Dehydrogenation of Inert Alkyl Groups via Remote C-**^H Activation: Converting a Propyl Group into a** *π***-Allylic Complex**

Ramesh Giri,† Nathan Maugel,‡ Bruce M. Foxman,‡ and Jin-Quan Yu*,†

Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, and Department of Chemistry MS015, Brandeis University, Waltham, Massachusetts 02454

*Recei*V*ed January 15, 2008*

Summary: Pd(OAc)₂-mediated dehydrogenation of an alkyl group to a double bond or a η *³-allylic complex via sp³ C-H*
bond activation and allylic oxidation is reported. A novel redox *bond activation and allylic oxidation is reported. A novel redox is proposed for this double oxidation under oxidant-free conditions. A catalytic protocol using benzoquinone as the* stoichiometric oxidant has also been developed for the dehy*drogenation of cyclopentylcarboxamides.*

Metal-catalyzed C-H bond activation has received considerable attention in recent years. $¹$ In particular, palladium has been</sup> extensively used in sp^2 and sp^3 C-H bond functionalizations.² While direct hydrocarbon C-H functionalization remains a significant challenge, 3 the chelation-assisted activation of inert $sp³$ C-H bonds is relatively well-established.⁴ Heteroatomassisted C-H cleavages, such as those directed by $oximes$,⁵ $oxazolines$, pyridines,⁷ and amides, 8 have been extensively explored. Simple functionalities such as Boc ,⁹ carboxyl,^{10,11} and amino^{12} groups have also been shown to be effective in directing Pd(II) insertions into C-H bonds. These chelates share a common mechanistic theme of forming a five-membered palladacycle.13 We have recently characterized by X-ray crystallography a number of such $C(sp^3)$ – Pd complexes.^{6d} Herein we

‡ Brandeis University.

(1) (a) Espino, C. G.; Du Bois, J. In *Modern Rhodium-Catalyzed Organic Reactions*; Evans, P. A., Ed.; Wiley-VCH: Weinheim, Germany, 2005; pp 379–416. (b) Kakiuchi, F.; Chatani, N. *Ad*V*. Synth. Catal.* **²⁰⁰³**, *³⁴⁵*, 1077– 1101. (c) Davies, H. M. L.; Beckwith, R. E. J. *Chem. Re*V*.* **²⁰⁰³**, *¹⁰³*, 2861– 2904. (d) Crabtree, R. H. *Dalton Trans.* **2003**, 3985–3590. (e) Kakiuchi, F.; Murai, S. *Acc. Chem. Res.* **2002**, *35*, 826–834. (f) Dyker, G. *Angew. Chem., Int. Ed.* **1999**, *38*, 1698–1712.

(2) (a) Alberico, D.; Scott, M. E.; Lautens, M. *Chem. Re*V*.* **²⁰⁰⁷**, *¹⁰⁷*, 174–238. (b) Yu, J.-Q.; Giri, R.; Chen, X. *Org. Biomol. Chem.* **2006**, *4*, 4041–4047. (c) Dick, A. R.; Sanford, M. S. *Tetrahedron* **2006**, *62*, 2439– 2463. (d) Daugulis, O.; Zaitsev, V. G.; Shabashov, D.; Pham, Q.-N.; Lazareva, A. *Synlett* **2006**, 3382–3388. (e) Catellani, M. *Top. Organomet. Chem.* **2005**, *14*, 21–53. (f) Liu, C.; Widenhoefer, R. A. *J. Am. Chem. Soc.* **2004**, *126*, 10250–10251.

