Single Diastereomer Half-Sandwich Salicyloxazoline Complexes of Titanium and Zirconium

Andrew L. Gott, Adam J. Clarke, Guy J. Clarkson, Ian J. Munslow, Andrew R. Wade, and Peter Scott*

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K.

Received March 4, 2008

A series of half-sandwich complexes $[Cp*MLX_2]$ (L = four optically pure κ^2 -salicyloxazolines, M = Ti, Zr; X = Cl, Me) have been prepared via salt elimination and protonolysis routes. X-ray crystallographic analyses demonstrate that the complexes contain stereogenic metal centers as a result of diastereoselective coordination of the N–O ligand. This chirality persists in solution; NMR spectroscopic investigations revealed that for most members of both the Ti and Zr series a single diastereomeric species is present at all accessible temperatures. Systems with incomplete diastereoselection are also accessible by notionally moving the *C*-stereogenic center on the oxazoline ring to a position where its chirality is less well expressed in the structure of the complex. In one such case (for M = Zr) a lower limit barrier to epimerization of 80 kJ mol⁻¹ is estimated at high temperature, while for an analogous Ti complex no exchange between epimers could be observed on the NMR chemical shift time scale. In contrast, unsubstituted cyclopentadienyl series CpTiLX₂ gives diastereomeric mixtures in most cases and undergoes thermally accessible exchange between epimers.

Introduction

Chiral *ansa*-metallocenes of the group 4 elements, such as $[(EBTHI)ZrCl_2]$ (I),¹ Chart 1, have found widespread application in the mediation of both stereoselective α -olefin polymerization² and enantioselective transformation of organic substrates.³ Nevertheless, the resolution⁴ or diastereoselective synthesis⁵ protocols needed to produce optically pure samples represent a barrier to widespread application in the latter area.⁶ Cyclopentadienyl ligands with chiral nonracemic substituents have been widely investigated, but apart from notable exceptions such as

* To whom correspondence should be addressed. E-mail: peter.scott@ warwick.ac.uk. Tel: (+44) 024 7652 3238. Fax: (+44) 024 7567 2710.

(1) (a) Schnutenhaus, H.; Brintzinger, H. H. Angew. Chem., Int. Ed. **1979**, 18, 777. (b) Wild, F. R. W. P.; Zsolnai, L.; Huttner, G.; Brintzinger, H. H. J. Organomet. Chem. **1982**, 232, 233. (c) Kaminsky, W.; Kulper, K.; Brintzinger, H. H.; Wild, F. R. W. P. Angew. Chem., Int. Ed. **1985**, 24, 507. (d) Roll, W.; Brintzinger, H. H.; Rieger, B.; Zolk, R. Angew. Chem., Int. Ed. **1990**, 29, 279.

(2) Brintzinger, H. H.; Fischer, D.; Mulhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. 1995, 34, 1143.

(4) Chin, B.; Buchwald, S. L. J. Org. Chem. 1996, 61, 5650.

(5) (a) Ringwald, M.; Sturmer, R.; Brintzinger, H. H. J. Am. Chem. Soc.

1999, *121*, 1524. (b) Schmid, K.; Reinmuth, A.; Rief, U.; Diebold, J.; Brintzinger, H. H. Organometallics **1997**, *16*, 1724.

(6) Hoveyda, A. H.; Morken, J. P. Chiral Titanocenes and Zirconocenes in Synthesis. In *Metallocenes: Synthesis, Reactivity and Applications*; Togni A., Halterman R. L., Eds.; Wiley-VCH: New York, 1998.

 II^7 this approach has met with limited success.⁸ We have taken an alternative approach: the use of multidentate chiral noncyclopentadienyl ligands to generate single diastereomer complexes directly by stereoselective synthesis. For example, we have reported a number of group 4 metal biaryl complexes, such as III,^{9–12} and some successes in enantioselective catalysis have followed.^{9,13} We have also been engaged with a further strategy in which more readily accessible chiral bidentate ligands A–B are used in diastereoselective syntheses of chiral-at-metal octahedral M(A–B)₂X₂ or half-sandwich CpM(A–B)X₂ (IV) complexes. We recently reported the synthesis of chiral aminooxazoline complexes such as V, but these were unstable with respect to a highly selective ring-opening rearrangement resulting in their configurational instability¹⁴ and susceptibility to Lewis acids.¹⁵ The related salicyloxazolines L (Scheme 1),

^{(3) (}a) Halterman, R. L. Chem. Rev. 1992, 92, 965. (b) Morken, J. P.;
Didiuk, M. T.; Hoveyda, A. H. J. Am. Chem. Soc. 1993, 115, 6997. (c)
Morken, J. P.; Didiuk, M. T.; Visser, M. S.; Hoveyda, A. H. J. Am. Chem. Soc. 1994, 116, 3123. (d) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 8952. (e) Didiuk, M. T.; Johannes, C. W.; Morken, J. P.;
Hoveyda, A. H. J. Am. Chem. Soc. 1995, 117, 7097. (f) Verdaguer, X.;
Lange, U. E. W.; Reding, M. T.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 35, 1263. (h) Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 35, 1263. (h) Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 61684. (i) Johannes, C. W.; Visser, M. S.; Weatherhead, G. S.;
Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 8340.

^{(7) (}a) Bell, L.; Brookings, D. C.; Dawson, G. J.; Whitby, R. J.; Jones, R. V. H.; Standen, M. C. H. *Tetrahedron* **1998**, *54*, 14617. (b) Bell, L.; Whitby, R. J.; Jones, R. V. H.; Standen, M. C. H. *Tetrahedron Lett.* **1996**, *37*, 7139.

⁽⁸⁾ Lanthanide complexes related to **II** were the first enantioselective catalysts for cyclohydroamination of aminoalkenes. See: Hong, S.; Marks, T. J. *Acc. Chem. Res.* **2004**, *37*, 673, and references therein.

readily synthesized from amino alcohols and salicylic acids,^{16,17} are more stable. We have shown that group 4 complexes of the general type [L_2MX_2] are very highly active catalysts for ethylene polymerization.¹⁸ Complexes [Cp*MLX₂] **VI** bearing achiral ligands ($\mathbf{R} = \mathbf{R}'$) provide very well defined polymerization catalysts.¹⁹ In this contribution we describe synthetic routes, structural studies, and diastereoselection in complexes **VI** bearing optically pure salicyloxazolinates, our objective being to develop early transition metal analogues of the extensively studied (and configurationally stable) later metal complexes.²⁰ Applications of complexes of type **VI** in enantioselective catalysis are beginning to emerge.²¹

(10) Knight, P. D.; Clarkson, G.; Hammond, M. L.; Kimberley, B. S.; Scott, P. J. Organomet. Chem. 2005, 690, 5125.

(11) (a) Westmoreland, I.; Munslow, I. J.; Clarke, A. J.; Clarkson, G.;
Scott, P. Organometallics 2004, 23, 5066. (b) Westmoreland, I.; Munslow,
I. J.; O'Shaughnessy, P. N.; Scott, P. Organometallics 2003, 22, 2972. (c)
Knight, P. D.; O'Shaughnessy, P. N.; Munslow, I. J.; Kimberley, B. S.;
Scott, P. J. Organomet. Chem. 2003, 683, 103. (d) O'Shaughnessy, P. N.;
Gillespie, K. M.; Morton, C.; Westmoreland, I.; Scott, P. Organometallics
2002, 21, 4496. (e) Knight, P. D.; Clarke, A. J.; Kimberley, B. S.; Jackson,
R. A.; Scott, P. Chem. Commun. 2002, 352. (f) Woodman, P. R.; Alcock,
N. W.; Munslow, I. J.; Sanders, C. J.; Scott, P. J. Chem. Soc., Dalton Trans.
2000, 3340. (g) Woodman, P. R.; Munslow, I. J.; Hitchcock, P. B.; Scott,
P. J. Chem. Soc., Dalton Trans. 1999, 4069. (h) Woodman, P.; Hitchcock,
P. B.; Scott, P. Chem. Commun. 1996, 2735.

(12) For complexes reported by other groups, see: (a) Wood, M. C.;
Leitch, D. C.; Yeung, C. S.; Kozak, J. A.; Schafer, L. L. Angew. Chem., Int. Ed. 2007, 46, 354. (b) Tonzetich, Z. J.; Schrock, R. R. Polyhedron
2006, 25, 469. (c) De Rosa, M.; Lamberti, M.; Pellecchia, C.; Scettri, A.;
Villano, R.; Soriente, A. Tetrahedron Lett. 2006, 47, 7233. (d) Tonzetich,
Z. J.; Schrock, R. R.; Hock, A. S.; Muller, P. Organometallics 2005, 24, 3335. (e) Soriente, A.; De Rosa, M.; Lamberti, M.; Tedesco, C.; Scettri,
A.; Pellecchia, C. J. Mol. Catal. A: Chem. 2005, 235, 253. (f) Kettunen,
M.; Vedder, C.; Schaper, F.; Leskela, M.; Mutikainen, I.; Brintzinger, H. H.
Organometallics 2003, 345, 81. (h) Quirmbach, M.; Kless, A.; Holz, J.; Tararov,
V.; Borner, A. Tetrahedron: Asymmetry 1999, 10, 1803. (i) Cloke, F. G. N.;
Geldbach, T. J.; Hitchcock, P. B.; Love, J. B. J. Organomet. Chem. 1996, 506, 343. (j) Terada, M.; Motoyama, Y.; Mikami, K. Tetrahedron Lett.
1994, 35, 6693.

(13) (a) O'Shaughnessy, P. N.; Gillespie, K. M.; Knight, P. D.; Munslow,
I. J.; Scott, P. Dalton Trans. 2004, 2251. (b) O'Shaughnessy, P. N.; Scott,
P. Tetrahedron: Asymmetry 2003, 14, 1979. (c) O'Shaughnessy, P. N.;
Knight, P. D.; Morton, C.; Gillespie, K. M.; Scott, P. Chem. Commun. 2003, 1770. (d) Gillespie, K. M.; Sanders, C. J.; O'Shaughnessy, P.; Westmoreland, I.; Thickitt, C. P.; Scott, P. J. Org. Chem. 2002, 67, 3450. (e) Sanders,
C. J.; Gillespie, K. M.; Scott, P. Tetrahedron: Asymmetry 2001, 12, 1055.
(f) Gillespie, K. M.; Crust, E. J.; Deeth, R. J.; Scott, P. Chem. Commun. 2007, 785. (g) Sanders, C. J.; Gillespie, K. M.; Bell, D.; Scott, P. J. Am. Chem. Soc. 2000, 122, 7132. (h) Munslow, I. J.; Gillespie, K. M.; Deeth,
R. J.; Scott, P. Chem. Commun. 2001, 1638.

(14) Koterwas, L. A.; Fettinger, J. C.; Sita, L. R. Organometallics 1999, 18, 4183.

(15) (a) Gott, A. L.; Clarkson, G. J.; Deeth, R. J.; Hammond, M. L.;Morton, C.; Scott, P. *Dalton Trans.*, http://dx.doi.org/10.1039/ b803831g. (b) Gott, A. L.; Coles, S. R.; Clarke, A. J.; Clarkson, G. J.; Scott, P. *Organometallics* **2007**, *26*, 136. (c) Ward, B. D.; Risler, H.; Weitershaus, K.; Bellemin-Laponnaz, S.; Wadepohl, H.; Gade, L. H. *Inorg. Chem.* **2006**, *45*, 7777.

