Zn-D2 0.963 0.922 0.969
∠ D1-Pd-D2 0.837 0.901 0.991
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confirming that ligands are free to adopt a range of bite angles
when coordinated to this fragment. Based on comparison with
these experimental data sets, our LKB descriptors thus appear
suitable for capturing bite angle variations.

Mapping of Chemical Space. We2 and other authors10,11

have demonstrated the usefulness of maps of ligand space for
monodentate phosphorus(III) donor ligands to locate novel
ligands and guide experimental screening and design. To our
knowledge, no comparable maps have been derived for bidentate
ligands. However, the 27 LKB-PP descriptors shown in Table
1 are difficult to visualize and related terms, e.g., ligand bond
lengths in different complexes, are often highly correlated,
indicating that visualization could be achieved by suitable
simplification. We have thus used principal component analysis
(PCA) of the correlation matrix to allow the visualization of
ligand space by projecting the descriptor set to fewer dimen-
sions. The resulting principal components (PCs) are linear
combinations of the original descriptors which capture large
proportions of the variation in the data set in fewer, uncorrelated
variables. Pairwise plots of these PCs can be used to illustrate
ligand similarities, as these will lead to clusters on the resulting
map. In addition, such maps can be used to guide experimental
and computational work by highlighting alternative ligands close
in ligand space for a given application and by facilitating the
design of ligand sets to ensure extensive sampling of chemical
space. As discussed previously,2 this statistical analysis tech-
nique is sensitive to outliers and thus not robust to changes in
the ligand or descriptor sets, and interpretation of descriptor
loadings beyond a simple qualitative description remains
dubious. Figure 5 shows a plot of the first two PCs derived

from the LKB-PP descriptors (Table 1; see Figure S1 for larger
picture).

The first two PCs capture about 52% of the variation in the
data set, with PC3 and PC4 adding another 15 and 8%,
respectively (Table 3), suggesting that these PCs should also
be considered when exploring ligand similarities and in principal
component regression (PCR), which uses PCs as variables in
linear regression models. A matrix of scatter plots of PC1–4
has been included in the Supporting Information (Figure S2),
and the component loadings, i.e., the contribution of each
descriptor to individual principal components, are shown in
Tables 3 and S3, with the relevant component and loading plots
included as Figures S3a and S3b. Principal component scores
can then be determined for individual ligands by multiplying
the original descriptor values by the appropriate component
loading/coefficient. The principal component score plot of PCs
1 and 2 shown in Figure 5 displays chemically intuitive
clustering of ligands according to their auxiliary substituents.
For P,P-donor ligands we can observe separate “bands” at values
of PC1 around –2.4, 0.5, and 0.7 for perfluorinated, aryl, and
alkyl substituents respectively. Alkyl-substituted ligands cover
the widest range of values, stretching from PC1 )-0.9 to +1.5,
while aryl and perfluorinated substituents are more tightly
clustered. Alkoxy-substituted ligands (64–66, 71–73) occur
mostly around PC1 )-0.5, although there are too few examples
in the knowledge base to describe a consistent trend with
confidence. Ligands with rigid backbones, such as the an-
thracene-derived 13 and 24, the DBFphos-derived 14 and 37
and nixantphos 59, as well as those with bulky substituents 9,
33, 43–46, and 49, occur slightly away from the bulk of the

Figure 5. Principal component score plot (PC2 vs PC1) for ligands in LKB-PP.
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data at large positive values of PC2 (>1.4). Mixed P,N-donor
ligands (83–106) group mostly around PC1 ) –0.5 and PC2 )
–0.5, showing some clustering of aryl-substituted ligands,
although there are too few examples of other substituents to
identify a consistent trend. Since optimization of their
[PdCl2{LL}] complexes was unsuccessful for ligands 107 and
108, these cannot be shown on the map.

