Diarylborenium Cations: Synthesis, Structure, and Electrochemistry

Ching-Wen Chiu and François P. Gabbaï*

Department of Chemistry, Texas A&M University, College Station, Texas 77843

*Recei*V*ed December 14, 2007*

Summary: Mes₂BF and Ar^N *₂BF (* Ar^N *= 4-(* Me_2N *)-2,6-Me₂-C₆H₂)</sub>
<i>react with trimethylsilyltriflate and p-dimethylaminonyridine in react with trimethylsilyltriflate and p-dimethylaminopyridine in chlorobenzene to afford the corresponding borenium salts* $[Mes_2B\text{-}DMAP]^+$ $\overline{OTr}^ ([1]^+ \overline{OTr}^-)$ and $[Ar^N_{2}B\text{-}DMAP]^+$ \overline{OTr}^- *([2]* ⁺*OTf*-*), which ha*V*e been fully characterized.*

Introduction

Cationic boron derivatives continue to attract a great deal of attention because of their instability and reactivity.^{1–6} Diphenylborenium cations of general formula $[Ph_2B-L]^+$ (L = neutral ligand) provide a good example of such species, which had long been proposed but whose definitive characterization in solution has only recently been achieved.^{$7-11$} Despite these recent successes, diphenylborenium cations have not been structurally characterized. Furthermore, the acridine-9-borafluorenium cation is the only structurally characterized example of a diarylborenium cation.12 The difficulties encountered in the isolation of such cations can be correlated to the unsaturation of the boron center and the weak π -donating ability of the aryl groups. In an effort to overcome these limitations, we have probed the use of more sterically protecting aryl substituents featuring *o*-methyl groups. We have also probed the stabilizing effects that can be provided by remote amino-substituents appended to the aryl groups of diarylborenium cartions.¹³

Results and Discussion

The reaction of $Mes₂BF$ with trimethylsilyl triflate (Me3SiOTf) and *p*-dimethylaminopyridine (DMAP) in refluxing chlorobenzene affords after 24 h $[Mes_2B-DMAP]^+$ OTf

- (3) (a) Vidovic, D.; Findlater, M.; Cowley, A. H. *J. Am. Chem. Soc.* **2007**, *129*, 8436. (b) Vidovic, D.; Findlater, M.; Cowley, A. H. *J. Am. Chem. Soc.* **2007**, *129*, 11296.
- (4) Braun, U.; Nöth, H. *Eur. J. Inorg. Chem.* **2007**, 2296.
- (5) Kato, T.; Tham, F. S.; Boyd, P. D. W.; Reed, C. A. *Heteroatom Chem.* **2006**, *17*, 209.
- (6) Chiu, C.-W.; Gabbai, F. P. *Angew. Chem., Int. Ed. Engl.* **2007**, *46*, 1723.
- (7) Davidson, J. M.; French, C. M. *J. Chem. Soc.* **1962**, 3364.
- (8) Moodie, R. B.; Ellul, B.; Connor, T. M. *Chem. Ind.* **1966**, *1966*, 767.
- (9) Kiyooka, S.-I.; Fujiyama, R.; Kawai, T.; Fujimoto, H.; Goh, K. *Tetrahedron Lett.* **2001**, *42*, 4151.
- (10) Uddin, M. K.; Fujiyama, R.; Kiyooka, S.-i.; Fujio, M.; Tsuno, Y. *Tetrahedron Lett.* **2004**, *45*, 3913.
- (11) Uddin, M. K.; Nagano, Y.; Fujiyama, R.; Kiyooka, S.-i.; Fujio, M.; Tsuno, Y. *Tetrahedron Lett.* **2005**, *46*, 627.
- (12) Narula, C. K.; Nöth, H. *Inorg. Chem.* **1985**, *24*, 2532.
- (13) Schulz, A.; Kaim, W. *Chem. Ber.* **1989**, *122*, 1863.