(3) (a) Bergman, R. G. *Nature* **2007**, *446*, 391–393. (b) Goldman, A. S.; Roy, A. H.; Huang, Z.; Ahuja, R.; Schinski, W.; Brookhart, M. *Science* **2006**, *312*, 257–261. (c) Murphy, J. M.; Lawrence, J. D.; Kawamura, K.; Incarvito, C.; Hartwig, J. F. *J. Am. Chem. Soc.* **2006**, *128*, 13684–13685. (d) Jia, C.; Kitamura, T.; Fujiwara, Y. *Acc. Chem. Res.* **2001**, *34*, 633–639. (e) Crabtree, R. H. *Dalton Trans.* **2001**, 2437–2450. (f) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. *Science* **2000**, *287*, 1995–1997. (g) Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. *Science* **1998**, *280*, 560–564. (h) Kao, L. C.; Hutson, A. C.; Sen, A. *J. Am. Chem. Soc.* **1991**, *113*, 700–701. (i) Constable, A. G.; McDonald, W. G.; Sawjins, L. C.; Shaw, B. L. *J. Chem. Soc., Chem. Commun.* **1978**, 1061–1062.

(4) Canty, A. J. In *Comprehensive Organometallic Chemistry II: A Review of the Literature 1982–1994*; Abel, E. W., Stone, F. G. A., *Review of the Literature 1982–1994*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: New York, 1995; pp 225–255..

(5) (a) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. *J. Am. Chem. Soc.* **2006**, *128*, 9048–9049. (b) Desai, L. V.; Malik, H. A.; Sanford, M. S. *Org. Lett.* **2006**, *8*, 1141–1144. (c) Desai, L. V.; Hull, K. L.; Sanford, M. S. *J. Am. Chem. Soc.* **2004**, *126*, 9542–9543.

report a $Pd(OAc)₂$ -mediated dehydrogenation of an alkyl group into a double bond or a π -allylic $\tilde{C}(\text{sp}^3)$ -Pd complex using
oxazolylamide as a directing group. A catalytic protocol has oxazolylamide as a directing group. A catalytic protocol has also been developed for the dehydrogenation of cyclopentylcarboxamides.

 β -Hydride elimination is one of the fundamental events in $C-H$ bond activation.¹⁴ Such a process can be harnessed to construct a useful synthetic target using a stoichiometric amount of a cationic Pt complex $(L_2PtMeOTf).$ ¹⁵ Transfer dehydrogenation using dihydrido iridium PCP pincer complexes (PCPIrH₂)^{3b,16} has been developed into an elegant synthetic process, whereby a hydrocarbon is dehydrogenated. Dehydrogenation of carbonyl compounds to α , β -unsaturated systems using organoselenium,¹⁷ iodine(V),¹⁸ and Pd(OAc)₂¹⁹ have found broad utility in

(7) (a) Chen, X.; Goodhue, C. E.; Yu, J.-Q. *J. Am. Chem. Soc.* **2006**, *128*, 12634–12635. (b) Hull, K. L.; Lanni, E. L.; Sanford, M. S. *J. Am. Chem. Soc.* **2006**, *128*, 14047–14049. (c) Hull, K. L.; Anani, W. Q.; Sanford, M. S. *J. Am. Chem. Soc.* **2006**, *128*, 7134–7135. (d) Kalyani, D.; Sanford, M. S. *Org. Lett.* **2005**, *7*, 4149–4152. (e) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. *J. Am. Chem. Soc.* **2005**, *127*, 13154–13155. (f) Shabashov, D.; Daugulis, O. *Org. Lett.* **2005**, *7*, 3657–3659. (g) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. *J. Am. Chem. Soc.* **2005**, *127*, 7330– 7331.

(8) (a) Yang, S.; Li, B.; Wan, X.; Shi, Z. *J. Am. Chem. Soc.* **2007**, *129*, 6066–6067. (b) Shabashov, D.; Daugulis, O. *J. Org. Chem.* **2007**, *72*, 7720– 7725. (c) Shabashov, D.; Daugulis, O. *Org. Lett.* **2006**, *8*, 4947–4949. (d) Zaitsev, V. G.; Daugulis, O. *J. Am. Chem. Soc.* **2005**, *127*, 4156–4157.

(9) Wang, D.-H.; Hao, X.-S.; Wu, D.-F.; Yu, J.-Q. *Org. Lett.* **2006**, *8*, 3387–3390.