While detailed quantitative interpretation of principal com-
ponent loadings is difficult due to the sensitivity to outliers and
hence lack of robustness of this technique,2,4,28 the qualitative
composition of the first few PCs is of interest for understanding
the observed clustering. PC1 may be associated mainly with
σ-donor descriptors (e.g., EHOMO, PA, Zn-Cl, Pd-Cl, Zn
descriptors), explaining the grouping of ligands according to
their auxiliary substituents. PC2 has a strong steric component
(He8_wedge, bite angles), but (π-) electronic factors also play
a role (bite angles, Pd descriptors), giving rise to the clustering
of large and rigid ligands at high values of PC2. PC3 seems to
capture donor asymmetry of the ligands, as descriptors arising
from the second donor atom load highly, while the LUMO
energies are the main contributors to PC4. However, these results
are sensitive to changes in the ligand and descriptors sets, and
perhaps the main value of such PCA maps is realized in
visualizing ligand space, identifying ligand similarities, and
hence guiding ligand screening and design.

Regression Models. Moving beyond a mainly qualitative
identification of ligand similarities/differences, we have also
explored the application of these knowledge base descriptors
in multiple linear regression (MLR) models (see ref 4 for a more
detailed discussion). Linear models can provide a useful way
of describing the relationship between a range of descriptors

and a response variable. Their simple form facilitates the
interpretation of individual descriptor contributions to the linear
equation, and suitable models can also be used to make
predictions for other ligands. In addition, testing knowledge base
descriptors in models for a range of “external” data sets
(experimental or calculated) allows us to assess their ability to
capture ligand properties in different chemical environments and
hence their transferability and chemical robustness. We have
discussed statistical approaches suitable for the analysis of ligand
knowledge bases and the associated challenges for model
selection and evaluation elsewhere;4 here we will focus on
simple examples to illustrate this application.

While bidentate ligands are popular in homogeneous catalysis,
few data sets have been reported that are suitable for (predictive)
regression model testing. Ideally, such data should have been
determined under the same experimental conditions and sample
a large, representative, and chemically varied ligand set. As
discussed above, tables of bite angles have been published for
a range of bidentate ligands,9,15,16,27 but some of these have
been collated from a variety of sources, combining crystal-
lographic and molecular mechanics estimates, so the size of
useful data sets that overlap with the ligands in LKB-PP is
limited. This may be detrimental if models for data prediction
are of interest, as some predictions may need to extrapolate
outside the data used to fit the model. Nevertheless, we were
interested in exploring whether additional descriptors might
improve the prediction of bite angles in [PdCl2{LL}] complexes
(bite_Pd, 15 ligands, discussed above) compared to linear
regression models using calculated ligand–metal–ligand angles,
∠ D1-Pd-D2, as the only descriptor.

We have derived a range of ordinary least-squares linear
regression models with bite_Pd as the response and assessed
their performance based on their complexity, i.e., the number
of variables in the model,29 and their prediction errors as
determined by cross-validation and bootstrapping (see Compu-
tational Details; in addition, ref 4 contains further details of the
statistical approaches used).4,30,31 Resampling methods such as
cross-validation and bootstrapping are useful in this case,
because splitting such a small data set (15 ligands) into training
and test sets would be difficult, so instead prediction errors are
estimated by fitting models to different subsets of the data and
assessing the quality of predictions for the response data not
included in these fits. Variable selection for these models can
also be challenging, as there are fewer data than available
descriptors and the descriptors are correlated, but these predic-
tion errors allow useful comparisons between models. While
methods such as principal component regression (PCR) and
partial least-squares (PLS, see, e.g., ref 4 for details of these
approaches) would allow us to enter the complete set of variables
as derived orthogonal variables, in this case even simple linear
regression models show very good performance. Given the
known lack of robustness of PCR and PLS28 and our interest
in interpreting descriptor contributions,4 we have not pursued

(28) (a) Cundari, T. R.; Sârbu, C.; Pop, H. F. J. Chem. Inf. Comput.
Sci. 2002, 42 (6), 1363–1369. (b) Hadi, A. S.; Ling, R. F. Am. Statistician
1998, 52 (1), 15–19. (c) Ramsey, F. L. Am. Statistician 1986, 40 (4), 323–
324.

(29) Adding more variables into a model will generally improve
performance as measured by the regression coefficient, but models with
fewer variables are usually preferable, as less noise will be introduced. See
Hawkins, D. M. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12.