(16) Westmoreland, I.; Munslow, I. J.; Clarke, A. J.; Clarkson, G.; Deeth, R. J.; Scott, P. *J. Organomet. Chem.* **2006**, *691*, 2228.

(17) (a) Vorbruggen, H.; Krolikiewicz, K. *Tetrahedron* 1993, 49, 9353.
(b) Vorbruggen, H.; Krolikiewicz, K. *Tetrahedron Lett.* 1981, 22, 4471.

(18) Bott, R. K. J.; Hammond, M.; Horton, P. N.; Lancaster, S. J.; Bochmann, M.; Scott, P. Dalton Trans. 2005, 3611.

(19) Coles, S. R.; Clarkson, G. J.; Gott, A. L.; Munslow, I. J.; Spitzmesser, S. K.; Scott, P. Organometallics **2006**, 25, 6019.

(20) (a) Davenport, A. J.; Davies, D. L.; Fawcett, J.; Russell, D. R. J. Organomet. Chem. 2006, 691, 2221. (b) Faller, J. W.; Parr, J.; Lavoie, A. R. New J. Chem. 2003, 27, 899. (c) Ganter, C. Chem. Soc. Rev. 2003, 32, 130. (d) Brunner, H. Eur. J. Inorg. Chem. 2001, 905.

(21) Gott,A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P. Chem. Commun. 2008, 1422–1424.

Scheme 1. Synthesis of Proligands and Zr Derivatives

Results and Discussion

Cp*Zr Complex Synthesis. The new proligands (S)-HL², (S)-HL⁶, and the previously reported HL¹ and (S)-HL³⁻⁵ were prepared as described in the literature, or with slight modifications, from the appropriate salicylic acids and amino alcohols (Scheme 1). Treatment of the proligands with excess NaH in THF yielded the sodium salts $NaL^{n}(THF)_{x}$ in essentially quantitative yields; however it was more convenient to form the sodium salts in situ as ligand transfer agents before filtration directly onto Cp*ZrCl₃. This reaction and subsequent workup furnished the complexes $[Cp*ZrL^nCl_2]$ **1–5** (n = 2-6) as airand water-sensitive, off-white solids in high yield (we have previously reported the Zr complex of L¹).¹⁹ The syntheses were generally very clean, but further purification could be accomplished where necessary by recrystallization from diethyl ether or toluene or sublimation under high vacuum (typically ca. 250 °C and 10^{-6} mmHg).

Samples of 1–4 showed a single species in the ¹H and ¹³C{¹H} NMR spectra; no minor isomers were observed. The spectrum of 4 is typical (Figure 1a), with three multiplets corresponding to the oxazoline ring in the region 4–5.5 ppm. The spectra were essentially invariant with temperature. The oxazoline region of the room-temperature ¹H NMR spectrum of complex 5, shown in Figure 1b, is very different. Here, two epimers in the ratio 1.25:1 are apparent (Scheme 2). A sample of 5 in toluene-*d*₈ began to show line broadening at 348 K, and by 368 K (the highest accessible temperature) signals for the two epimers had almost collapsed into a single series. From these data we estimate a lower-limiting value of ΔH^{\ddagger} ca. 80 kJ mol⁻¹ for the energy barrier for epimerization. Earlier studies of racemic systems give barriers to racemization of a similar order.¹⁹

The dimethyl complexes $[Cp*ZrL^nMe_2]$ **6**–**8** (n = 3-5) were prepared by reaction of (*S*)-HL^{*n*} and Cp*ZrMe₃, the latter

^{(9) (}a) Gott, A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P. Organometallics **2007**, *26*, 1729. (b) Knight, P. D.; Munslow, I.; O'Shaughnessy, P. N.; Scott, P. Chem. Commun. **2004**, 894.

Figure 1. ¹H NMR spectra of the oxazoline regions of (a) single diastereomer **4** and (b) 1.25:1 diastereomeric mixture **5**. Residual protio resonance of deuterated dichloromethane solvent is shown (*).

Scheme 3. Synthesis of Cp*Ti Compounds

prepared *in situ* from Cp*ZrCl₃²² or by methylation of the dichloride complexes 2-4 with 2 equiv of methyllithium. These complexes were isolated in lower yield than the chloride complexes due to their much higher solubility, but NMR spectra indicated complete conversion in all cases.²³ The spectroscopic data of **6** and **8** are broadly similar to their dichloride analogues, with the exception of two resonances indicative of inequivalent methyl groups at low chemical shift, for example at -0.21 and +0.55 ppm for **8**. In contrast, **7** is contaminated with a small

Figure 2. Molecular structure of 2. Solvent of crystallization is omitted for clarity. Displacement ellipsoids are at the 50% probability level.

Figure 3. Molecular structure of 7. Displacement ellipsoids are at the 50% probability level.

amount of a second compound, the composition varying according to the method of preparation described above (5-10%). This implies that the complexes are not diastereomers in equilibrium, and indeed variable-temperature NMR experiments confirmed that there was no coalescence/exchange behavior; we tentatively suggest that the minor species present is a monomethyl complex caused by C–H activation/deprotonation of the *tert*-butyl oxazoline substituent by methyl lithium during the preparation of **7**. Such chemistry is not uncommon.^{21,24}

Structural Characterization of Cp*Zr Complexes. Single crystals of **2** and **7** suitable for X-ray diffraction were obtained from saturated toluene and pentane solutions respectively at -30 °C. The molecular structures can be seen in Figures 2 and 3. Data collection and refinement parameters can be found in Table 1, with relevant bond lengths and angles in Tables 2 and 3. The structures are both best described as adopting a four-legged "piano stool" coordination geometry and are broadly similar to those of previously reported complexes.¹⁹ The metal–oxygen bond length Zr(1)-O(101) of **2** [2.012(3) Å] is somewhat

⁽²²⁾ Keaton, R. J.; Jayaratne, K. C.; Henningsen, D. A.; Koterwas, L. A.; Sita, L. R. J. Am. Chem. Soc. 2001, 123, 6197.

⁽²³⁾ The quantitative reactions between $Cp*ZrMe_3$ and HL^n provide a convenient one-step *in situ* synthesis.

⁽²⁴⁾ Axenov, K. V.; Klinga, M.; Lehtonen, O.; Koskela, H. T.; Leskela, M.; Repo, T. *Organometallics* **2007**, *26*, 1444.

Salicyloxazoline Complexes of Titanium and Zirconium

 Table 1. Crystallographic Data and Collection/Refinement

 Parameters for 2 and 7

	$[Cp*ZrL^{3}Cl_{2}] \cdot C_{7}H_{8}, 2$	[Cp*ZrL ⁴ Me ₂], 7
formula	C37H53NO2Cl2	C33H53NO2Zr
fw	705.92	586.98
cryst morphology	colorless block	colorless block
cryst dimens/mm	$0.60 \times 0.18 \times 0.14$	$0.21 \times 0.18 \times 0.15$
cryst syst	orthorhombic	monoclinic
space group	$P2_{1}2_{1}2_{1}$	$P2_1$
a/Å	9.861(3)	9.9231(6)
b/Å	16.787(5)	17.3758(11)
c/Å	22.046(6)	9.9311(6)
α/deg	90	90
β/deg	90	105.1710(10)
δ/deg	90	90
V/Å ³	3649.3(18)	1652.66(18)
Ζ	4	2
$d(\text{calc})/\text{mg} \cdot \text{m}^3$	1.285	1.180
μ (Mo K α)/mm ⁻¹	0.479	0.359
T/K	180(2)	180(2)
F(000)	1488	628
no. of reflns measd	23 794	10 368
no. of unique reflns	9072 [$R(int) = 0.0608$]	7138 [$R(int) = 0.0453$]
$R_1 \left[I > 2\sigma(I) \right]$	0.0557	0.0502
wR_2	0.1425	0.0820
no. of data/restraints/ params	9072/24/390	7138/1/350
goodness of fit on F^2	1.047	0.916
largest peak and hole/e • Å ⁻³	1.221 and -0.848	0.580 and -0.373

shorter than the corresponding distance in 7 [2.072(3) Å] on the basis of electrostatics; chloride is more electronegative than methyl. The Zr–O–C bond angles in the phenoxide groups $[138.9(3)^{\circ}$ in **2**, $136.5(2)^{\circ}$ in **7**] are consistent with sp² hybridization at oxygen, and thus the alkoxide is formally acting as a three-electron donor.²⁵ The Zr(1)-N(112) bond length for 2 of 2.307(5) Å is shorter than those observed for analogous imino-phenolate systems^{10,26} at ca. 2.35 Å and may be due to a stronger interaction due to the presence of the conjugated O atom in the oxazoline ring. An unfavorable steric compression between the isopropyl oxazoline substituent and Cl(2) in 2 causes a fold (the angle between the mean least-squares planes defined by the oxazoline ring and O(101)-Zr(1)-N(112)) of 29.93°, as compared to 8.64° for [Cp*ZrL¹Cl₂] (where the oxazoline is unsubstituted).¹⁹ In 7, the distortion is even more marked (42.23°) due to the more sterically demanding tert-butyl and methyl groups. Both oxazoline rings are distorted for the same reason; the fold angle in the oxazoline ring [the angle between the least-squares planes defined by N(112)-C(108)-O(109)-C(110) and N(112)-C(111)-C(110) in 2] is 21.99° for 2 and 25.85° for 7. The centroid of the cyclopentadienyl ring of 2 is held somewhat more closely to the metal than in 7 (again as a result of the greater electronegativity of Cl than Me), at 2.209 Å for the former and 2.240 Å for the latter.

Synthesis of Cp*Ti Complexes. In comparison with their zirconium analogues, the syntheses of the titanium complexes of L^n (n = 1-5) required more forcing conditions. Attempted salt metathesis reactions of NaLⁿ with Cp*TiCl₃ were entirely unsuccessful, presumably due to the greater steric protection of the smaller Ti center by the Cp* moiety. However, while proligands HLⁿ did not react with Cp*TiMe₃ at room temperature, NMR tube scale experiments showed that complete

conversion was possible in some instances at higher temperatures. In this manner, $[Cp^*TiL^1Me_2]$ (9), $[Cp^*TiL^3Me_2]$ (10), and $[Cp*TiL^5Me_2]$ (11) were synthesized as air- and thermally sensitive orange solids in low to moderate yields, which darkened on exposure to light (Scheme 2). It was not possible to access the complex of (S)-HL⁴ by this method, presumably due to the greater steric demand of the tert-butyl substituent. The chirality of the system is once again demonstrated in the ¹H NMR spectra of the complexes at ambient temperature. For example, in 9 all four oxazoline protons are inequivalent, resulting in a pair of mutually coupled multiplets at 2.92 and 3.57 ppm and two overlapping multiplets centered at 3.37 ppm. Two inequivalent methyl groups are also observed at 0.52 and 1.11 ppm. In the complexes of the chiral nonracemic ligands L^3 and L^5 , three separate resonances are observed for the oxazoline protons, and only one diastereomer is present at accessible temperatures.