(10) (a) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. *J. Am. Chem. Soc.* **2007**, *129*, 3510–3511. (b) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. *J. Am. Chem. Soc.* **2007**, *129*, 9879–9884. (c) Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. *J. Org. Chem.* **1998**, *63*, 5211–5215.

(11) For carboxyl-directed C-H activation with other metals, see: (a) Ueura, K.; Satoh, T.; Miura, M. *J. Org. Chem.* **2007**, *72*, 5362–5367. (b) Ueura, K.; Satoh, T.; Miura, M. *Org. Lett.* **2007**, *9*, 1407–1409. (c) Lee, J. M.; Chang, S. *Tetrahedron Lett.* **2006**, *47*, 1375. (d) Dangel, B. D.; Johnson, J. A.; Sames, D. *J. Am. Chem. Soc.* **2001**, *123*, 8149. (e) Kao, L.-C.; Sen, A. *J. Chem. Soc., Chem. Commun.* **1991**, 1242.

(12) Lazareva, A.; Daugulis, O. *Org. Lett.* **2006**, *8*, 5211–5213.

(13) Ryabov, A. D. *Synthesis* **1985**, 233–252.

(14) (a) Kuznetsov, V. F.; Abdur-Rashid, K.; Lough, A. J.; Gusev, D. G.

J. Am. Chem. Soc. **2006**, *128*, 14388–14396. (b) Arndtsen, B. A.; Bergman, R. G. *Science* **1995**, *270*, 1970–1973.

(15) Johnson, J. A.; Sames, D. *J. Am. Chem. Soc.* **2000**, *122*, 6321– 6322.

(16) (a) Gottker-Schnetmann, I.; White, P.; Brookhart, M. *J. Am. Chem. Soc.* **2004**, *126*, 1804–1811. (b) Liu, F.; Pak, E. B.; Singh, B.; Jensen, C. M.; Goldman, A. S. *J. Am. Chem. Soc.* **1999**, *121*, 4086–4087. (c) Gupta, M.; Hagen, C.; Kaska, W. C.; Cramer, R. E.; Jensen, C. M. *J. Am. Chem. Soc.* **1997**, *119*, 840–841.

^{*} To whom correspondence should be addressed. E-mail: yu200@ scripps.edu.
† The Scripps Research Institute.

^{(6) (}a) Giri, R.; Wasa, M.; Breazzano, S. P.; Yu, J.-Q. *Org. Lett.* **2006**, *8*, 5685–5688. (b) Chen, X.; Li, J. J.; Hao, X. S.; Goodhue, C. E.; Yu, J.-Q. *J. Am. Chem. Soc.* **2006**, *128*, 78–79. (c) Giri, R.; Chen, X.; Yu, J.-Q. *Angew. Chem., Int. Ed.* **2005**, *44*, 2112–2115. (d) Giri, R.; Liang, J.; Lei, J. G.; Li, J. J.; Wang, D. H.; Chen, X.; Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J. Q. *Angew. Chem., Int. Ed.* **2005**, *44*, 7420–7424. (e) Giri, R.; Chen, X.; Hao, X.-S.; Li, J.-J.; Liang, J.; Fan, Z.-P.; Yu, J.-Q. *Tetrahedron: Asymmetry* **2005**, *16*, 3502–3505.

Scheme 2. Various Auxiliaries for Carboxylic Acids

Scheme 3. Dehydrogenation via an Oxidant-Free Catalysis

synthesis. Direct dehydrogenation of inert alkyl groups²⁰ using Pd(II)/Pd(0) catalysis and cheap oxidants would be highly valuable in broadening the synthetic utility of the dehydrogenation reaction.

The different directing groups mentioned earlier have been widely used in a variety of Pd-catalyzed reactions such as oxidation,^{5c,6d} halogenation,^{6a,c} alkylation,^{7a} and arylation^{10a} of $sp³$ C-H bonds. We began to investigate if the C-H insertion intermediates in such reactions could undergo β -hydride elimination in the absence of organic electrophiles or nucleophiles (Scheme 1).

