Iridium Coordination Compounds of Stanna-*closo***-dodecaborate**

Marius Kirchmann, Sebastian Fleischhauer, and Lars Wesemann*

*Institut für Anorganische Chemie, Uni*V*ersität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany*

*Recei*V*ed February 22, 2008*

The reaction of Vaska's complex $[IrCl(CO)(PPh_3)_2]$ with stanna-*closo*-dodecaborate $[SnB_{11}H_{11}]^{2-}$ (1) resulted in the formation of the trigonal bipyramidal iridium(I) compound $[\text{Ir}(SnB_{11}H_{11})_2(CO)(PPh_3)_2]^3$ (**2**). In this compound, one stannaborate moiety can be readily substituted with CO or ethylene at RT and atmospheric pressure to give the trigonal bipyramidal compounds $[Et_4N][Ir(SnB₁₁H₁₁)(CO)₂(PPh₃)₂]$ (3) and $[Me_4N][Ir(SnB₁₁H₁₁)(CO)(C₂H₄)(PPh₃)₂]$ (4). Oxidative addition of H₂ was accomplished by the reaction of **2** with H₂, yielding the iridium(III) compound $[Et_3NMe][IrH_2(SnB_{11}H_{11})(CO)(PPh_3)_2]$ (5), whereas the protonation of 2 resulted in the formation of $[Et_3NMe]_2[IFH(SnB₁₁H₁₁)₂(CO)(PPh₃)₂]$ (6). All compounds have been characterized by single-crystal X-ray diffraction analysis, multinuclear NMR spectroscopy, IR spectroscopy, and elemental analysis.

Introduction

Iridium-tin coordination compounds are well established for a variety of tin ligands, such as $[SnX_3]^ (X = Cl, Br)$, $[SnR_3]^ (R$ $^{-}$ (X = Cl, Br), [SnR₃]
 W_2 SiMel⁻¹⁻⁹ In partic = Me, Ph), and $\left[\text{Sn(SiMe}_2\text{N}(3,5-xy))\right)_3\text{SiMe}\right]^{-1-9}$ In particular,
trichlorostannate-substituted iridium complexes $\text{Ir}(\text{SnCl}_2)$ I have trichlorostannate-substituted iridium complexes $[Ir(SnCl₃)L_n]$ have been proven to catalyze hydrogenations as well as Friedel–Crafts alkylations (FCA) in high yield.^{10–14} In polynuclear metal carbonyl complexes of iridium and rhodium, tin ligands act as effective ligands.^{15–17}

Vaska's iridium(I) complex $[IrCl(CO)(PPh₃)₂]$ is characterized by its ability to add a fifth ligand such as CO or ethylene.¹⁸⁻²¹ Furthermore, this compound is known for oxidative addition