Given the lack of success of direct syntheses of the dichloride complexes, we chose to investigate the conversion of the methyls with appropriate sources of chloride. To this end, **9** was treated with 2 equiv of anhydrous hydrogen chloride, resulting in methane elimination and rapid, clean conversion to $[Cp*TiL^1Cl_2]$ (**12**) as a red-orange solid. However, similar reactions with **10** and **11** yielded intractable mixtures. Treatment of **10** and **11** with weaker Brønsted acids²⁷ such as Et₃N.HCl was also unsuccessful, as was treatment with chlorinated solvents²⁸ and trimethylchlorosilane.²⁹

An alternative synthetic protocol was developed, utilizing the known compound Cp*TiCl₂Me.³⁰ Reaction with (*S*)-HL³ in toluene at 75 °C overnight resulted in the elimination of methane and clean formation of red-orange [Cp*TiL³Cl₂] (**13**) upon cooling to ambient temperature; [Cp*TiL⁵Cl₂] (**14**) and [Cp*TiL⁶Cl₂] (**15**) were formed similarly.³¹ These complexes were much less soluble than the methylated analogues and could be recrystallized from pentane at low temperature. The complexes of the chiral nonracemic L³ and L⁵, i.e., **13** and **14** showed very high diastereopurity, with no minor resonances present in the oxazoline region at all accessible temperatures. In contrast, and as expected, **15** was formed as a diastereomeric mixture (1.5:1). In this case however, no evidence of epimerization of the stereogenic Ti center could be seen, save a slight broadening of some peaks at 368 K (toluene-*d*₈).

CpM Complexes. To gauge the effect of the pentamethycyclopentadienyl group on the diastereoselection of the complexes described above, we investigated nonmethylated Cp analogues. Despite strenuous efforts, we were unable to access CpZr complexes. However, reaction of the *in situ* generated CpTiMe₃³² with (*S*)-HL³ at low temperature, followed by a further reaction period at room temperature, yielded the desired complex [CpTiL³Me₂] (**16**) as an orange solid after recrystallization from pentane. In contrast to the reactions with Cp*TiCl₃, reaction of NaL⁵(THF)_x with the less sterically protected

⁽²⁵⁾ Bei, X. H.; Swenson, D. C.; Jordan, R. F. Organometallics 1997, 16, 3282.

⁽²⁶⁾ Matsui, S.; Mitani, M.; Saito, J.; Tohi, Y.; Makio, H.; Matsukawa, N.; Takagi, Y.; Tsuru, K.; Nitabaru, M.; Nakano, T.; Tanaka, H.; Kashiwa, N.; Fujita, T. J. Am. Chem. Soc. **2001**, *123*, 6847.

⁽²⁷⁾ Bochmann, M.; Wilson, L. M.; Hursthouse, M. B.; Short, R. L. Organometallics 1987, 6, 2556.

⁽²⁸⁾ Cabrera, L.; Hollink, E.; Stewart, J. C.; Wei, P. R.; Stephan, D. W. *Organometallics* **2005**, *24*, 1091.

⁽²⁹⁾ Fox, S.; Dunne, J. P.; Tacke, M.; Gallagher, J. F. Inorg. Chim. Acta 2004, 357, 225.

⁽³⁰⁾ Martin, A.; Mena, M.; Pellinghelli, M. A.; Royo, P.; Serrano, R.; Tiripicchio, A. J. Chem. Soc., Dalton Trans. **1993**, 2117.

⁽³¹⁾ Complex 12 can be synthesized in the same manner.

⁽³²⁾ Giannini, U.; Cesca, S. *Tetrahedron Lett.* **1960**, *1*, 19. Prepared by an analogous method to Sita et al.: Keaton, R. J.; Jayaratne, K. C.; Henningsen, D. A.; Koterwas, L. A.; Sita, L. R. *J. Am. Chem. Soc.* **2001**, *123*, 6197.

Table 2. Selected Bond L	Lengths (Å) a	and Angles ((deg) for 2
--------------------------	---------------	--------------	-------------

Zr(1)-Cl(1)	2.4613(13)	7
Zr(1)-O(101)	2.012(3)	Z
N(112)-C(108)	1.298(6)	(
N(112)-C(111)	1.493(5)	(
O(109)-C(110)	1.453(5)	(
Zr(1) - C(201)	2.530(4)	Z
Zr(1) - C(203)	2.509(4)	2
Zr(1) - C(205)	2.523(4)	2
Cl(1)-Zr(1)-Cl(2)	88.04(4)	0
Cl(2) - Zr(1) - N(112)	84.33(10)	Z
C(108) - N(112) - Zr(1)	123.1(3)	1
C(108)-O(109)-C(110)	106.4(3)	(
C(110)-C(111)-N(112)	101.2(3)	

Table 3. Selected Bond Lengths (Å) and Angles (deg) for 7

Zr(1) - N(1)	2.371(3)	Zr(1) - O(2)	2.072(3)
Zr(1) - C(32)	2.273(4)	Zr(1) - C(33)	2.294(5)
O(2)-C(9)	1.323(4)	N(1) - C(3)	1.302(6)
C(3) - O(1)	1.356(4)	O(1) - C(2)	1.446(5)
C(2) - C(1)	1.532(6)	C(1) - N(1)	1.513(5)
Zr(1) - C(22)	2.532(4)	Zr(1) - C(23)	2.557(4)
Zr(1) - C(24)	2.570(4)	Zr(1) - C(25)	2.540(4)
Zr(1) - C(26)	2.523(5)	Zr(1)-Cp*(centroid)	2.240
C(32) - Zr(1) - C(33)	83.08(17)	C(33) - Zr(1) - N(1)	86.90(18)
C(32) - Zr(1) - O(2)	137.17(15)	O(2) - Zr(1) - N(1)	74.38(11)
Zr(1) = O(2) = C(9)	136.5(2)	N(1) - C(3) - O(1)	115.9(4)
C(3) = O(1) = C(2)	106.6(3)	C(2) - C(1) - N(1)	101.2(4)
C(1) - N(1) - C(3)	105.8(3)		

Chart 2. Possible Diastereoisomers of 16

CpTiCl₃ readily yielded an orange crystalline solid, whose analytical data were consistent with the formulation [CpTiL⁵Cl₂] (17).

Diastereoselectvity in these CpTi complexes is rather poorer than in the Cp* systems. At 368 K, the spectrum of a toluene d_8 solution of 16 gave a single set of sharp resonances, but at room temperature the spectrum was extremely broad, and by 213 K a number of complexes were apparent: two major isomers (ca. 35% and 45%) and three minor ones in roughly equal proportions. Some suggested isomeric species are shown in Chart 2. The N-bonded oxazoline complexes in "down" VII and "up" VIII orientations are, on the basis of molecular structure determinations, probably the major isomers observed. We have very recently observed an O-bonded mode like IX and X in a related system.33 A six-coordinate three-legged piano stool complex XI is also very feasible in this system. Similarly, the ¹H NMR spectrum of **17** at 368 K is sharp and exhibits one set of ligand resonances. At room temperature, a major isomer (90%) and perhaps four minor isomers could be observed.

Longens (ii) und ringres (deg) for 2		
Zr(1)-	Cl(2)	2.4441(13)
Zr(1)-	N(112)	2.307(4)
C(108)	-O(109)	1.346(5)
C(111)	-C(110)	1.536(6)
O(101)	-C(102)	1.335(5)
Zr(1)-	C(202)	2.530(5)
Zr(1)-	C(204)	2.504(4)
Zr(1)-	Cp*(centroid)	2.209
Cl(1)-	Zr(1) = O(101)	84.45(9)
Zr(1)-	O(101) - C(102)	138.9(3)
N(112)	-C(108)-O(109)	115.9(4)
O(109)	-C(110)-C(111)	103.6(3)

Conclusions

A convenient route of entry is provided into a new class of chiral and configurationally well-defined group 4 transition metal complexes, Cp*ML"X₂. The modular nature of the ligand synthesis allows the further modification of electronic and to some extent steric properties of the system. With suitable oxazoline substitution (i.e., one alkyl or aryl group at the stereogenic center adjacent to the nitrogen atom) the thermodynamic diastereoselection is essentially perfect and the system also has an unusually high barrier to N-decoordination (as evidenced by exchange behavior, or lack of it, in deliberately poorly diastereoselective examples for both metals). With the unsubstituted Cp ring complexes of titanium, minor isomers are observed and epimerization processes were more readily accessible.

Given the promising performance of this ligand class in olefin polymerization^{18,19} and our recent discovery that the amido compounds are selective and unusually fast catalysts for cyclohydroamination of aminoalkenes,²¹ we are encouraged to investigate other potential catalytic applications.³

Experimental Details

General Considerations. All manipulations were conducted using standard inert-atmosphere techniques using a dual-manifold argon/vacuum Schlenk line or a glovebox (MBraun) operating at <1 ppm O₂/H₂O. All glassware and cannulae were stored in an oven at > 373 K. The following solvents were predried over sodium wire, refluxed for 3 days under dinitrogen with an appropriate drying agent, and distilled: pentane and diethyl ether from Na/K alloy; heptane and THF from potassium; toluene from sodium. Dichloromethane and acetonitrile were similarly distilled from CaH₂. Solvents were stored in glass ampules and were rigorously degassed before use. Benzene-*d*₆ and toluene-*d*₈ were freeze—thaw degassed and then refluxed *in vacuo* over potassium for 3 days before vacuum transfer. Dichloromethane-*d*₂ and pyridine-*d*₅ were dried similarly from CaH₂. Chloroform-*d* was stored over 4 Å molecular sieves.

Cp*ZrCl₃,³⁴ Cp*ZrMe₃,³⁴ Cp*TiCl₃,³⁵ Cp*TiMe₃,³⁶ Cp*TiCl₂Me,³⁰ CpTiCl₃,³⁵ and salicyloxazoline proligands HL^{*n*} (n = 1, 3-5)^{16–18} were prepared according to published procedures. Anhydrous HCl (as a 1 M solution in diethyl ether) and methyllithium (as a 1.6 M solution in diethyl ether) were purchased from Acros Organics and used as received. (*S*)-(+)-2-Amino-1-propanol and (*S*)-(+)-2-amino-1-phe-nylethanol were purchased from Aldrich and used as received. 3,5-Di-*tert*-butylsalicylic acid hydrate was purchased from TCI Europe and dried overnight (as a diethyl ether solution) over Na₂SO₄ prior to use. Triphenylphosphine (Aldrich) was recrystallized from hot hexane. Triethylamine and carbon tetrachloride were distilled from CaH₂ under

(33) Gott, A. L.; Clarkson, G. J.; Scott, P., unpublished results.

⁽³⁴⁾ Wolczanski, P. T.; Bercaw, J. E. Organometallics 1982, 1, 793.
(35) Mach, K.; Varga, V.; Antropiusova, H.; Polacek, J. J. Organomet. Chem. 1987, 333, 205.

⁽³⁶⁾ Mena, M.; Royo, P.; Serrano, R.; Pellinghelli, M. A.; Tiripicchio, A. Organometallics **1989**, *8*, 476.

nitrogen and stored in graduated glass ampules. Sodium hydride (Aldrich, 60% dispersion in mineral oil) was repeatedly washed on a frit with dry diethyl ether under an inert atmosphere, before drying and storage in a glovebox. Flash chromatography was performed with a FlashMaster Personal Chromatography system and a series of prepacked, disposable columns (Anachem). Thin-layer chromatography was performed using Merck 0.25 mm silica layer foil-backed plates.