Using $Pd(OAc)_2$ as the reagent, we screened various auxiliaries (Scheme 2) for sp^3 C-H bond activation in carboxylic acids. Amide and ester substrates were prepared from 2,2 dimethylbutyric acid and the corresponding auxiliaries **¹**-**10**.

We found that both an amide and an oxazoline moiety in tandem directed the activation of the $sp³$ C-H bond at the ethyl group and generated a dehydrogenation product after subsequent β -hydride elimination. Thus, heating a stoichiometric mixture of Pd(OAc)₂ and the substrate **1a** in ethyl acetate at 120 °C afforded the dehydrogenated palladium complex **1c** in 66% yield (Scheme 3). This came as a surprise to us, since $C-H$ insertion at the α -methyl group via a five-membered cyclopalladation was at the α -methyl group via a five-membered cyclopalladation was the predominant reaction in our previous studies of similar substrates.^{6c,d} It appears that either the α -methylene or the β -methyl group was activated in this case. Furthermore, the previously reported analogous substrates in which an amide linkage was attached to a pyridine moiety did not follow the

Figure 1. Molecular structure of **1c**. Pertinent bond lengths (Å) and angles (deg): Pd1A-N1A, 1.980(3); Pd1A-N2A, 2.049(3); Pd1A-C15A, 2.155(4); Pd1A-C14A, 2.137(4); Pd1A-O1A, 2.019(3); N1A-Pd1A-N2A, 89.83(13); N1A-Pd1A-C14A, 82.07(16); N1A-Pd1A-C15A, 86.91(17); C14A-Pd1A-O1A, 91.30(16); C15A-Pd1A-O1A, 90.03(17); N2A-Pd1A-O1A, 94.88(13).

 β -hydride elimination pathway.^{7e} Other auxiliaries, such as nitroaniline (**7**), thiopyridyl (**8**) and hydroxypyridyl **(9** and **10**), were not effective for the dehydrogenation reaction.

The complex $1c$ was crystallized from CH_2Cl_2/h exane (1: 10) as a golden yellow, parallelepiped-shaped crystal, and its molecular structure was confirmed by X-ray crystallography (Figure 1). The amido palladacycle **1c** maintains a monomeric structure, with the intramolecular terminal alkene acting as the fourth ligand trans to the oxazoline to prevent it from forming a μ -acetato-bridged dimer.²¹ The palladium center adopts a slightly distorted square planar geometry with the following angles(indeg): $N1A-Pd1A-N2A=89.83(13)$, $N1A-Pd1A-C14A$ $= 82.07(16)$, N1A-Pd1A-C15A = 86.91(17), C14A-Pd1A-O1A $= 91.30(16)$,C15A-Pd1A-O1A= $90.03(17)$,andN2A-Pd1A-O1A $= 94.88(13)$. The distortion about the palladium center is imposed by the nonplanar disposition of the aryl and oxazoline rings, which forces the six-membered amido palladacycle to adopt a half-chair conformation. The N-Pd bond distance in the amido palladium complex **1c** falls in the expected range $(1.980(3)$ Å).^{7e} However, the Pd-O bond distance in the monomeric acetate complex **1c** is shorter (2.019(3) Å) by 0.039 Å than the Pd-O bond distance in the analogous μ -acetatobridged dimeric amido palladacycle $(2.058(16)$ Å).^{7e}

Palladium hydrides are known to be oxidized in reactions with molecular oxygen to palladium oxo intermediates.²² However, the dehydrogenation of the ethyl group in substrate 1a was still observed in 57% yield, as determined by ¹H NMR, when the reaction was carried out in a sealed NMR tube in ethyl acetate- d_8 under an oxygen-free atmosphere (glovebox). We believe that the acetic acid generated after the $C-H$ cleavage protonates the transient Pd hydride intermediate **1b** and the acetate complex $1c$ is formed with the evolution of H_2 (Scheme 3). It is also possible that the transient RCONPdH reductively eliminates the N-H bond while the $Pd(0)$ still remains three-

⁽¹⁷⁾ Sharpless, K. B.; Lauer, R. F.; Teranishi, A. Y. *J. Am. Chem. Soc.* **1973**, *95*, 6137–6139.