- (2) Kretschmer, K.; Pregosin, P. S.; Albinati, A.; Togni, A. *J. Organomet. Chem.* **1985**, *281*, 365.
- (3) Gilbert, T. M.; Hollander, F. J.; Bergman, R. G. *J. Am. Chem. Soc.* **1985**, *107*, 3508.
- (4) Balch, A. L.; Waggoner, K. M.; Olmstead, M. M. *Inorg. Chem.* **1988**, *27*, 4511.
- (5) Balch, A. L.; Olmstead, M. M.; Oram, D. E.; Reedy, P. E. J.; Reimer, S. H. *J. Am. Chem. Soc.* **1989**, *111*, 4021.
- (6) Balch, A. L.; Davis, B. J.; Olmstead, M. M. *Inorg. Chem.* **1990**, *29*, 3066.
	- (7) Holt, M. S.; Wilson, W. L.; Nelson, J. H. *Chem. Re*V*.* **¹⁹⁸⁹**, *⁸⁹*, 11. (8) Permin, A.; Eisenberg, R. *Inorg. Chem.* **²⁰⁰²**, *⁴¹*, 2451.
-
- (9) Kilian, M.; Wadepohl, H.; Gade, L. H. *Organometallics* **2008**, *27*, 524.
- (10) Uson, R.; Oro, L. A.; Fernandez, M. J.; Pinillos, M. T. *Inorg. Chim. Acta* **1980**, *39*, 57.
- (11) Choudhury, J.; Podder, S.; Roy, S. *J. Am. Chem. Soc.* **2005**, *127*, 6162.
- (12) Podder, S.; Choudhury, J.; Roy, U. K.; Roy, S. *J. Org. Chem.* **2007**, *72*, 3100.
	- (13) Podder, S.; Roy, S. *Tetrahedron* **2007**, *63*, 9146.
- (14) Podder, S.; Choudhury, J.; Roy, S. *J. Org. Chem.* **2007**, *72*, 3129. (15) Adams, R. D.; Captain, B.; Smith, J. L. *Inorg. Chem.* **2004**, *43*,
- 7576. (16) Allen, J. M.; Brennesse, W. W.; Buss, C. E.; J. E. Ellis, M. E. M.; Pink, M.; Warnock, G. F.; Winzenburg, M. L.; Young, V. G. *Inorg. Chem.* **2001**, *40*, 5279.
- (17) Garlaschelli, L.; Greco, F.; Peli, G.; Manassero, M.; Sansoni, M.; Pergola, R. D. *Dalton Trans.* **2003**, *4700*.
	- (18) Vaska, L.; Di Luzio, J. W. *J. Am. Chem. Soc.* **1961**, *83*, 2784.
	- (19) Vaska, L.; Rhodes, R. E. *J. Am. Chem. Soc.* **1965**, *87*, 4970.
	- (20) Vaska, L. *Science* **1966**, *152*, 769.
	- (21) Vaska, L. *Acc. Chem. Res.* **1968**, *1*, 335.

Scheme 1. Synthesis of $[Me_4N]_3[Ir(SnB_{11}H_{11})_2(CO)(PPh_3)_2]$ **([Me4N]3[2])**

reactions of a large variety of subtrates such as H_2 and HCl to yield hexacoordinated octahedral iridium(III) compounds.^{21,22} Recently, the halide in $[IrCl(CO)(PPh₃)₂]$ was abstracted with $[Et₃Si]⁺$ to activate Vaska's compound toward oxidative addition of chlorobenzene.²³ It has been well documented that stanna*closo*-dodecaborate can act as a versatile ligand with nucleophilic properties in the coordination chemistry of various transition metals.²⁴ In fact, one iridium coordination compound of the group 14 heteroborate has been established with $[\text{Ir}(Cp^*)]$ - $(SnB₁₁H₁₁)(bipy')$] (bipy' = 4,4'-di-*tert*-butyl-2,2'-bipyridine, $Cp^* = 1,2,3,4,5$ -pentamethylcyclopentadienyl).²⁵

Herein, the product of the reaction between Vaska's iridium complex [IrCl(CO)(PPh3)2] and stanna-*closo*-dodecaborate is presented, and the reactivity of this reaction product was studied with respect to substitution reactions, oxidative addition, and protonation.

Results and Discussion

Syntheses. The pentacoordinated complex $[Ir(SnB₁₁H₁₁)₂(CO)$ - $(PPh₃)₂$ ³⁻ (2) was isolated from the reaction of Vaska's complex [IrCl(CO)(PPh3)2] with the stanna-*closo*-dodecaborate nucleophile in acetonitrile (Scheme 1). The ³¹P NMR spectrum of the reaction mixture clearly shows that the pentacoordinated complex **2** is the only reaction product of this nucleophilic substitution reaction. Thus, in reaction with 2 equiv. of tinborate

- (23) Douvris, C.; Reed, C. A. *Organometallics* **2008**, *27*, 807.
- (24) Gädt, T.; Wesemann, L. *Organometallics* 2007, 26, 2474.
- (25) Marx, T.; Wesemann, L.; Dehnen, S. *Z. Anorg. Allg. Chem.* **2001**, *627*, 1146.