Scheme 1 C_6H_5Cl Me Me F + Me₃SiOTf + DMAP ΘĀ NMe₂ reflux Me 1^+ : R = Me 2^+ : R = NMe₂

 $([1]⁺$ OTf⁻) (Scheme 1).¹⁴ In an effort to determine the effect of remote amino-substituents on the stability of such borenium ions, we also synthesized $Ar^N{}_2BF$ $(Ar^N = 4-(Me_2N)-2,6-Me_2-C-H_2)$ and converted it into $[Ar^N{}_2B-DMAPI^+OTF^-(12)^+OTF^-)$ C_6H_2) and converted it into $[Ar^N{}_2B$ -DMAP]⁺OTf⁻ ($[2]$ ⁺OTf⁻) by following the method used for [**1**] ⁺OTf-. The formation of $[1]$ ⁺OTf⁻ and $[2]$ ⁺OTf⁻ was confirmed by ¹H NMR, which showed the presence of one DMAP ligand bound to the boron center. The 1 H NMR spectra of $[1]$ ⁺OTf⁻ and $[2]$ ⁺OTf⁻ are also different from those of [Mes₂BF-DMAP] and $[Ar^N{}_2BF$ -DMAP], respectively, which could be generated in situ by simple mixing of the diarylboron fluoride with DMAP. Of special note, the ¹H NMR resonance of the Me₂N group of DMAP is shifted downfield by 0.36 ppm on going from [$\text{Mes}_2\text{BF-DMAP}$] to $[1]^+ \text{OTf}^-$ and 0.31 ppm on going from [Ar^N₂BF-DMAP] to [2]⁺OTf⁻. These observation are in agreement with an ionic formulation for $[1]^+$ OTf⁻ and $[2]^+$ OTf⁻. This was confirmed by the detection of a 11 B NMR signal at 64 ppm for [**1**] ⁺OTf- and 62 ppm for [**2**] ⁺OTf-. These chemical shifts are comparable to the value reported for $[(C_6H_5)_2B(Py)]^+$ (58.2 ppm) which also feature a tricoordinate boron atom.11 While $[1]$ ⁺OTf⁻ is isolated as colorless crystals, $[2]$ ⁺OTf⁻ is an orange solid.

Bearing in mind that the only structurally characterized diarylborenium salt features a fused 9-borafluorenium moiety,¹² we undertook the characterization of $[1]^+$ OTf⁻ and $[2]^+$ OTf⁻ by X-ray analysis. Both salts crystallize in the *P*1 space group with two molecules in the unit cell. Both structures are very similar (Figure 1). The boron center of $\left[1\right]^+$ OTf⁻ and $\left[2\right]^+$ OTf⁻ is trigonal planar as indicated by the sum of the bond angles, which is equal to 360° in both cases. The B(1)–C(8) (1.560(3) \AA in $[1]^+$, 1.550(4) \AA in $[2]^+$) and B(1)-C(18) bonds (1.570(3) \AA
in $[1]^+$ 1.532(4) \AA in $[2]^+$) connecting the aryl ligand to the in $[1]$ ⁺, 1.532(4) Å in $[2]$ ⁺) connecting the aryl ligand to the boron centers are significantly shorter than the $C_{\text{Me}s}$ - B bonds measured in Mes₂BPh (1.579(2) Å),¹⁵ suggesting increased *π*-donation to the electron-deficient boron center. The average

⁽¹⁵⁾ Fiedler, J.; Zalis, S.; Klein, A.; Hornung, F.; Kaim, W. *Inorg. Chem.* **1996**, *35*, 3039.

^{*} Corresponding author. E-mail: francois@tamu.edu. Fax: +1 979 845 4719. Phone: + 1 979 862 2070.
(1) Kölle, P.; Nöth, H. Chem. Rev. 1985, 85, 399.

⁽²⁾ Piers, W. E.; Bourke, S. C.; Conroy, K. D. *Angew. Chem., Int. Ed. Engl.* **2005**, *44*, 5016.

⁽¹⁴⁾ These reaction conditions are those employed in the self-activated silyl-assisted poly-onio-substitution protocol developed by Robert Weiss, see for example: Weiss, R.; Puhlhofer, F. G. *J. Am. Chem. Soc.* **2007**, *129*, 547.