⁽¹⁸⁾ Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Sugita, K. *J. Am. Chem. Soc.* **2002**, *124*, 2212–2220.

^{(19) (}a) Yu, J.-Q.; Wu, H.-C.; Corey, E. J. *Org. Lett.* **2005**, *7*, 1415– 1417. (b) Igarashi, M.; Sugihara, Y.; Fuchikami, T. *Tetrahedron Lett.* **1999**, *40*, 711–714. (c) Shvo, Y.; Arisha, A. H. I. *J. Org. Chem.* **1998**, *63*, 5640– 5642. (d) Mukaiyama, T.; Oshima, M.; Nakatsuka, T. *Chem. Lett.* **1983**, 1207–1210. (e) Shimizu, I.; Tsuji, J. *J. Am. Chem. Soc.* **1982**, *104*, 5844– 5846. (f) Ito, Y.; Hirao, T; Saegusa, T *J. Org. Chem.* **1978**, *43*, 1011– 1013. (g) Theissen, R. J. *J. Org. Chem.* **1971**, *36*, 752–757.

⁽²⁰⁾ Baudoin, O.; Herrbach, A.; Guéritte, F. *Angew. Chem., Int. Ed.* **2003**, *42*, 5736–5740.

⁽²¹⁾ For converting a palladacycle dimer into a monomer using an external ligand, see: Izumi, T.; Watabe, H.; Kasahara, A. *Bull. Chem. Soc. Jpn.* **1981**, *54*, 1711–1714.

^{(22) (}a) Popp, B. V.; Stahl, S. S. *J. Am. Chem. Soc.* **2007**, *129*, 4410– 4422. (b) Denney, M. C.; Smythe, N. A.; Cetto, K. L.; Kemp, R. A.; Goldberg, K. I. *J. Am. Chem. Soc.* **2006**, *128*, 2508–2509. (c) Keith, J. M.; Nielsen, R. J.; Oxgaard, J.; Goddard, W. A., III *J. Am. Chem. Soc.* **2005**, *127*, 13172–13179.

Table 1. Pd(OAc)2-Mediated Dehydrogenation of 2,2-Dimethylbutyric Acid using Various Auxiliaries*^a*

entry	auxiliary yield $(\%)^b$		entry auxiliary yield $(\%)^b$
	66		
	35		40
	90 ^c		10 ^d

^{*a*} Conditions: substrate (0.1 mmol), Pd(OAc)₂ (1 equiv), ethyl acetate (1 mL), 120 °C, 30 min. *^b* Isolated yields. *^c* 100 °C. *^d* Determined by ¹ H NMR.

Scheme 4. Dehydrogenation of 2,2-Dimethylbutyric Acid using Auxiliary 1 with CH₂Cl₂ as an Additive

coordinated to the product through amide, oxazoline, and the alkene chelation. Such Pd(0)L*ⁿ* complexes are known to reversibly form Pd(II) hydride by the oxidative addition of $HOAc²³$ The HPd^{II}OAcL_n intermediate formed thereafter can further cleave the N-H bond with the evolution of H_2 , thereby generating the observed acetate complex **1c**.

Steric and electronic factors have a significant effect on the current dehydrogenation reaction. A poor yield was obtained when the oxazoline auxiliary was switched from *gem*-dimethyl (**1**) to *tert*-butyl (**2**), while complete removal of the steric bulkiness from the oxazoline auxiliary by replacing *gem*dimethyl (**1**) with hydrogens (**3**) not only dramatically increased the product yield from 66% to 90% but also allowed the reaction to occur at a lower temperature (100 °C) (Table 1, entry 3). Substitution of the aryl ring with an electron-donating group (**4**) showed little effect on the product yield (Table 1, entry 4). An electron-withdrawing group (**5**), however, decreased the product yield (Table 1, entry 5). Similarly, the use of the aminobenzoxazole auxiliary 6 , in which the oxazoline $C=N$ is conjugated with the aryl ring, drastically decreased the product yield to 10% (Table 1, entry 6).