10.1021/om8001679 CCC: \$40.75 2008 American Chemical Society Publication on Web 05/21/2008

^{*} Corresponding author. E-mail: lars.wesemann@uni-tuebingen.de.

⁽¹⁾ Lappert, M. F.; Travers, N. F. *Chem. Commun.* **1968**, 1569.

⁽²²⁾ Vaska, L.; Di Luzio, J. W. *J. Am. Chem. Soc.* **1962**, *84*, 679.

Scheme 3. Synthesis of [Et₃NMe][IrH₂(SnB₁₁H₁₁)(CO)- $(PPh_3)_2$] (5) and $[Et_3NMe]_2[IrH(SnB_{11}H_{11})_2(CO)(PPh_3)_2]$ (6)

1 the isolated yield of **2** was almost quantitative. Single crystals of this novel iridium tin coordination compound were obtained in the case of the $[Me_4N]^+$ salt by slow diffusion of Et₂O into an acetonitrile solution. In order to influence the crystallization behavior, compound **2** was synthesized with different tetraalkylammonium salts (viz., $[Me₄N]⁺$, $[Bu₃NMe]⁺$, $[Et₃NMe]⁺$, $[Et_4N]^+$) by the reaction of $[IrCl(CO)(PPh_3)_2]$ with the appropriate tetraalkylammonium salts of stanna-*closo*-dodecaborate.

The reactivity study of complex 2 with the ligands CO and C_2H_4 shows that one of the stanna-*closo*-dodecaborate ligands in complex **2** coordinates in a labile manner and is easily substituted. The substitution reaction was conducted by addition of gaseous CO or $C₂H₄$ into a freeze-pumped acetonitrile solution of the iridium complex **2**. After warming the respective reaction mixtures to RT, the color of the solutions turned from yellow to light yellow. The formation of the substitution products $[Et_4N][Ir(SnB_{11}H_{11})(CO)_2$ - $(PPh_3)_2$] (3) and $[Me_4N][Ir(SnB_{11}H_{11})(CO)(C_2H_4)(PPh_3)_2]$ (4) was proven by NMR spectroscopy and single-crystal structure analysis (Scheme 2).

Oxidative addition with complex **2** was studied in reaction with H2. Hydrogen adds to iridium of the pentacoordinated complex **2** at room temperature and atmospheric pressure and replaces a stannaborate ligand (Scheme 3). Single crystals of the dihydride 5 were prepared with the $[Et₃NMe]⁺$ countercation.

The Brønstedt basicity of the trianion **2** was investigated in reaction with HBF₄, HCl, $[Bu_3NH]^+$, $[Et_3NH]^+$, or water. Only in reaction with water is the basicity of the trianion not high enough to be protonated. In the other cases the hydride complex **6** was straightforwardly synthesized. From the reaction with HCl and in the case of the $[Et₃NMe]⁺$ cation we were able to isolate crystals suitable for X-ray structure analysis (Scheme 3).

Figure 1. ORTEP plot of the anion of $[\text{Me}_4\text{N}]_3[\text{Ir}(\text{SnB}_{11}\text{H}_{11})_2$ -(CO)(PPh3)2] ([Me4N]3[**2**]). H atoms and the cation have been omitted for clarity; ellipsoids are at 30% probability. Selected interatomic distances [Å] and angles [deg]: Ir-C1: 1.852(7), Ir-P2: 2.3221(18), Ir-P1: 2.3240(18), Ir-Sn2: 2.6462(5), Ir-Sn1: 2.6620(5), Ir-Sn1: 2.6620(5), Ir-Sn2: 2.6462(5), Ir-P1: 2.3240(18), Ir-P2: 2.3221(18), Ir-C1: 1.852(7), C1-O1: 1.163(9), P1-Ir-Sn1: 90.64(4), P1-Ir-Sn2: 94.38(4), P2-Ir-Sn1: 90.33(4), P2-Ir-Sn2: 94.33(4), P1-Ir-P2: 170.82(6), P1-Ir-C1: 86.8(2), P2-Ir-C1: 85.8(2), Sn1-Ir-C1: 132.1(2), Sn2-Ir-C1: 125.4(2).