NMR spectra were recorded on Bruker DPX300 and DPX400 spectrometers. ¹H and ¹³C{¹H} NMR spectra were referenced internally using residual protio-solvent resonances relative to tetramethylsilane ($\delta = 0$ ppm). Routine NMR assignments were confirmed by ¹H-¹H (COSY) and ¹³C-¹H (HMQC) correlation experiments where necessary. Elemental analyses were obtained by Warwick Analytical Services, Coventry, UK, and MEDAC Ltd., Surrey, UK. Some of the carbon analyses of the metal methyl compounds are low, despite repeated crystallization attempts and the use of combustion aids. We attribute this to metal carbide formation, as has been reported in the literature.³⁷ Mass spectra were obtained using a VG Autospec mass spectrometer by the Department of Chemistry Mass Spectrometry Service, University of Warwick.

Synthesis of (S)-HL². To a Schlenk tube containing 3,5-di-tertbutylsalicylic acid (2.50 g, 10.0 mmol), (S)-(+)-2-amino-1-propanol (0.731 g, 10.0 mmol), and triphenylphosphine (7.87 g, 30.0 mmol) was added acetonitrile (50 mL). To the resulting white suspension was added triethylamine (6.0 mL, 40.0 mmol) with stirring, and a clear colorless solution was obtained. Carbon tetrachloride (9.9 mL, 100.0 mmol) was added dropwise to the reaction mixture over 4 h, via syringe pump. During the course of the addition of the CCl₄, a precipitate formed and the reaction mixture changed color to dark red. The reaction was stirred for a further 48 h, resulting in a dark red suspension. The solution was then filtered, and the colorless residue was washed with diethyl ether (2 \times 30 mL). The filtrate and washings were combined, the resulting precipitate was removed by filtration, and the process was repeated until no more solids precipitated. The filtrate was evaporated under reduced pressure to leave a sticky, dark red-brown residue, which was extracted with hexane (200 mL) overnight. The solvent was removed in vacuo to give a viscous, pale yellow residue. The product was purified via flash chromatography on silica using hexane/ethyl acetate (50:1) as the mobile phase. Collection of product-containing fractions and drying in vacuo gave the product as a yellow oil. Dissolution in pentane and drying in vacuo yielded the title compound as an extremely viscous yellow gum which retained solvent. Yield = 2.08 g (7.2 mmol, 72%). ¹H NMR (400 MHz, CDCl₃, 298 K): δ 1.30 ppm (s, 9H, CMe₃), 1.36 (d, 3H, CH₃ of oxazoline, ${}^{3}J_{HH} = 7$ Hz), 1.44 (s, 9H, CMe₃), 3.93 (t, 1H, OCH₂ oxazoline, ${}^{2}J_{HH} = 7$ Hz), 4.41-4.51 (m, 2H, OCH₂ and NCHMe oxazoline, overlapping), 7.43 (d, 1H, Ar C-H, ${}^{4}J_{HH} = 3$ Hz), 7.53 (d, 1H, Ar C-H, ${}^{4}J_{\rm HH} = 3$ Hz), 12.59 (s, br, 1H, OH). ${}^{13}C{}^{1}H$ NMR (100.6 MHz, CDCl₃, 298 K): δ 21.5 ppm (*Me* of oxazoline), 29.4, 31.5 (both CMe₃), 34.2, 35.1 (both CMe₃), 60.9 (NCHMe oxazoline), 73.0 (OCH₂ oxazoline), 109.8 (Ar C_a), 122.1, 127.8 (both Ar C-H), 136.4, 140.0, 156.8 (all Ar C_a), 165.8 (oxazoline C_a). Anal. Calcd for C₁₈H₂₇NO₂ • (C₅H₁₂)_{0.5}: C, 75.65; H, 10.22; N, 4.30. Found: C, 75.74; H, 9.75 N, 3.95. MS (EI +ve): m/z 289 [M⁺].

Synthesis of (S)-HL⁶. The procedure for (S)-HL² above was used, with 3,5-di-*tert*-butylsalicylic acid (2.00 g, 8.00 mmol) and (S)-(+)-2-amino-1-phenylethanol (1.10 g, 8.00 mmol), yielding the title compound as a crystalline yellow solid. Yield = 1.97 g (5.6 mmol, 70%). ¹H NMR (300 MHz, CDCl₃, 298 K): δ 1.20 ppm (s, 9H, CMe₃), 1.36 (s, 9H, CMe₃), 3.91 (d of d, 1H, NCH₂ oxazoline, ²J_{HH} = 14 Hz, ³J_{HH} = 8 Hz), 4.39 (d of d, 1H, NCH₂ oxazoline, ²J_{HH} = 14 Hz, ³J_{HH} = 10 Hz), 5.55 (d of d, 1H, OCHPh oxazoline, ³J_{HH} = 2 Hz), 7.60 (d, 1H, Ar C-H, ⁴J_{HH} = 2 Hz), 12.53 (s, br, 1H, OH). ¹³C{¹H} NMR

(75.5 MHz, CDCl₃, 298 K): δ 29.3, 31.4 ppm (both *CMe*₃), 34.2, 35.1 (both *CMe*₃), 61.5 (NCH₂ oxazoline), 79.9 (OCHPh oxazoline), 109.6 (Ar *C*_q), 122.1, 125.8 (both Ar *C*-H), 128.0, 128.4, 128.7, 136.4, 140.0, 140.3, 156.9 (all Ar *C*_q), 166.5 (*C*_q oxazoline). Anal. Calcd for C₂₃H₂₉NO₂: C, 78.59; H, 8.32; N, 3.99. Found: C, 78.64; H, 8.40; N, 3.96. MS (EI +ve): *m*/*z* 351 [M⁺], 336 [M⁺ – CH₃], 294 [M⁺ – CMe₃].

General Procedure for NaLⁿ(THF)_x (n = 2-5). A Schlenk tube was charged with HLⁿ (ca. 1.00 g) and sodium hydride (4–5 equiv). The vessel was cooled to -78 °C (dry ice/acetone slush bath), and cold THF was added (ca. 30 mL), with concomitant effervescence. The reaction was stirred for 15 min at low temperature before being allowed to warm slowly to ambient temperature. The vessel was evacuated and allowed to stir at room temperature under static vacuum overnight; the excess sodium hydride was then allowed to settle and removed by filtration. All volatiles were removed *in vacuo* to yield the title compounds as bright yellow, air-sensitive solids in effectively quantitative yields. The amount of THF (x) in the material was deduced by careful integration of ¹H NMR spectra in pyridine- d_5 .

NaL²(**THF**)_{x*} According to the above procedure, (*S*)-HL² (0.900 g, 3.1 mmol) and NaH (0.298 g, 12.4 mmol) gave the title compound as a bright yellow solid. ¹H NMR (300 MHz, pyridine- d_5 , 298 K): δ 0.97 ppm (d, 3H, CH₃ of oxazoline, ³J_{HH} = 8 Hz), 1.43 (s, 9H, CMe₃), 1.60 (m, 4H, THF), 1.76 (s, 9H, CMe₃), 3.61 (m, 1H, NCHMe oxazoline), 4.11 (m, 2H, OCH₂ oxazoline), 7.64 (d, 1H, Ar C-H, ⁴J_{HH} = 2 Hz), 8.15 (d, 1H, Ar C-H, ⁴J_{HH} = 2 Hz).

NaL³(**THF**)_{*x*}. According to the above procedure, (*S*)-HL³ (0.980 g, 3.1 mmol) and NaH (0.298 g, 12.4 mmol) gave the title compound as a bright yellow solid. ¹H NMR (300 MHz, pyridine*d*₅, 298 K): δ 0.73 ppm (d, 3H, CH₃ of ^{*i*}Pr, ³J_{HH} = 7 Hz), 0.83 (d, 3H, CH₃ of ^{*i*}Pr, ³J_{HH} = 7 Hz), 1.43 (s, 9H, CMe₃), 1.60 (m, 4H, THF), 1.74 (s, 9H CMe₃), 1.85 (hept., 1H, CH of ^{*i*}Pr, ³J_{HH} = 7 Hz), 3.60 (m, 4H, THF), 3.95 (m, 2H, OCH₂ oxazoline), 4.15 (m, 1H, NCH^{*i*}Pr oxazoline), 7.60 (d, 1H, Ar C-H, ⁴J_{HH} = 2 Hz), 8.07 (d, 1H, Ar C-H, ⁴J_{HH} = 2 Hz).

NaL⁴(**THF**)_x. According to the above procedure, (*S*)-HL⁴ (1.15 g, 3.47 mmol) and NaH (0.417 g, 17.4 mmol) gave the title compound as a bright yellow solid. ¹H NMR (300 MHz, pyridined₅, 298 K): δ 0.82 ppm (s, 9H CMe₃ oxazoline), 1.45 (s, 9H, CMe₃), 1.63 (m, 4H, THF), 1.78 (s, 9H, CMe₃), 3.68 (m, 4H, THF), 3.89 (m, 1H, NCH'Bu), 4.08 (m, 2H, OCH₂ oxazoline), 7.68 (d, 1H, Ar C-H, ⁴J_{HH} = 2 Hz), 8.17 (d, 1H, Ar C-H, ⁴J_{HH} = 2 Hz).

NaL⁵(**THF**)_{*x*}. According to the above procedure, (*S*)-HL⁵ (1.26 g, 3.59 mmol) and NaH (0.431 g, 17.9 mmol) gave the title compound as a bright yellow solid. ¹H NMR (300 MHz, pyridined₅, 298 K): δ 1.42 ppm (s, 9H, *CMe*₃), 1.62 (m, 4H, THF), 1.80 (s, 9H, *CMe*₃), 3.66 (m, 4H, THF), 3.73 (d of d, 1H, OCH₂ oxazoline, ²J_{HH} = 14 Hz, ³J_{HH} = 7 Hz), 4.24 (d of d, 1H, OCH₂ oxazoline, ²J_{HH} = 14 Hz, ³J_{HH} = 10 Hz), 5.42 (d of d, 1H, NCHPh oxazoline, ³J_{HH} = 10 Hz, 7 Hz), 7.22 (m, 3H, Ar C-*H* of Ph), 7.33 (m, 2H, Ar C-*H* of Ph), 7.68 (d, 1H, Ar C-*H*, ⁴J_{HH} = 2 Hz), 8.24 (d, 1H, Ar C-*H*, ⁴J_{HH} = 2 Hz).

General Procedure for [Cp*ZrLⁿCl₂]. A Schlenk tube was charged with NaLⁿ(THF)_x (ca. 0.250 g) and Cp*ZrCl₃ (1 equiv). The reaction vessel was cooled to -78 °C (dry ice/acetone slush bath), and THF (ca. 10 mL) was added. The yellow suspension was allowed to stir at low temperature for 15 min before being allowed to warm to ambient temperature overnight. All volatiles were removed *in vacuo*, and the yellow residue was extracted with toluene (30 mL) and filtered. The solvent was removed to yield [Cp*ZrLⁿCl₂] as a yellow solid, which was recrystallized (where necessary) from diethyl ether or toluene at -30 °C. Purification was also possible by sublimation (typically 250 °C, 10^{-6} mmHg).