(30) (a) Hawkins, D. M.; Basak, S. C.; Mills, D. J. Chem. Inf. Comput.
Sci. 2003, 43, 579. (b) Efron, B.; Tibshirani, R. J. Am. Stat. Assoc. 1997,
92 (438), 548–560. (c) Hastie, T.; Tibshirani, R.; Friedman, J. The Elements
of Statistical Learning; Data Mining, Inference, and Prediction; Chapman
& Hall: New York, 2001. (d) Shao, J. J. Am. Stat. Assoc. 1993, 88 (422),
486–494. (e) Shao, J. J. Am. Stat. Assoc. 1996, 91 (434), 655–665.

(31) (a) Efron, B.; Tibshirani, R., Technical Report 1995; (b) Efron, B.;
Tibshirani, R. An Introduction to the Bootstrap; Chapman & Hall: San
Francisco, 1993.

Table 3. Principal Component Loadings (descriptors with
contributions < 0.3 are not displayed; see Table S3 for all values)

descriptor PC1 PC2 PC3 PC4

% of variance explained 29.6 22.4 14.7 8.2
PC eigenvalues 7.99 6.05 3.97 2.20
EHOMO_D1 0.831
EHOMO_D2 0.767 0.445
ELUMO_D1 0.711
ELUMO_D2 0.383 0.643
PA_D1 0.821
PA_D2 0.881
He8_wedge 0.404 0.785
BE(Zn) 0.756 0.335
Zn-Cl 0.912
∠ D1-Zn-D2 0.514 0.746
∆D1-A(Zn) -0.436 0.426 -0.361
∆D2-A(Zn) -0.321 0.897
∆A-D1-A(Zn) -0.448 0.489
∆A-D2-A(Zn) -0.886
∆Zn-D1 -0.501 0.542 -0.311
∆Zn-D2 -0.523 0.496 0.415
Q(Zn) -0.780 -0.350
BE(Pd) 0.515 -0.670
Pd-Cl 0.809 -0.370
∠ D1-Pd-D2 0.449 0.749
∆D1-A(Pd) 0.605 -0.310
∆D2-A(Pd) 0.344 0.692
∆A-D1-A(Pd) -0.381 -0.678
∆A-D2-A(Pd) -0.846
∆Pd-D1 0.372 0.853
∆Pd-D2 0.442 0.759
Q(Pd) -0.472 0.564 0.499
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this further. Some of the models derived are summarized in
Table 4, with the relevant diagnostic plots for assessing the
quality of fit displayed in Figure 6 and full model coefficients
as well as experimental and predicted values listed in Tables
S4 and S5 in the Supporting Information.

These models demonstrate that while better reproduction of
the response data can be achieved by adding descriptors to the
model (improving the regression coefficient R2, which measures
the quality of fit, on going from model 1 to model 3), their

predictive performance will not necessarily be improved,
resulting in larger prediction errors. In this case model 1,
exploiting the high linear correlation between experimental and
calculated bite angles in [PdCl2{LL}] complexes discussed
above, gives acceptably good predictions, with residuals, i.e.,
the difference between experimental and predicted values, of
less than 2.5°, while more complex models do not improve the
quality of predictions, as indicated by higher prediction error
estimates.

Table 4. Summary of Regression Models for bite_Pd and Prediction Error Estimates (see Table S4 for model coefficients)

estimated prediction errorsc

response Na model descriptors in model R2 (adj. R2)b MLR CV bootd

bite_Pd (°),27 this work 15 1 ∠ D1-Pd-D2 0.983 (0.981) 1.30 1.69 1.678
2 ∠ D1-Pd-D2, ∠ D1-Zn-D2, ∆Pd-D1 0.986 (0.982) 1.05 1.99 2.00
3 ∠ D1-Pd-D2, ∠ D1-Zn-D2, ∆Pd-D1, ∆Zn-D2 0.987 (0.982) 0.94 2.84 3.14

a Number of ligands in sample. b Adjusted R2 takes the number of variables in the model into account when computing the regression coefficient.
c Mean squared errors. 10-fold CV. d 0.632 bootstrap estimate of prediction error.