Figure 1. Crystal structure of [**1**] ⁺ and [**2**] ⁺ with thermal ellipsoids set at the 50% probability level. Hydrogen atoms are omitted for clarity. Pertinent metrical parameters can be found in the text.

dihedral angles *θ* formed between the boron trigonal plane and the plane containing the Mes ligand in $\left[1\right]^+$ and the Ar^N ligand in [**2**] ⁺ are respectively 58.1° and 48.3°. The slight shortening of the $B(1)-C(8)$ and $B(1)-C(18)$ bonds as well as the smaller θ angle observed for $\left[\mathbf{2}\right]^+$ may be correlated to the stronger π -donating ability of the Ar^N ligand, a conclusion supported by the planarity of the N(3) and N(4) atoms ($\Sigma_{\text{C-N-C}} = 359.8^{\circ}$ $(N(3))$ and 358.2° $(N(4))$. The B(1)-N(1) bonds connecting the DMAP ligand to the boron centers $(1.480(3)$ Å in $[1]^{+}$, 1.501(4) \AA in $[2]^+$) in both structures are shorter that the value computed for $[(C_6H_5)_2B(Py)]^+$ (1.552 Å).¹¹ They are also shorter than the $B-N_{DMAP}$ bond observed in Ar*P=B(DMAP)Tmp $(Ar^* = C_6H_3-2,6- (C_6H_2-2,4,6-iPr_3)_2$; Tmp = 2,2,6,6-tetra-
methylpiperidine) and are in fact comparable to traditional B-N methylpiperidine) and are in fact comparable to traditional B-N
single bonds.^{16,17} The electron deficiency of the cationic boron center as well as the strong *σ*-donor character of the DMAP ligand are most certainly responsible for this feature.

In an attempt to better understand the properties of [**1**] ⁺ and $[2]$ ⁺, we have studied their electrochemistry. As indicated by cyclic voltammetry, both [**1**] ⁺ and [**2**] ⁺ undergo an irreversible reduction at E_{peak} –2.03 and –2.30 V (vs Fc/Fc⁺), respectively (Figure 2). Because of their increased electron deficiency, the reduction potentials of $\left[1\right]^+$ and $\left[2\right]^+$ are more positive than that of neutral boranes, such as $Mes₃B$, which is reduced at -2.73 V (vs Fc/Fc⁺). It is also important to note that the reduction potential of [**1**] ⁺ is substantially more positive than that of [**2**] ⁺ once again indicating the greater donating ability of the Ar^N ligand. The redox behavior of these derivatives is different from that of neutral boranes which typically display a reversible one-electron reduction wave corresponding to the formation of stable radical anion.¹⁸ Hence, these results indicate that the radical $[Mes_2B-DMAP]$ ^{*} and $[Ar^N_2B-DMAP]$ ^{*} are not stable. It also suggests that radicals such as $[Mes_2B-pyridine]^*$ whose generation has been attempted 19 might be too unstable to actually observe in solution.20

A geometry optimization of [**1**] ⁺ and [**2**] ⁺ with DFT methods (B3LYP, 6-31G*) affords structures that closely match those

Figure 2. Cyclic voltammograms of $[1]^+$ and $[2]^+$ in CH_2Cl_2 with a glassy-carbon working electrode (0.1 M nBu_4NPF_6) at scan rate of 300 mV s^{-1} .

observed experimentally. In both cases, the LUMO is localized on the boron atom and DMAP ligand (Figure 3). An evaluation of the orbital energies by using the PCM solvation model^{21,22} (solvent $= CH_2Cl_2$) indicates that the LUMO of $[1]^+$ is 0.37
eV lower than that of $[2]^+$. This energy difference is close to eV lower than that of [**2**] ⁺. This energy difference is close to the results of our electrochemical measurements (∆*E*peak(red) $= 0.27$ V).