Substrate **1a** produced the dehydrogenated palladium chloride complex 1d in the presence of CH_2Cl_2 in 63% yield (Scheme 4). We believe that the initially formed transient Pd hydride complex, RCONPdH (**1b**), readily abstracts a chloride from CH2Cl2 during the reaction. Since the acetate complex **1c** was not converted to its chloride derivative **1d** when it was heated with $CH₂Cl₂$ as an additive under similar reaction conditions, it seems unlikely that the anion exchange process occurred via the intermediacy of the acetate complex **1c**. However, no hydride intermediate was observed by ${}^{1}H$ NMR when the reaction was carried out in ethyl acetate- d_8 under an argon atmosphere.²⁴

The complex $1d$ was crystallized from CH_2Cl_2/h exane (1: 10) as a reddish yellow crystal, and its molecular structure was confirmed by X-ray crystallography (Figure 2). The complex **1d** is analogous to the complex **1c**. The amido N-Pd (1.9942(13) Å) and Pd-Cl $(2.3125(4)$ Å) bond distances²⁵ fall in the expected range.

Auxiliary **11** was effective for the dehydrogenation of ethyl groups at a milder temperature. Substrate **11a** was dehydroge-

Figure 2. Molecular structure of **1d**. Pertinent bond lengths (\hat{A}) and angles (deg) : Pd1-N1, 1.9942(13); Pd1-N2, 2.0731(13); and angles (deg): Pd1-N1, 1.9942(13); Pd1-N2, 2.0731(13); Pd1-C1, 2.1735(16); Pd1-C2, 2.1370(16); Pd1-Cl1, 2.3125(4); N1-Pd1-N2, 88.70(5); N1-Pd1-C1, 85.86(6); N1-Pd1-C2, 81.95(6);C1-Pd1-Cl1,88.04(5);C2-Pd1-Cl1,91.77(5),N2-Pd1-Cl1, 97.76(4). Disorder arising from two ring orientations affects atoms C12, C16, and C17 and the associated H atoms; only the major component (present at 57(2)% occupancy) is shown.

Scheme 5. Dehydrogenation of 2,2-Dimethylbutyric Acid using Auxiliary 11

Scheme 6. Dehydrogenation of 2,2-Dimethylvaleric Acid using Auxiliary 1

nated with $Pd(OAc)_2$ at 80 °C in CH_2Cl_2 or toluene, providing the acetate complex **11b** in 88% yield (Scheme 5). The complex 11b was characterized by ${}^{1}H$ and ${}^{13}C$ NMR. Interestingly, a similar auxiliary, **12**, was ineffective for the dehydrogenation reaction.

To investigate the possibility of activating a remote δ -C-H bond through this pathway, reaction of the substrate **1e**, derived from 2,2-dimethylvaleric acid, was carried out with a stoichiometric amount of $Pd(OAc)$. Under the standard reaction conditions, the Pd allyl complex **1g** was formed after double C-H activation in 50% yield (Scheme 6).²⁶ The complex 1g was also formed in 42% yield, as determined by 1 H NMR, when the reaction was carried out in a sealed NMR tube in ethyl acetate- d_8 under oxygen-free conditions (glovebox). We believe that the allylic hydrogen in the intermediate complex **1f** is further activated by the transient Pd hydride species.27 However, the (23) Amatore, C.; Jutand, A.; Meyer, G.; Carelli, I.; Chiarotto, I. *Eur.*

J. Inorg. Chem. **2000**, 1855–1859.

⁽²⁴⁾ The formation of the complex $1c$ in ethyl acetate- d_8 was confirmed by comparing the ¹H NMR spectrum of the reaction mixture to the ¹H NMR spectrum of pure 1c in ethyl acetate- d_8 .

⁽²⁵⁾ Constable, E. C.; Henney, R. P. G.; Leese, T. A.; Tocher, D. A. *J. Chem. Soc., Chem. Commun.* **1990**, 513–515.