 $[Cp*ZrL^2Cl_2]$ (1). Using the general procedure described above, NaL²(THF)_x (0.323 g, 0.90 mmol) and Cp*ZrCl₃ (0.300

⁽³⁷⁾ Carpenetti, D. W.; Kloppenburg, L.; Kupec, J. T.; Petersen, J. L. Organometallics 1996, 15, 1572.

g, 0.90 mmol) yielded the title compound as a yellow crystalline solid as the toluene extract was concentrated. Yield: 0.430 g (0.73 mmol, 81%). ¹H NMR (400 MHz, C₆D₆, 298 K): δ 0.95 ppm (d, 3H, CH₃ of oxazoline, ${}^{3}J_{HH} = 6$ Hz), 1.28 (s, 9H, CMe₃), 1.64 (s, 9H, CMe₃), 1.90 (s, 15H, C₅Me₅), 3.45 (d of d, 1H, OCH_2 oxazoline, ${}^2J_{HH} = 8$ Hz, ${}^3J_{HH} = 2$ Hz), 3.60 (t, 1H, OCH_2 oxazoline, ${}^{2}J_{\text{HH}} = 8$ Hz), 4.01 (m, 1H, NCHMe oxazoline), 7.75 (d, 1H, Ar C-*H*, ${}^{4}J_{HH} = 3$ Hz), 8.00 (d, 1H, Ar C-*H*, ${}^{4}J_{HH} = 3$ Hz). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): δ 12.2 ppm (C₅Me₅), 21.3 (CH₃ of oxazoline), 30.1, 31.5 (both CMe₃), 34.6, 35.6 (both CMe₃), 63.2 (NCHMe oxazoline), 74.1 (OCH₂ oxazoline), 112.2 (Ar C_q), 123.1 (Ar C-H), 125.5 (C₅Me₅), 131.1 (Ar C-H), 140.6, 141.6, 163.0 (all Ar C_a), 169.4 (oxazoline C_a). Anal. Calcd for C₂₈H₄₁NO₂ZrCl₂ • (C₇H₈)_{0.33}: C, 58.94; H, 7.13; N, 2.28. Found: C, 58.83; H, 7.50; N, 2.28. MS (EI +ve): *m*/*z* 583 [M⁺], 449 $[M^+ - C_5Me_5]$.

[Cp*ZrL³Cl₂] (2). Using the general procedure described above, NaL³(THF)_x (0.209 g, 0.56 mmol) and Cp*ZrCl₃ (0.185 g, 0.56 mmol) yielded the title compound as a pale yellow solid following sublimation or crystallization from toluene. Data below are from sublimated material. Yield: 0.277 g (0.46 mmol, 81%). ¹H NMR (400 MHz, C₆D₆, 298 K): δ 0.20 ppm (d, 3H, CH₃ of ^{*i*}Pr, ³J_{HH} = 7 Hz), 0.56 (d, 3H, CH₃ of ^{*i*}Pr, ³ $J_{\text{HH}} = 7$ Hz), 1.24 (s, 9H, CMe₃), 1.65 (s, 9H, CMe₃), 1.90 (s, 15H, C₅Me₅), 2.81 (hept., 1H, CH of ^{*i*}Pr, ³ $J_{\rm HH} = 7$ Hz), 3.64 (t, 1H, OC H_2 oxazoline, ² $J_{\rm HH} = 9$ Hz, ³ $J_{\rm HH}$ = 1 Hz), 3.96 (d of d, 1H, OCH₂ oxazoline, ${}^{2}J_{HH}$ = 9 Hz, ${}^{3}J_{HH}$ = 7 Hz), 4.10 (d of d, 1H, NCH'Pr oxazoline, ${}^{3}J_{HH}$ = 7 Hz, 1 Hz), 7.73 (d, 1H, Ar C-*H*, ${}^{4}J_{HH} = 1$ Hz), 7.97 (d, 1H, Ar C-*H*, ${}^{4}J_{HH} =$ 1 Hz) ¹³C{¹H} NMR (100.6 MHz, C₆D₆, 298 K): δ 12.2 ppm (C₅Me₅), 13.5, 18.9 (both CH₃ of ⁱPr), 30.9 (CH of ⁱPr), 31.5, 32.4 (both CMe₃), 34.5, 35.8 (both CMe₃), 67.8 (NCHⁱPr oxazoline), 72.0 (OCH₂ oxazoline), 111.8 (Ar C_a), 122.9 (Ar C-H), 125.6 (C₅Me₅), 131.2 (Ar C-H), 140.5, 141.6, 163.0 (all Ar C_a), 169.9 (oxazoline *C_q*). Anal. Calcd for C₃₀H₄₅NO₂ZrCl₂: C, 58.70; H, 7.39; N, 2.28. Found: C, 58.10; H, 7.28; N, 1.94. MS (EI +ve): m/z 613 $[M^+]$, 478 $[M^+ - C_5Me_5]$.

[Cp*ZrL⁴Cl₂] (3). Using the general procedure described above, $NaL^{4}(THF)_{x}$ (0.234 g, 0.60 mmol) and $Cp*ZrCl_{3}$ (0.200 g, 0.60 mmol) yielded the title compound as a pale yellow solid. Yield: 0.287 g (0.46 mmol, 76%). ¹H NMR (300 MHz, C₆D₆, 298 K): δ 0.71 ppm (s, 9H, CMe₃ oxazoline), 1.30 (s, 9H, CMe₃), 1.69 (s, 9H, CMe₃), 1.95 (s, 15H, C₅Me₅), 3.71 (d of d, 1H, OCH₂ oxazoline, ${}^{2}J_{\text{HH}} = 9$ Hz, ${}^{3}J_{\text{HH}} = 7$ Hz,), 4.07 (d of d, 1H, OCH₂ oxazoline, ${}^{2}J_{\text{HH}} = 9$ Hz, ${}^{3}J_{\text{HH}} = 1$ Hz), 4.52 (d of d, 1H, NCH'Bu oxazoline, ${}^{3}J_{\text{HH}} = 7$ Hz, 1 Hz), 7.76 (d, 1H, Ar C-*H*, ${}^{4}J_{\text{HH}} = 3$ Hz), 7.94 (d, 1H, Ar C-*H*, ${}^{4}J_{\text{HH}} = 3$ Hz). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (75.5 MHz, C₆D₆, 298 K): δ 12.2 ppm (C₅Me₅), 26.4 (CMe₃ of oxazoline), 30.0, 31.5 (both CMe₃), 34.5, 35.8, 36.3 (all CMe₃), 69.7 (NCH'Bu oxazoline), 74.8 (OCH₂ oxazoline), 112.4 (Ar C_a), 122.2 (Ar C-H), 125.8 (C₅Me₅), 131.2 (Ar C-H), 140.8, 141.3, 164.3 (all Ar C_a), 171.4 (oxazoline *C_a*). Anal. Calcd for C₃₁H₄₇NO₂ZrCl₂: C, 59.30; H, 7.55; N, 2.23. Found: C, 59.22; H, 7.57; N, 2.20. MS (EI +ve): *m*/*z* 625 [M⁺], 490 $[M^+ - C_5Me_5]$.

[**Cp*ZrL⁵Cl₂**] (4). Using the general procedure described above, NaL⁵(THF)_{*x*} (0.192 g, 0.47 mmol) and Cp*ZrCl₃ (0.156 g, 0.47 mmol) yielded the title compound as a pale yellow solid. Yield: 0.258 g (0.40 mmol, 85%). ¹H NMR (300 MHz, C₆D₆, 298 K): δ 1.33 ppm (s, 9H, CMe₃), 1.72 (s, 9H, CMe₃), 1.98 (s, 15H, C₅Me₅), 3.89 (d of d, 1H, OCH₂ oxazoline, ²J_{HH} = 9 Hz, ³J_{HH} = 2 Hz), 4.00 (t, 1H, OCH₂ oxazoline, ²J_{HH} = 8 Hz), 5.25 (d of d, 1H, NCHPh oxazoline, ²J_{HH} = 8 Hz, ³J_{HH} = 2 Hz), 6.90 (m, 5H, Ar C-H of oxazoline Ph), 7.85 (d, 1H, Ar C-H, ⁴J_{HH} = 3 Hz), 8.15 (d, 1H, Ar C-H, ⁴J_{HH} = 3 Hz) ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): δ 12.2 ppm (C₅Me₅), 25.8, 30.1 (both CMe₃), 31.5, 35.8 (both CMe₃), 70.9 (NCHPh oxazoline), 75.6 (OCH₂ oxazoline), 111.5 (Ar C_q), 123.3 (Ar C-H), 125.4 (C₅Me₅), 125.7, 128.5, 129.3 (all Ar C-H of Ph), 131.7 (Ar C-H), 140.9, 141.5, 141.7, 163.4 (all Ar C_q), 171.1 (oxazoline C_q). Anal. Calcd for $C_{33}H_{43}NO_2ZrCl_2$: C, 61.18; H, 6.69; N, 2.16. Found: C, 61.26; H, 6.67; N, 2.09. MS (EI +ve): m/z 647 [M⁺], 612 [M⁺ - Cl], 512 [M⁺ - C₅Me₅].

[Cp*ZrL⁶Cl₂] (5). Using the general procedure described above, NaL⁶(THF)_x (0.210 g, 0.51 mmol) and Cp*ZrCl₃ (0.169 g, 0.51 mmol) yielded the title compound as a pale yellow solid, which crystallized from the toluene extract under vacuum. Yield: 0.214 g (0.33 mmol, 65%). ¹H NMR (400 MHz, CD₂Cl₂, 298 K), major diastereomer: δ 1.19 ppm (s, 9H, CMe₃), 1.69 (s, 9H, CMe₃), 1.97 (s, 15H, C₅*Me*₅), 4.12 (d of d, 1H, NC*H*₂ oxazoline, ${}^{2}J_{HH} = 15$ Hz, ${}^{3}J_{\text{HH}} = 10 \text{ Hz}$), 4.25 (d of d, 1H, NCH₂ oxazoline, ${}^{2}J_{\text{HH}} = 15 \text{ Hz}$, ${}^{3}J_{\text{HH}} = 11$ Hz), 5.21 (d of d, 1H, OCHPh oxazoline, ${}^{3}J_{\text{HH}} = 11$ Hz, 10 Hz), 7.00 - 7.12 (m, 5H, Ar C-H of oxazoline Ph), 7.77 (d, 1H, Ar C-*H*, ${}^{4}J_{HH} = 3$ Hz), 7.95 (d, 1H, Ar C-*H*, ${}^{4}J_{HH} = 3$ Hz). Minor diastereomer: δ 1.27 ppm (s, 9H, CMe₃), 1.37 (s, 9H, CMe₃), 1.81 (s, 15H, C_5Me_5), 3.88 (d of d, 1H, NCH₂ oxazoline, ²J_{HH} = 14 Hz, ${}^{3}J_{\rm HH} = 8$ Hz), 4.88 (d of d, 1H, NCH₂ oxazoline, ${}^{2}J_{\rm HH} =$ 14 Hz, ${}^{3}J_{\text{HH}} = 10$ Hz), 5.78 (d of d, 1H, OC*H*Ph oxazoline, ${}^{3}J_{\text{HH}}$ = 10 Hz, 8 Hz), 7.32-7.41 (m, 5H, Ar C-H of Ph), 7.57 (d, 1H, Ar C-*H*, ${}^{4}J_{\text{HH}} = 3$ Hz), 7.80 (d, 1H, Ar C-*H*, ${}^{4}J_{\text{HH}} = 3$ Hz). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (100.6 MHz, CD₂Cl₂, 298 K), major diastereomer: δ 12.0 ppm (C₅Me₅), 29.9, 31.2 (both CMe₃), 34.5, 35.4 (both CMe₃), 64.4 (NCH₂ oxazoline), 82.4 (OCHPh oxazoline), 111.3 (Ar C_q), 123.6 (Ar C-H), 125.7 (C₅Me₅), 128.3, 129.2 (Ar C-H of Ph), 129.4 (Ar C-H), 131.2 (Ar C-H of Ph), 137.7, 139.5, 141.8, 161.7 (all Ar C_q), 169.0 (oxazoline C_q). Minor diastereomer: δ 12.0 ppm (C₅Me₅), 30.0, 31.3 (both CMe₃), 34.5, 35.5 (both CMe₃), 64.6 (NCH₂ oxazoline), 80.1 (OCHPh oxazoline), 111.5 (Ar Ca), 123.5 (Ar C-H), 125.2 (C5Me5), 128.3 (Ar C-H of Ph), 128.8 (Ar C-H), 129.1, 131.3 (Ar C-H of Ph), 139.2, 139.5, 141.9, 162.0 (all Ar C_q), 169.2 (oxazoline C_q). Anal. Calcd for $C_{30}H_{45}Cl_2NO_2Zr \cdot (C_7H_8)_{0.33}$: C, 62.53; H, 6.78; N, 2.07. Found: C, 62.71; H, 6.95; N, 1.96. MS (EI +ve): m/z 647 [M⁺], 512 [M⁺ - C₅Me₅].