Experimental Section

General Considerations. Trimethylsilyl triflate (Me₃SiOTf) was purchased from TCI America and used without purification. *p*-Dimethylaminopyridine (DMAP) was purchased from Lancaster and used without purification. 4-Bromo-3,5-tetramethylaniline was synthesized by following a published procedure.²³ Chlorobenzene was dried over P_2O_5 under N₂ atmosphere and distilled prior to

⁽¹⁶⁾ Rivard, E.; Merrill, W. A.; Fettinger, J. C.; Power, P. P. *Chem. Commun.* **2006**, 3800.

⁽¹⁷⁾ Rivard, E.; Merrill, W. A.; Fettinger, J. C.; Wolf, R.; Spikes, G. H.; Power, P. P. *Inorg. Chem.* **2007**, *46*, 2971.

⁽¹⁸⁾ Cummings, S. A.; Iimura, M.; Harlan, C. J.; Kwaan, R. J.; Trieu, I. V.; Norton, J. R.; Bridgewater, B. M.; Jäkle, F.; Sundararaman, A.; Tilset, M. *Organometallics* **2006**, *25*, 1565.

⁽¹⁹⁾ Leffler, J. E.; Dolan, E.; Tanigaki, T. *J. Am. Chem. Soc.* **1965**, *87*, 927.

⁽²⁰⁾ Weissman, S. I.; van Willigen, H. *J. Am. Chem. Soc.* **1965**, *87*, 2285.

⁽²¹⁾ Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. *Chem. Phys. Lett.* **1996**, *255*, 327.

⁽²²⁾ Tomasi, J.; Cammi, R.; Mennucci, B. *Int. J. Quantum Chem.* **1999**, *75*, 783.

⁽²³⁾ Engman, L.; Stern, D.; Stenberg, B. *J. Appl. Polym. Sci.* **1996**, *59*, 1365.

Figure 3. DFT optimized geometry of [**1**] ⁺ with an overlay of the LUMO (isovalue $= 0.03$, H-atoms omitted).

use. Air-sensitive compounds were handled under N_2 atmosphere, using standard Schlenk and glovebox techniques. Elemental analyses were performed at Atlantic Microlab (Norcross, GA). NMR spectra were recorded on a Varian Unity Inova 400 FT NMR spectrometer (399.59 MHz for ¹H, 375.95 MHz for ¹⁹F, 128.2 MHz for ¹¹B, 100.5 MHz for ¹³C). Chemical shifts δ are given in ppm, and are referenced against external Me₄Si (H, ¹³C), $BF_3 \cdot Et_2O$ (¹¹B), and CFCl₃ (^{19}F) .

Synthesis of $Ar^N_2BF (Ar^N = 4-(Me_2N)-2,6-Me_2-C_6H_2)$ **.** 4-Bromo-3,5-tetramethylaniline (10 g, 0.04 mol) was allowed to react with excess Mg powder in THF (30 mL) at reflux for 5 h. Once the reaction mixture was cooled to room temperature, the THF solution was filtered and then slowly added into an $Et₂O$ solution of $BF_3 \cdot OEt_2$ (2.7 mL, 0.02 mol) at -78 °C. The reaction mixture was allowed to warm to room temperature and stirred overnight. The solvents were then removed under reduced pressure and the solid residue was extracted with hexane $(3 \times 50 \text{ mL})$. The combined hexane fractions were dried under vacuum to afford a yellow solid. This solid was washed with hexane (5 mL) to afford Ar^N_2BF in moderate yield (3.8 g, 53%). This compound was used without further purification for the synthesis of $\left[2\right]^+$ OTf⁻ (vide infra). ¹H NMR (CDCl3, 399.59 MHz): *δ* 2.39 (d, 12H, *o*-Me), 3.06 (s, 12H, Ar^N-NMe_2), 6.46 (s, 4H, Ar^N-CH). ¹³C NMR (CDCl₃, 100.5 MHz): *δ* 23.2 (*o*-Me), 40.0 (Ar^N-NMe₂), 111.3, 125.6, 144.4, 151.6. ¹⁹F NMR (CDCl₃, 375.95 MHz): δ -23.4. ¹¹B NMR (CDCl₃, 128.2) MHz): *δ* 52.