⁽²⁶⁾ For allylic C-H bond activation, see: Delcamp, J. H.; White, M. C. *J. Am. Chem. Soc.* **2006**, *128*, 15076–15077.

⁽²⁷⁾ Schlangen, M.; Schwarz, H. *Angew. Chem., Int. Ed.* **2007**, *46*, 5614– 5617.

Figure 3. Molecular structure of **1g**. Pertinent bond lengths (Å) and angles (deg): Pd1-N1, 2.0593(10); Pd1-N2, 2.0381(9); Pd1-C1, 2.1618(14); Pd1-C2, 2.0887(12); Pd1-C3, 2.0538(12); C1-C2, 1.4158(18); C2-C3, 1.4094(18); N1-Pd1-N2, 92.99(4); N1-Pd1-C3, 84.42(4); C3-Pd1-C1, 69.78(5).

possibility that the hydride is exchanged with an acetate before the allylic C-H bond is activated can also not be ruled out at this moment on the basis of our experimental results with the substrate **1a**.

The complex 1g was crystallized from CH₂Cl₂/hexane (1: 10) as a reddish yellow crystal, and its molecular structure was confirmed by X-ray crystallography (Figure 3). The amido palladacycle **1g** maintains a monomeric *η*³ -allyl structure with Pd1-C1 (2.1618(14) Å), Pd1-C2 (2.0887(12) Å), Pd1-C3 $(2.0538(12)$ Å), C1-C2 (1.4158(18) Å), and C2-C3 (1.4094(18) Å) bond distances which fall in the expected range for η^3 -allyl complexes.²⁸ The amido N-Pd bond distance $(2.0593(10)$ Å) in the η^3 -allyl complex **1g** is longer by 0.0793 Å than the amido ^N-Pd bond distance in the amido palladacycle **1c**.

The dehydrogenation reaction can also be carried out catalytically with cyclopentylcarboxamides **1h** and **1j**. The substrate **1h** was dehydrogenated at the methylene group with 10 mol % $Pd(OAc)_2$ in DMSO in the presence of benzoquinone to afford the alkene **1i** in 30% isolated yield (Scheme 7, eq 1). Dehydrogenation of the carboxamide substrate $1j$ with an α -hydrogen proceeds much more quickly with a higher product yield (75%)

Scheme 7. Pd(OAc)₂-Catalyzed Dehydrogenation of Cyclo**pentylcarboxylic Acids using Auxiliary 1**

(Scheme 7, eq 2). Surprisingly, however, the catalytic version of the current dehydrogenation reaction proved difficult with the open-chain carboxamides **1a** and **1e** under various conditions. The reaction ceases to proceed catalytically under various oxidizing conditions, and the palladium complexes **1c** and **1g** were consistently observed in the crude reaction mixture.

In summary, we have established reaction conditions for the dehydrogenation of ethyl and propyl groups in carboxylic acid derivatives using $Pd(OAc)_2$ as the catalyst. An oxidant-free pathway for Pd(II) catalysis is proposed. A number of monomeric amido Pd complexes after dehydrogenation have been characterized by X-ray crystallography. Despite the limited substrate scope, the catalytic dehydrogenation protocol for cyclopentylcarboxamides could prove useful in synthesis.

Acknowledgment. We thank The Scripps Research Institute, Brandeis University, and the U.S. National Science Foundation (NSF Grant No. CHE-0615716) for financial support and the Camille and Henry Dreyfus Foundation for a New Faculty Award (J.-Q.Y.). We also thank the National Science Foundation (Grant No. CHE-0521047) (B.M.F.) for providing the X-ray diffractometer (complexes **1d** and **1g**) and Dr. Raj Chadha for X-ray crystallographic assistance (complex **1c**).

Supporting Information Available: Text and figures giving experimental procedures and characterization data for all new compounds and CIF files giving crystal data for **1c**,**d**,**g**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM8000444

⁽²⁸⁾ Albéniz, A. C.; Espinet, P.; Martín-Ruiz, B. *Dalton Trans.* **2007**, 3710–3714.