General Procedure for [Cp*ZrL"Me₂] (n = 3-5). In a Schlenk tube [Cp*ZrL"Cl₂] (0.250 g, ca. 0.40 mmol) was slurried in pentane (10 mL) and the reaction vessel cooled to 0 °C. Added dropwise, via syringe, was methyllithium (2 mL of a 1.6 M solution in diethyl ether, >4 equiv). The suspension changed color from yellow to white, before stirring at room temperature for 2 h in the absence of light. Chlorotrimethylsilane (0.5 mL) was added via syringe and the reaction stirred for a further 30 min. The reaction was filtered, and all volatiles were removed *in vacuo* to yield the title compound as an off-white residue. Crystallization from pentane (ca. 2 mL) at -30 °C yielded the title compounds [Cp*ZrL"Me₂] as colorless crystalline solids.

[Cp*ZrL³Me₂] (6). Using the procedure described above, [Cp*ZrL³Cl₂] and MeLi yielded the title compound as a colorless solid. Yield: 0.071 g (0.12 mmol, 30%). ¹H NMR (300 MHz, C₆D₆, 298 K): δ 0.29 ppm (s, 3H, Zr-CH₃), 0.36 (d, 3H, CH₃ of ^{*i*}Pr, ³J_{HH} = 7 Hz), 0.52 (d, 3H, CH₃ of ^{*i*}Pr, ³ $J_{\rm HH}$ = 7 Hz), 0.68 (s, 3H, Zr-CH₃), 1.29 (s, 9H, CMe₃), 1.63 (s, 9H, CMe₃), 1.83 (s, 15H, C₅Me₅), 2.28 (m, 1H, CH of ⁱPr), 3.54 (m, 1H, oxazoline), 3.70 (m, 1H, oxazoline), 3.90 (m, 1H, oxazoline), 7.76 (d, 1H, Ar C-H, ${}^{4}J_{HH} =$ 2 Hz), 8.08 (d, 1H, Ar C-*H*, ${}^{4}J_{\text{HH}} = 2$ Hz). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (75.5 MHz, C₆D₆, 298 K): δ 11.4 ppm (C₅Me₅), 14.4, 19.1 (both CH₃ of ⁱPr), 28.8 (CH of ⁱPr), 30.0, 31.5 (both CMe₃), 34.4, 35.6 (both CMe₃), 39.9, 41.5 (both Zr-CH₃), 111.1 (Ar C_q), 118.9 (C₅Me₅), 123.2, 130.3 (both Ar C-H), 139.9, 140.4, 163.6 (all Ar C_a), 169.2 (oxazoline C_q) Anal. Calcd for $C_{32}H_{51}NO_2Zr$: C, 67.08; H, 8.97; N, 2.44. Found: C, 66.69; H, 8.80; N, 2.41. MS (EI +ve): m/z 556 $[M^+ - CH_3], 541 [M^+ - 2CH_3].$

[**Cp*ZrL⁴Me₂**] (7). Using the procedure described above, [**Cp*ZrL⁴Cl**₂] and MeLi yielded the title compound as a colorless solid. Yield: 0.056 g (0.10 mmol, 24%). ¹H NMR (400 MHz, C₆D₆, 298 K): δ 0.15 ppm (s, 3H, Zr-CH₃), 0.63 (s, 9H, CMe₃ oxazoline), 0.70 (s, 3H, Zr-CH₃), 1.29 (s, 9H, CMe₃), 1.38 (s, 9H, CMe₃), 1.81 (s, 15H, C₅Me₅), 3.54–3.62 (m, 2H, OCH₂ and NCH'Bu oxazoline, overlapping), 3.88 (d of d, 1H, OCH₂ oxazoline, ${}^{2}J_{HH} = 14$ Hz, ${}^{3}J_{HH} = 7$ Hz), 7.71 (d, 1H, Ar C-*H*, ${}^{4}J_{HH} = 2$ Hz), 8.13 (d, 1H, Ar C-*H*, ${}^{4}J_{HH} = 2$ Hz). ${}^{13}C{}^{1}H{}$ NMR (75.5 MHz, C₆D₆, 298 K): δ 11.3 ppm (C₅*Me*₅), 26.2 (*CMe*₃ oxazoline), 30.0, 31.6 (both *CMe*₃), 34.2, 35.6, 36.3 (all *CMe*₃), 43.3, 43.6 (both Zr-CH₃), 68.8 (NCHCMe₃ oxazoline), 73.5 (OCH₂ oxazoline), 113.3 (Ar *C_q*), 119.7 (*C*₅Me₅), 122.7, 130.5 (both Ar *C*-H), 134.7, 138.8, 139.0, 164.5 (all Ar *C_q*), 171.2 (oxazoline *C_q*). Anal. Calcd for C₃₃H₅₃NO₂Zr: C, 67.52; H, 9.10; N, 2.39. Found: C, 66.18; H, 9.16; N, 2.35. MS (EI +ve): *m/z* 587 [M⁺], 571 [M⁺ - CH₃].

[Cp*ZrL⁵Me₂] (8). Using the procedure described above, [Cp*ZrL⁵Cl₂] and MeLi yielded the title compound as a pale yellow solid. Yield: 0.050 g (0.08 mmol, 21%). ¹H NMR (300 MHz, C₆D₆, 298 K): δ -0.21 ppm (s, 3H, Zr-CH₃), 0.55 (s, 3H, Zr-CH₃), 1.32 (s, 9H, CMe₃), 1.66 (s, 9H, CMe₃), 1.86 (s, 15H, C₅Me₅), 3.78 (d of d, 1H, OCH₂ oxazoline, ${}^{2}J_{HH} = 8$ Hz, ${}^{3}J_{HH} = 3$ Hz), 3.87 (t, 1H, OCH₂ oxazoline, ${}^{2}J_{\text{HH}} = 8$ Hz), 4.81 (d of d, 1H, NCHPh oxazoline, ${}^{3}J_{\text{HH}} = 8$ Hz, 3 Hz), 6.82–6.93 (m, 5H, Ar C-*H* of Ph), 7.83 (d, 1H, Ar C-*H*, ${}^{4}J_{HH} = 3$ Hz), 8.20 (d, 1H, Ar C-*H*, ${}^{4}J_{HH} =$ 3 Hz). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): δ 11.5 ppm (C₅Me₅), 30.1, 30.7 (both CMe₃), 34.5, 35.8 (both CMe₃), 41.2, 42.4 (both Zr-CH₃), 69.8 (NCHPh oxazoline), 74.8 (OCH₂ oxazoline), 110.9 (Ar C_q), 119.3 (C₅Me₅), 123.6, 125.7, 127.8, 129.0, 130.8 (all Ar C-H), 139.6, 140.2, 141.7, 164.3 (all Ar C_q), 170.8 (oxazoline C_q). Anal. Calcd for C₃₅H₄₉NO₂Zr: C, 69.26; H, 8.14; N, 2.31. Found: C, 68.49; H, 8.25; N, 1.90. MS (EI +ve): m/z 590 $[M^+ - CH_3]$, 575 $[M^+ - 2CH_3]$.

[Cp*TiL¹Me₂] (9). A J. Young ampule was charged with a magnetic stirrer bar, Cp*TiMe₃ (0.300 g, 1.31 mmol), and HL¹ (0.362 g, 1.31 mmol). Toluene (10 mL) was added, and the vessel evacuated and heated to 100 °C for 2 days in the absence of light. After this time, the reaction vessel was allowed to cool to ambient temperature and the volatiles were removed in vacuo to yield an oily, dark residue. Addition of cold pentane (5 mL) saw the precipitation of a microcrystalline orange solid (0.169 g) of analytical purity, which was isolated by filtration and dried in vacuo. The filtrate was stored at -30 °C overnight, resulting in the deposition of a further amount of orange, crystalline solid (0.177 g), which was isolated similarly. Total yield: 0.346 g (0.71 mmol, 54%). ¹H NMR (300 MHz, C₆D₆, 298 K): δ 0.52 ppm (s, 3H, Ti-CH₃), 1.11 (s, 3H, Ti-CH₃), 1.36 (s, 9H, CMe₃), 1.64 (s, 9H, CMe₃), 1.75 (s, 15H, C₅Me₅), 2.93 (m, 1H, NCH₂ oxazoline), 3.37 (m, 2H, OCH2 oxazoline), 3.57 (m, 1H, NCH2 oxazoline), 7.79 (d, 1H, Ar C-*H*, ${}^{4}J_{\text{HH}} = 3$ Hz), 8.09 (d, 1H, Ar C-*H*, ${}^{4}J_{\text{HH}} = 3$ Hz). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (75.5 MHz, C₆D₆, 298 K): δ 11.9 ppm (C₅Me₅), 30.4, 31.7 (both CMe₃), 34.5, 35.8 (both CMe₃), 55.8 (NCH₂ oxazoline), 56.0, 61.9 (both Ti-CH₃), 66.2 (OCH₂ oxazoline), 110.6 (Ar C_q), 122.1 (C₅Me₅), 123.1, 129.5 (both Ar C-H), 139.0, 139.1, 162.5 (all Ar C_q), 167.2 (oxazoline C_q). Anal. Calcd for C₂₉H₄₅NO₂Ti: C, 71.44; H, 9.30; N, 2.87. Found: C, 71.03; H, 9.37; N, 2.82. MS (EI +ve): m/z 472 [M⁺ – CH₃], 457 [M⁺ – 2CH₃].