Synthesis of [1]⁺OTf⁻. Dimesitylboron fluoride (0.60 g, 2.2) mmol), DMAP (0.23 g, 1.9 mmol), and Me₃SiOTf (0.34 mL, 1.9 mmol) were dissolved in 5 mL of chlorobenzene and heated at reflux overnight to give a colorless solution. Upon cooling, compound [**1**] ⁺OTf- precipitated and was isolated as a white solid by filtration. It was washed with $Et₂O$ (10 mL) and dried under reduced pressure (0.78 g, 80% yield). Single crystals were obtained by slow cooling a hot chlorobenzene solution of $[1]^+$ OTf⁻ to -40

^oC⁻¹H NMR (CDCl₂, 299.91 MHz): δ 2.01 (s-12H, *o-Me*), 2.30 °C. ¹ H NMR (CDCl3, 299.91 MHz): *δ* 2.01 (s, 12H, *o*-Me), 2.30 (s, 6H, *p*-Me), 3.43 (s, 6H, DMAP-NMe2), 6.87 (s, 4H, Mes-CH), 7.00 (d, 2H, ${}^{3}J_{\text{H-H}} = 7.8$ Hz, DMAP-CH), 7.87 (d, 2H, ³
Hz, DMAP-CH), ¹³C NMR (CDC), 100.5 MHz); Δ 21 7.00 (d, 2H, ³J_{H-H} = 7.8 Hz, DMAP-CH), 7.87 (d, 2H, ³J_{H-H} = 7.8
Hz, DMAP-CH). ¹³C NMR (CDCl₃, 100.5 MHz): δ 21.3 (ο-Me), 22.5 (p-Me), 41.3 (DMAP-NMe₂), 109.2, 122.3, 129.3, 133.2, 142.2, 143.9, 158.1. 11B NMR (CDCl3, 128.2 MHz): *δ* 64. Anal. Calcd for C26H32BF3N2O3S: C, 60.01; H, 6.20. Found: C, 59.36; H, 6.16.

The sample could be further purified by an additional recrystallization from hot chlorobenzene. Anal. Calcd for $C_{26}H_{32}BF_3N_2O_3S$: C, 60.01; H, 6.20. Found: C, 60.16 H, 6.19.

Synthesis of $[2]^+$ **OTf⁻. Ar^N₂BF (0.28 g, 0.85 mmol), DMAP** $(0.08 \text{ g}, 0.65 \text{ mmol})$, and Me₃SiOTf $(0.11 \text{ mL}, 0.61 \text{ mmol})$ were dissolved in 5 mL of chlorobenzene and heated at reflux overnight to give an orange solution. After cooling to room temperature, addition of Et_2O (20 mL) resulted in the precipitation of $[2]^+OTT^$ as an orange solid that was isolated by filtration. It was washed with Et₂O (10 mL) and dried under reduced pressure (0.24 g, 69% yield). Single crystals were obtained by vapor diffusion of $Et₂O$ into a CHCl₃ solution of the $[2]^+$ OTf⁻¹H NMR (CDCl₃, 399.59) MHz): δ 1.94 (s, 12H, *o*-Me), 2.98 (s, 12H, Ar^N-NMe₂), 3.36 (s, 6H, DMAP-NMe₂), 6.32 (s, 4H, Ar^N-CH), 6.91 (d, 2H, ³J_{H-H} = 6H, DMAP-NMe₂), 6.32 (s, 4H, Ar^N-CH), 6.91 (d, 2H, ³J_{H-H} = 8.0 Hz, DMAP-CH), 7.89 (d, 2H, ³J_{H-H} = 8.0 Hz, DMAP-CH). ¹³C NMR (CDCl₃, 100.5 MHz): δ 23.4 (*o*-Me), 39.8 (Ar^N-NMe₂), 40.9 (DMAP-NMe₂), 108.5, 111.7, 144.3, 152.4, 157.9. ¹¹B NMR (CDCl₃, 128.2 MHz): δ 62. Anal. Calcd for C₂₈H₃₈BF₃N₄O₃S: C, 58.13; H, 6.62. Found: C, 57.60; H, 6.56.