Figure 6. Diagnostic plots for multiple linear regression models 1–3 (Table 4; see Table S5 for experimental and predicted data).
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With such a small data set a comprehensive exploration
of models is difficult and sampling of ligand space remains
limited. We have, however, also derived models for a
calculated response variable, BE(Cr), i.e., the bond energy
for complete dissociation of both donor atoms from a Cr(CO)4

fragment. For this response, data have been calculated for
96 ligands, including most P,N-donor ligands. A range of
models have been evaluated by assessing their complexity
and comparing their prediction errors, and three models with
good performance yet of different complexity are shown in
Table 5, with the relevant diagnostic plots displayed in Figure
7 (see Figure S4 for plots with all ligand numbers). Model
coefficients are listed in Table S4, and all experimental and
predicted values are included as Table S6.

For this response variable, further descriptors in the model
will actually improve the prediction errors, and given the large
number of observations, models with additional variables are
certainly acceptable from a statistical point of view. The
diagnostic plots of residual versus predicted data allow the
identification of ligands for which predictions are consistently
difficult. These include ligand 82, where the donor atoms carry
different and quite bulky substituents, as well as ligands 40 and
61, which are both fairly rigid with some steric hindrance. Other
ligands giving high residuals are BISBI 35 and the related ligand
22 as well as ligand 76, where conformational issues may play
a role, and rigid ligands such as 20 and 24, where the backbone
rigidity may be important as the Cr(CO)4 fragment is both
sterically hindered and forces a small bite angle.

Comparing the descriptors in the models suggests that
descriptors one would associate with σ-donation dominate in
model 4, which already shows acceptable performance, while
some improvement in terms of regression coefficients and
prediction errors is realized in model 5, where the additional
descriptors arise from the palladium fragment and ligand
structural changes on coordination. These descriptors may
actually be responsive to steric hindrance in the complex, but
might also capture some π-bonding characteristics. Model 6
includes several descriptors specific to the second donor atom,
which may help to capture the asymmetry of ligands. In addition,
the He8_wedge descriptor is now included, further highlighting
the importance of representing the steric properties of ligands
especially where hindered complexes are of interest. Standard-
ized model coefficients are listed in Table S4 of the Supporting
Information.

These examples have demonstrated that the relationship
between different responses and these descriptors can be
captured by simple linear models and hence that these descrip-
tors are transferable to different chemical environments. Con-
sideration of prediction errors suggests that such models could
also be used to make predictions for novel or untested ligands
based on these simple LKB-PP descriptors. However, the
availability of suitable experimental response data remains the
limiting factor in deriving predictive models based on LKB-PP
descriptors.

Summary and Conclusions

This work has extended the ligand knowledge base approach
to bidentate P,P- and P,N-donor ligands, developing suitable
descriptors collated in a ligand knowledge base, LKB-PP. The
design of both ligand set and descriptors has been discussed in
the context of earlier LKB studies,2 and descriptors have been
related to data reported in the literature for chelating ligands,
such as the popular bite angle parameter. New challenges, arising
from the greater conformational flexibility of such ligands
compared to monodentate ligands and the possibility for
asymmetry of the donor atoms, have been addressed.

These descriptors have been projected to give the first map
of chelating ligand space, and the observed clustering as well
as potential applications of such maps in visualization and ligand
design have been discussed. Simple linear regression models
have been used to explore the transferability of descriptors to
different chemical environments and the quality of predictions
has been evaluated by estimating prediction errors using different
resampling techniques. However, further exploration of this
application remains hampered by a lack of suitable experimental
data sets.

In many synthetic applications of phosphorus(III) donor
ligands, both mono- and bidentate ligands are used inter-
changeably, with the choice of ligand determined by other
factors such as catalyst stability, reaction conditions (tem-
perature, solvent), and substrate of interest. While mapping
and modeling of the separate ligand spaces is valuable in its
own right, work is currently under way to explore how
different knowledge bases might be combined to produce
maps of wider ligand space.