[**Cp*TiL**³**Me**₂] (10). As for 9 above, using Cp*TiMe₃ (0.250 g, 1.10 mmol) and (*S*)-HL³ (0.348 g, 1.10 mmol) at 60 °C for 2 days in the absence of light. Yield: 0.105 g (0.20 mmol, 18%). ¹H NMR (300 MHz, C₆D₆, 298 K): δ 0.49 (d, 3H, CH₃ of ^{*i*}Pr, ³J_{HH} = 7 Hz), 0.51 (d, 3H, CH₃ of ^{*i*}Pr, ³J_{HH} = 7 Hz), 0.68 (s, 3H, Ti-CH₃), 1.32 (s, 9H, CMe₃), 1.63 (s, 9H, CMe₃), 1.74 (s, 15H, C₅Me₅), 2.38 (hept, 1H, CH of ^{*i*}Pr, ³J_{HH} = 7 Hz), 3.52 (m, 2H, OCH₂ and NCH^{*i*}Pr oxazoline, overlapping), 3.93 (d, 1H, OCH₂ oxazoline, ³J_{HH} = 8 Hz), 7.77 (d, 1H, Ar C-H, ⁴J_{HH} = 3 Hz), 8.08 (d, 1H, Ar C-H, ⁴J_{HH} = 3 Hz). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): δ 11.9 ppm (C₅Me₅), 14.0, 19.1 (both CH₃ of ^{*i*}Pr), 29.5 (CH of ^{*i*}Pr), 30.2, 31.7 (both CMe₃), 34.5, 35.7 (both CMe₃), 57.5, 63.1 (both Ti-CH₃), 66.5 (NCH^{*i*}Pr oxazoline), 71.5 (OCH₂ oxazoline), 122.4 (C₅Me₅), 122.8, 129.9 (2 × Ar C-H), 139.0, 139.2, 164.6, 165.9 (all Ar C_q), 168.3 (oxazoline C_q).

 $C_{32}H_{51}NO_2Ti: C, 72.57; H, 9.71; N, 2.64.$ Found: C, 72.31; H, 9.70; N, 2.70. MS (EI +ve): m/z 514 [M⁺ – CH₃], 499 [M⁺ – 2CH₃].

 $[Cp*TiL^5Me_2]$ (11). As for 10 above, using Cp*TiMe₃ (0.250 g, 1.10 mmol) and (S)-HL⁵ (0.385 g, 1.10 mmol). Yield: 0.328 g (0.57 mmol, 52%). ¹H NMR (300 MHz, C₆D₆, 298 K): δ 0.24 ppm (s, 3H, Ti-CH₃), 1.03 (s, 3H, Ti-CH₃), 1.36 (s, 9H, CMe₃), 1.66 (s, 9H, CMe₃), 1.76 (s, 15H, C₅Me₅), 3.77 (d of d, 1H, OCH₂ oxazoline, ${}^{2}J_{\text{HH}} = 8 \text{ Hz}, {}^{3}J_{\text{HH}} = 2 \text{ Hz}$, 3.87 (t, 1H, OCH₂ oxazoline, ${}^{2}J_{\text{HH}} =$ 8 Hz), 4.59 (d of d, 1H, NC*H*Ph oxazoline, ${}^{3}J_{\text{HH}} = 8$ Hz, ${}^{3}J_{\text{HH}} =$ 2 Hz), 6.91 (m, 5H, Ar C-H, oxazoline), 7.84 (d, 1H, Ar C-H, ⁴J _{HH} = 3 Hz), 8.23 (d, 1H, Ar C-*H*, ${}^{4}J_{HH}$ = 3 Hz). ${}^{13}C{}^{1}H$ NMR (75.5 MHz, C₆D₆, 298 K): δ 11.9 ppm (C₅Me₅), 30.3, 31.7 (both CMe₃), 34.5, 35.8 (both CMe₃), 61.1, 62.8 (both Ti-CH₃), 70.4 (NCHPh oxazoline), 74.6 (OCH₂ oxazoline), 109.8 (Ar C_a), 122.3 (C₅Me₅), 123.0, 125.8, 127.6, 129.0, 130.6 (all Ar C-H), 139.2, 139.6, 142.0, 166.1 (all Ar C_q), 169.6 (oxazoline C_q). Anal. Calcd for C₃₅H₄₉NO₂Ti: C, 74.58; H, 8.76; N, 2.49. Found: C, 73.78; H, 8.72; N, 1.97. MS (EI +ve): m/z 548 [M⁺ – CH₃], 533 [M⁺ – 2CH₃].

[Cp*TiL¹Cl₂] (12). Method A. A Schlenk tube was charged with a dark yellow solution of [Cp*TiL¹Me₂] (9) (0.200 g, 0.41 mmol) in diethyl ether (10 mL). Anhydrous hydrogen chloride (0.82 mL of a 1 M solution in diethyl ether, 2 equiv) was added dropwise via syringe at ambient temperature, with concomitant effervescence and a color change to dark red. The reaction was left to stir at room temperature for 30 min. All volatiles were removed *in vacuo* to yield the title compound as a microcrystalline red-orange solid.

Method B. A J. Young ampule was charged with HL¹ (0.409 g, 1.5 mmol) and Cp*TiCl₂Me (0.400 g, 1.5 mmol). Heptane (ca. 10 mL) was added, and the vessel evacuated and heated to 75 °C for 36 h. After this time, a crystalline orange solid had precipitated. The suspension was allowed to cool, and the solid isolated by filtration and dried in vacuo to yield the title compound in analytical purity. Yield: 0.757 g (1.43 mmol, 96%). ¹H NMR (400 MHz, C₆D₆, 298 K): δ 1.28 ppm (s, 9H, CMe₃), 1.68 (s, 9H, CMe₃), 1.92 (s, 15H, C₅Me₅), 3.52 (m, 2H, NCH₂ oxazoline), 3.62 (m, 1H, OCH₂ oxazoline), 4.01 (m, 1H, OCH2 oxazoline), 7.75 (d, 1H Ar C-H, ${}^{4}J_{\text{HH}} = 2 \text{ Hz}$, 7.86 (d, 1H, Ar C-*H*, ${}^{4}J_{\text{HH}} = 2 \text{ Hz}$). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (100.7 MHz, C₆D₆, 298 K): δ 13.3 ppm (C₅Me₅), 30.5, 31.5 (both CMe₃), 34.6, 35.9 (both CMe₃), 58.9 (NCH₂ oxazoline), 67.3 (OCH₂ oxazoline), 111.3 (Ar C_a), 122.8, 130.2 (both Ar C-H), 132.7 (C₅Me₅), 139.7, 142.0, 165.0 (all Ar C_q), 166.9 (oxazoline C_q). Anal. Calcd for C₂₇H₃₉NO₂TiCl₂.C₇H₁₆: C, 64.97; H, 8.82; N, 2.23. Found: C, 64.73; H, 8.61; N, 1.98. MS (EI +ve): m/z 492 [M⁺ – Cl].

[Cp*TiL³Cl₂] (13). Using method B above, heating Cp*TiCl₂Me (0.250 g, 0.93 mmol) and (S)-HL³ (0.295 g, 0.93 mmol) in toluene at 75 °C for 48 h yielded the title compound as a crystalline orange solid, which was isolated by filtration and dried in vacuo. Yield: 0.349 g (0.60 mmol, 65%). ¹H NMR (400 MHz, CD₂Cl₂, 298 K): δ 0.35 ppm (d, 3H, CH₃ of ^{*i*}Pr, ³J_{HH} = 7 Hz), 0.76 (d, 3H, CH₃ of ^{*i*}Pr, ${}^{3}J_{\text{HH}} = 7$ Hz), 1.27 (s, 9H, CMe₃), 1.38 (s, 9H, CMe₃), 1.93 (s, 15H, C₅*Me*₅), 2.66 (d of hept, 1H, CH of ^{*i*}Pr, ${}^{3}J_{HH} = 7$ Hz, 3 Hz), 4.25 (d of t, 1H, N-CHⁱPr oxazoline, ${}^{3}J_{HH} = 7$ Hz, 2 Hz), 4.30 (t, 1H, OCH₂ oxazoline, ${}^{2}J_{\text{HH}} = 7$ Hz), 4.50 (d of d, 1H, OCH₂ oxazoline, ${}^{2}J_{\text{HH}} = 9$ Hz, ${}^{3}J_{\text{HH}} = 2$ Hz), 7.55 (d, 1H, Ar C-*H*, ${}^{4}J_{\text{HH}} = 2$ Hz), 7.63 (d, 1H, Ar C-*H*, ${}^{4}J_{\text{HH}} = 2$ Hz). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (100.6 MHz, CD₂Cl₂, 298 K): δ 12.5 ppm (C₅Me₅), 14.0, 19.1 (both CH₃ of ⁱPr), 29.6 (CH of ⁱPr), 30.0, 31.5 (both CMe₃), 34.8, 35.6 (both CMe₃), 68.4 (NCH'Pr oxazoline), 73.3 (OCH₂ oxazoline), 110.9 (Ar C_a), 122.5, 129.4 (both Ar C-H), 134.1 (C₅Me₅), 139.1, 142.9, 165.8 (all Ar C_q), 168.2 (oxazoline C_q). Anal. Calcd for C₃₀H₄₅NO₂TiCl₂ • (C₇H₈)_{0.5}: C, 65.26; H, 8.01; N, 2.46. Found: C, 65.18; H, 7.94; N, 2.18. MS (EI +ve): m/z 534 [M⁺ – Cl].

[**Cp*****TiL**⁵**Cl**₂] (14). Using method B above, heating Cp*TiCl₂Me (0.400 g, 1.5 mmol) and (*S*)-HL⁵ (0.522 g, 1.5 mmol) at 85 °C for 48 h. After removal of all volatiles *in vacuo*, the resulting orange solid was dissolved in hot toluene (ca. 5 mL), and an equal amount

of heptane added. Standing at -30 °C for 48 h yielded the title compound as a crystalline red-orange solid, which was isolated by filtration and dried in vacuo. Material of analytical purity could also be obtained by layering a methylene chloride solution with pentane. Yield: 0.368 g (0.61 mmol, 41%). ¹H NMR (400 MHz, CD₂Cl₂, 298 K): δ 1.28 ppm (s, 9H, CMe₃), 1.42 (s, 9H, CMe₃), 1.98 (s, 15H, C₅*Me*₅), 4.37 (d of d, 1H, OC*H*₂ oxazoline, ${}^{2}J_{\text{HH}} =$ 9 Hz, ${}^{3}J_{\text{HH}} = 2$ Hz), 4.72 (t, 1H, OCH₂ oxazoline, ${}^{2}J_{\text{HH}} = 9$ Hz), 5.40 (d of d, 1H, NCHPh oxazoline, ${}^{2}J_{\text{HH}} = 9$ Hz, ${}^{3}J_{\text{HH}} = 2$ Hz), 6.75 (d, 2H, *o*-Ar C-*H* of Ph, ${}^{3}J_{HH} = 7$ Hz), 7.13 (m, 3H, *m*- and *p*-Ar C-*H* of Ph), 7.62 (d, 1H, Ar C-*H*, ${}^{4}J_{HH} = 2$ Hz), 7.72 (d, 1H, Ar C-*H*, ${}^{4}J_{HH} = 2$ Hz). ${}^{13}C{}^{1}H$ NMR (100.6 MHz, CD₂Cl₂, 298 K): δ 13.6 ppm (C₅Me₅), 30.1, 31.5 (both CMe₃), 34.9, 35.7 (both CMe₃), 72.1 (NCHPh oxazoline), 76.4 (OCH₂ oxazoline), 110.4 (Ar C_q), 122.8 (Ar C-H), 125.7, 127.6, 128.8 (Ar C-H of oxazoline Ph), 131.4 (Ar C-H), 133.9 (C5Me5), 134.7, 139.5, 142.6, 143.0, 166.0 (all Ar C_q), 169.4 (oxazoline C_q). Anal. Calcd. for C33H43NO2TiCl2 • (CH2Cl2)0.4: C, 62.83; H, 6.91; N, 2.19. Found: C, 62.66 H, 7.36; N, 1.75. MS (EI +ve): m/z 568 [M⁺ – Cl].