Electrochemistry. Electrochemical experiments were performed with an electrochemical analyzer from CH Instruments (Model 610A) with a glassy carbon working electrode and a platinum auxiliary electrode. The reference electrode was built from a silver wire inserted into a small glass tube fitted with a porous vycor frit at the tip and filled with a THF solution containing $(n-Bu)_{4}NPF_6$ (0.1 M) and AgNO₃ (0.005 M) . All three electrodes were immersed in a CH_2Cl_2 solution (5 mL) containing $(n-Bu)$ ₄NPF₆ (0.1 M) as a support electrolyte and the analyte $(7.7 \text{ mM}$ for $\left[1\right]^+$ OTf⁻, 7.3 mM for [**2**] ⁺OTf-). The electrolyte was dried under vacuum prior to use. In all cases, ferrocene was used as an internal standard, and all reduction potentials are reported with respect to the $E_{1/2}$ of the Fc/Fc^+ redox couple.

Crystallography. The crystallographic measurements were performed by using a Bruker APEX2 diffractometer, with graphitemonochromated Mo K α radiation ($\lambda = 0.71069$ Å). Specimens of suitable size and quality were selected and mounted onto glass fiber with apiezon grease. The structures were solved by direct methods, which successfully located most of the non-hydrogen atoms. Subsequent refinement on F^2 with use of the SHELXTL/PC package (version 5.1) allowed location of the remaining non-hydrogen atoms. A summary of the pertinent crystallographic data follows:

Crystal data for $[1]^+$ OTf⁻: C₂₆H₃₂BF₃N₂O₃S, M_r = 520.41, *T*
140 K space group P_1^T triclinic $q = 8.2944(8)$ \hat{A} $b =$ $= 140$ K, space group $P\bar{1}$, triclinic, $a = 8.2944(8)$ Å, $b =$ 10.4347(10) Å , $c = 16.1597(15)$ Å, $\alpha = 104.6880(10)$ °, $\beta =$ 96.8560(10)°, $\gamma = 100.4320(10)$ °, $V = 1310.3(2)$ Å³, $Z = 2$, $D_c = 1319$ s, cm⁻³, $u(Mo, K\alpha) = 0.175$ mm⁻¹, 15106 reflections 1.319 g cm⁻³, μ (Mo K α) = 0.175 mm⁻¹, 15106 reflections
measured 6033 unique (R₁ = 0.0306) R₁ = 0.0575 wR₂ = 0.1185 measured, 6033 unique ($R_{\text{int}} = 0.0306$), $R_1 = 0.0575$, $wR_2 = 0.1185$.

Crystal data for $[2]^+$ OTf⁻ · (OEt₂)_{0.5}: C₃₀H₄₃BF₃N₄O_{3.5}S, M_r = 5.55 $T = 140$ K space group P_1^T triclinic $a = 8.110(3)$ \AA $b =$ 615.55, $T = 140$ K, space group $P\overline{1}$, triclinic, $a = 8.110(3)$ Å, $b =$ 13.043(4) Å, $c = 15.489(5)$ Å, $\alpha = 85.454(3)^\circ$, $\beta = 78.149(3)^\circ$, γ $V = 1590.4(9)$ Å³, $Z = 2$, $D_c = 1.285$ g cm⁻³, $\mu(M_0)$
 $K \Omega = 0.158$ mm⁻¹ 11305 reflections measured 5861 unique (R_0) $K\alpha$) = 0.158 mm⁻¹, 11305 reflections measured, 5861 unique (R_{int}) = 0.0295) $R_1 = 0.0841$ w $R_2 = 0.1276$ $= 0.0295$, $R_1 = 0.0841$, $wR_2 = 0.1276$.

Acknowledgment. This work was supported by NSF (CHE-0646916), the Welch Foundation (A-1423), and the Petroleum Research Funds (Grant 44832-AC4).

Supporting Information Available: Computational details and crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

OM701249N