Computational Details

All calculations used the Jaguar package32 and the standard
Becke-Perdew (BP86) density functional.33 The Jaguar triple-�
form of the standard Los Alamos ECP basis set (LACV3P) was
used on the transition metal atoms, employing the 6-31G* basis
for all other atoms. “Loose” convergence (5 times larger than default
criteria) was used for all geometry optimizations. Test calculations
using the more stringent default convergence criteria did not lead
to significant changes in energies, bond lengths, or angles, but were
much more time-consuming. Calculations were performed on
isolated molecules, and NBO atomic charges were calculated.34

Vibrational frequencies were not computed, and so the energetic
data do not include a correction for zero-point energy, although
we would expect this to be quite small. In the absence of frequency

(32) Schrödinger, L. Jaguar, 6.0; Schrödinger, LLC: New York, 2005.
(33) (a) Slater, J. C., Quantum Theory of Molecules and Solids, Vol. 4:

The Self-Consistent Field for Molecules and Solids; McGraw-Hill: New
York, 1974. (b) Becke, A. D. Phys. ReV. A 1988, 38, 3098–3100. (c) Perdew,
J. P.; Zunger, A. Phys. ReV. B 1981, 23, 5048–5079. (d) Perdew, J. P. Phys.
ReV. B 1986, 33, 8822–8824. (e) Perdew, J. P. Phys. ReV. B 1986, 34, 7406.

(34) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.;
Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO 5.0; Theoretical
Chemistry Institute, University of Wisconsin: Madison, 2001.

Table 5. Summary of Regression Models for BE(Cr) and Prediction Error Estimates (see Table S4 for model coefficients)

estimated prediction errorsc

response Na model descriptors in model R2 (adj. R2)b MLR CV bootd

BE(Cr) (kcal mol-1) 96 4 PA_D1, BE(Zn), Zn-Cl, ∆D2-A(Zn), BE(Pd) 0.950 (0.947) 3.22 3.91 3.66
5 PA_D1, BE(Zn), Zn-Cl, ∆D2-A(Zn), ∆A-D1-A(Zn), BE(Pd),

Pd-Cl, ∆A-D1-A(Pd)
0.957 (0.953) 2.77 3.40 3.49

6 EHOMO_D2, PA_D2, He8_wedge, BE(Zn), Zn-Cl, ∆D2-A(Zn),
∆A-D1-A(Zn), ∆Zn-D2, BE(Pd), Pd-Cl, ∆Pd-D1, ∆Pd-D2

0.964 (0.959) 2.34 2.94 3.08

a Number of ligands in sample. b Adjusted R2 takes the number of variables in the model into account when computing the regression coefficient.
c Mean squared errors. 10-fold CV. d 0.632 bootstrap estimate of prediction error.
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cacluations, stationary points have not been verified as minima.
However, most ligands and complexes are large and optimization
to transition states seems unlikely for these carefully built low
symmetry starting geometries.

Multiple conformations are viable for some of the ligands and
complexes, but a comprehensive exploration of conformational
space with DFT remains computationally too demanding (vide
supra). Instead, we have performed molecular mechanics (MM)
conformational searches with the default MMX force field in
PCModel.35 The GMMX module was used for stochastic confor-
mational searches with default settings unless stated otherwise. 500
iteration conformational searches were performed on free ligands
and ligands bound to the zinc fragment (stop criteria defined as
Emin found 10 times and duplicates found 50 times). Starting
geometries for other metal complexes were based on the MM
minimum energy conformer found for the zinc complex. The impact

of potentially resulting “conformational noise” (i.e., variations in
descriptor values between alternative conformers and due to
discrepancies between MM and DFT) on the data is discussed
above.

Statistical analyses were performed in SPSS for Windows36 and
S-Plus.37 The leaps routine in S-Plus with adjusted R2 as the model
evaluation criterion was used to select regression models of different
complexity (best subset). Multivariate linear regression models were
evaluated by their regression coefficients (R2 and adj. R2) and by
calculating the mean residual from the regression results. In addition,
the crossValidation and bootstrapValidation functions as imple-
mented in the S+ Resample library38 were used to estimate mean
squared-prediction errors for these linear regression models from
10-fold crossvalidation and 100 bootstrap replications (0.632
method31), respectively.

(35) Gilbert, K. PCModel; Serena Software: Bloomington, IN, 2004. (36) SPSS for Windows, Release 14.0; SPSS Inc.: Chicago, IL, 2006.

Figure 7. Diagnostic plots for multiple linear regression models 4–6 (Table 5; see Table S6 for experimental and predicted data and Figure
S3 for all ligand numbers).
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