[Cp*TiL⁶Cl₂] (15). A J. Young ampule was charged with Cp*TiCl₂Me (0.200 g, 0.74 mmol) and (S)-HL⁶ (0.250 g, 0.74 mmol). Toluene (10 mL) was added, and the reaction vessel evacuated and heated at 85 °C for 3 days. The reaction was then allowed to cool to ambient temperature, and all volatiles were removed in vacuo. The dark red residue was recrystallized from the minimum volume of hot heptane, yielding an orange microcrystalline solid. Yield: 0.242 g (0.40 mmol, 54%). ¹H NMR (400 MHz, C₆D₆, 298 K), major diastereomer: δ 1.21 ppm (s, 9H, CMe₃), 1.71 (s, 9H, CMe₃), 2.00 (s, 15H, C₅Me₅), 4.17 (d of d, 1H, NCH₂ oxazoline, ${}^{2}J_{HH} = 15$ Hz, ${}^{3}J_{HH} = 10$ Hz), 4.36 (d of d, 1H, NCH₂ oxazoline, ${}^{2}J_{HH} = 15$ Hz, ${}^{3}J_{HH} = 12$ Hz), 5.31 (d of d, OCHPh oxazoline, ${}^{3}J_{\text{HH}} = 12$ Hz, 10 Hz), 6.87 (m, 2H, Ar C-H of Ph), 7.00 (m, 3H, Ar C-H of Ph), 7.78 (d, 1H Ar C-H, ${}^{4}J_{\rm HH} = 2$ Hz), 7.97 (d, 1H, Ar C-*H*, ${}^{4}J_{\rm HH} = 2$ Hz). Minor diastereomer: δ 1.30 (s, 9H, CMe₃), 1.71 (s, 9H, CMe₃), 1.86 (s, 15H, C₅Me₅), 3.75 (d of d, 1H, NCH₂ oxazoline, ${}^{2}J_{HH} = 14$ Hz, ${}^{3}J_{HH} = 8$ Hz), 4.90 (d of d, 1H, NCH₂ oxazoline, ${}^{2}J_{\text{HH}} = 14$ Hz, ${}^{3}J_{\text{HH}} = 11$ Hz), 5.01 (d of d, OCHPh oxazoline, ${}^{3}J_{HH} = 11$ Hz, 8 Hz), 7.03–7.14 (m, 5H, Ar C-H of Ph), 7.80 (d, 1H, Ar C-H, ${}^{4}J_{\rm HH} = 2$ Hz), 8.04 (d, 1H, Ar C-H, ${}^{4}J_{\rm HH}$ = 2 Hz). ${}^{13}C{}^{1}H$ NMR (100.7 MHz, C₆D₆, 298 K), major diastereomer: δ 13.4 ppm (C₅Me₅), 30.5, 31.4 (both CMe₃), 34.6, 35.9 (both CMe₃), 66.5 (NCH₂ oxazoline), 82.5 (OCHPh oxazoline), 111.1, 122.8 (both C_q of Ar), 125.0 (Ar C-H), 127.3, 129.1 (both Ar C-H of Ph), 129.2 (Ar C-H), 129.3 (Ar C-H of Ph), 130.6 (Ar C_q), 132.9 (C₅Me₅), 142.3, 165.5 (both Ar C_q), 166.5 (oxazoline C_q). Minor diastereomer: δ 13.4 ppm (C₅Me₅), 30.6, 31.5 (both CMe₃), 34.6, 36.0 (both CMe₃), 66.6 (NCH2 oxazoline), 79.5 (OCHPh oxazoline), 111.3, 122.7 (both Ar C_q), 125.0 (Ar C-H), 128.3, 128.9, 129.0 (all Ar C-H of Ph), 130.4 (Ar C_q), 132.9 (C_5 Me₅), 142.3, 165.4 (both Ar C_q), 166.6 (oxazoline C_a). Anal. Calcd for C₃₃H₄₃NO₂TiCl₂: C, 65.57; H, 7.17; N, 2.32. Found: C, 65.33 H, 7.18; N, 1.80. MS (EI +ve): m/z 568 [M⁺ – Cl], 468 $[M^+ - C_5Me_5]$.

[CpTiL³Me₂] (16). A Schlenk tube was charged with an orange slurry of CpTiCl₃ (0.200 g, 0.91 mmol) in diethyl ether (20 mL). The reaction vessel was cooled to -40 °C (dry ice/acetonitrile slush bath), and methyllithium (2 mL of a 1.6 M solution in diethyl ether, excess) was added, with a gradual change to a yellow suspension. The reaction was left to stir for 2 h at -40 °C, whereupon chlorotrimethylsilane (1 mL) was added via syringe. The reaction was allowed to stir for a further 30 min, before being allowed to warm to ambient temperature. A solution of (S)-HL³ (1 equiv) in diethyl ether (5 mL) was then added via cannula. Effervescence was observed. The resulting orange-brown suspension was allowed to stir for a further 2 h (in the absence of light) at room temperature before filtration. All volatiles were removed in vacuo to yield an orange solid, which was crystallized from pentane at -30 °C overnight. Yield: 0.267 g (0.58 mmol, 64%). ¹H NMR (400 MHz, C₆D₅CD₃, 368 K, fast exchange): δ 0.51 ppm (d, 1H, CH₃ of ^{*i*}Pr, ² $J_{\text{HH}} = 7$ Hz), 0.60 (d, 1H, CH₃ of ^{*i*}Pr, ² $J_{\text{HH}} = 7$ Hz), 0.99 (s, br, 6H, $2 \times \text{Ti}-\text{C}H_3$), 1.38 (s, 9H, CMe₃), 1.56 (s, 9H, CMe₃), 2.38 (mult., 1H, CH of ^{*i*}Pr), 3.66 (t, 1H, OCH₂ oxazoline, ²J_{HH} = 10 Hz), 3.85 (d of d, 1H, OCH₂ oxazoline, ²J_{HH} = 10 Hz, ³J_{HH} = 7 Hz) 3.99 (d, 1H, NCH^{*i*}Pr oxazoline, ³J_{HH} = 7 Hz), 6.09 (s, 5H, C₅H₅), 7.76 (d, 1H, Ar C-H, ⁴J_{HH} = 7 Hz), 7.99 (d, 1H, Ar C-H, ⁴J_{HH} = 7 Hz), Anal. Calcd for C₂₇H₄₁NO₂Ti: C, 70.58; H, 8.99; N, 3.05. Found: C, 69.70; H, 8.99; N 2.75. MS (EI +ve) *m*/*z*: 444 [M⁺ – CH₃], 429 [M⁺ – 2CH₃].

[CpTiL⁵Cl₂] (17). A Schlenk tube was charged with (S)-HL⁵ (0.320 g, 0.91 mmol) and NaH (0.118 g, 4.55 mmol, 5 equiv). The reaction vessel was cooled to -78 °C, and THF (20 mL) was added. The reaction was allowed to warm to room temperature, with effervescence, before being evacuated and stirred overnight at ambient temperature. The excess NaH was allowed to settle before filtration into a second Schlenk, charged with a slurry of CpTiCl₃ (0.200 g, 0.91 mmol) in THF (10 mL). The resulting dark red solution was stirred overnight at ambient temperature before all volatiles were removed in vacuo. The red residue was extracted with toluene, the solvent removed under reduced pressure, and the orange solid recrystallized from hot heptane to yield a crystalline orange solid. Yield: 0.279 g (0.52 mmol, 57%). ¹H NMR (400 MHz, C₆D₆, 298 K), major diastereomer: δ 1.27 ppm (s, 9H, CMe₃), 1.59 (s, 9H, CMe₃), 3.67 (d of d, 1H, OCH₂ oxazoline, ${}^{2}J_{\text{HH}} = 10$ Hz, ${}^{3}J_{\text{HH}} = 8$ Hz), 3.81 (d of d, 1H, NC*H*Ph oxazoline, ${}^{3}J_{\text{HH}} = 8$ Hz, 4 Hz), 5.85 (d of d, 1H, OCH₂ oxazoline, ${}^{2}J_{\text{HH}}$ = 10 Hz, ${}^{3}J_{\text{HH}}$ = 4 Hz), 5.93 (s, 5H, C₅H₅), 6.94 (m, 3H, Ar C-H of Ph), 7.17 (m, 2H, Ar C-*H* of Ph), 7.76 (d, 1H, Ar C-*H*, ${}^{4}J_{HH} = 3$ Hz), 7.92 (d, 1H, Ar C-H, ${}^{4}J_{\text{HH}} = 3$ Hz). ${}^{13}\text{C}{}^{1}\text{H}$ NMR (100.6 MHz, CD_2Cl_2 , 298 K), major diastereomer: δ 30.0, 31.5 ppm (both CMe_3), 35.0, 35.6 (both CMe₃), 73.6 (NCHPh oxazoline), 76.4 (OCH₂ oxazoline), 112.8 (Ar Cq), 122.7 (C5H5), 123.4 (Ar C-H), 126.0, 128.9, 129.6 (all Ar C-H of Ph), 131.0 (Ar C-H), 131.8, 137.7, 141.3, 144.3, 165.1 (all Ar C_q), 168.1 (oxazoline C_q). Anal. Calcd for C₂₈H₃₃NO₂TiCl₂: C, 62.94; H, 6.22; N, 2.62. Found: C, 62.62; H, 6.42; N, 1.99. MS (EI +ve): m/z 434 [M⁺ – Cl – C₅H₅].

X-ray Crystallography. Single crystals of $[Cp^*ZrL^3Cl_2] \cdot C_7H_8$ (2) and $[Cp*ZrL^4Me_2]$ (7) were grown from saturated toluene and pentane solutions, respectively, at -30 °C. Crystals were immersed in an inert oil prior to transfer to the cold nitrogen gas stream on a Bruker AXS-SMART three-circle CCD area detector diffractometer equipped with Mo Ka radiation ($\lambda = 0.71073$ Å). Data were collected using narrow (0.3° in ω) frame exposures. Intensities were corrected semiempirically for absorption, on the basis of symmetry-equivalent and repeated reflections using SADABS.38 The structure was solved using direct methods via SHELXS and refined using SHELXL. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms placed in calculated positions using a riding model (with free rotation for methyl groups). All H atoms were assigned isotropic thermal parameters $1.2 \times (1.5 \times \text{for methyl groups})$ the equivalent isotropic displacement parameter of the parent atom. Programs used were Bruker AXS SMART and SAINT³⁹ (control and integration) and SHELXTL⁴⁰ for structure solution, refinement, and molecular graphics.

Acknowledgment. We thank the EPRSC for financial support (postdoctoral fellowships to A.L.G. and I.J.M. and studentship to A.R.W.).

Supporting Information Available: CIF files for the structural determinations of **2** and **7**. This can be obtained free of charge via the Internet at http://pubs.acs.org.

OM8002027

⁽³⁸⁾ Sheldrick, G. M. SADABS, Program for Area Detector Absorption Correction; Institute for Inorganic Chemistry, University of Gottingen: Germany, 1996.

⁽³⁹⁾ *SMART* and *SAINT*; Bruker Analytical X-Ray Systems: Madison, WI, 1998.

⁽⁴⁰⁾ Sheldrick, G. M., *SHELXTL*; Bruker Analytical X-Ray Systems: Madison, WI, 1997.