Solid-State Structures. The solid-state structures of compounds **²**-**⁶** have been determined by single-crystal structure analysis. The structure refinement of the iridium complex **2** in space group $\overline{P1}$ reveals a trigonal bipyramidal coordination of the iridium(I) center with *trans* PPh₃ groups in apical positions and two stannaborate moieties as well as CO in the equatorial plane. In this compound, the Ir-Sn distances of 2.6462(5) and $2.6620(5)$ Å are slightly elongated but in good agreement with the reported Ir-Sn distances.^{1-9,11,25} The molecular structure of the anion together with selected interatomic distances and angles is depicted in Figure 1.

In the solid-state structures of the reaction products **3** and **4**, the substitution of one stannaborate moiety by CO and ethylene becomes evident and the Ir center employs a trigonal bipyramidal coordination mode as in **²**. The Ir-Sn separations of 2.6520(9) Å (**3**) and 2.6447(14) Å (**4**) are in accordance with compound **2** and the reported Ir-Sn distances.^{1–9,11,25} The molecular structures of dicarbonyl 3 and the ethylene adduct 4 are shown in Figures 2 dicarbonyl **3** and the ethylene adduct **4** are shown in Figures 2 and 3 together with selected interatomic distances and angles. In compound **4**, the ethylene lies in the equatorial plane of the trigonal bipyramid. For the ethylene molecule of **⁴** the C-C bond length [1.44(3) Å] is longer than in free ethylene (1.339 Å)²⁶ but compares well with corresponding bond lengths in $[Ir(C₂H₄)₂(PMe₂Ph)₃]BF₄$ $(1.40, 1.43 \text{ Å})$,²⁷ [Ir(C₂H₄)₂(PPh₂C₆H₄PPh₃)], and [Ir(C₂H₄)₂(PⁱPr₂- $C_3H_6P^iPr_3$] (av 1.45 and 1.43 Å, respectively).²⁸ The structure refinements of the hydrides **5** and **6** reveal a slightly distorted octahedral coordination geometry of the iridium(III) centers in both compounds. The Ir-Sn distances of 2.6601(13) Å (**5**) as well as 2.6524(7) and 2.6740(7) Å (**6**) are in the range of compounds **²**-**⁴** and the reported distances.^{1–9,11,25} Interestingly, the Ir $-\text{Sn}$ distance

⁽²⁶⁾ Stoicheff, B. P. *Tetrahedron* **1962**, *17*, 135.

⁽²⁷⁾ Lundquist, E. G.; Folting, K.; Streib, W. E.; Huffman, J. C.; Eisenstein, O.; Caulton, K. G. *J. Am. Chem. Soc.* **1990**, *112*, 855.

⁽²⁸⁾ Perego, G.; Piero, G. D.; Cesari, M.; Clerici, M. G.; Perrotti, E. *J. Organomet. Chem.* **1973**, *54*, C51.

Figure 2. ORTEP plot of the anion of $[Et_4N][Ir(SnB₁₁H₁₁) (CO)₂(PPh₃)₂$] (3). H atoms and the cation have been omitted for clarity; ellipsoids are at 30% probability. Selected interatomic distances [Å] and angles [deg]: Ir-Sn: 2.6520(9), Ir-P1: 2.3399(16), Ir-P2: 2.3470(16), Ir-C1: 1.902(6), Ir-C2: 1.904(6), C1-O1: 1.133(7), C2-O2: 1.123(7), P1-Ir-P2: 163.69(5), C1-Ir-C2: 147.1(3), P1-Ir-Sn: 99.87(4), P2-Ir-Sn: 96.41(4), C1-Ir-Sn: 104.02(19), C2-Ir-Sn: 108.82(18).

Figure 3. ORTEP plot of the anion of $[Me_4N][Ir(SnB₁₁H₁₁)(CO)$ - $(C_2H_4)(PPh_3)_2$ (4). H atoms and the cation have been omitted for clarity; ellipsoids are at 30% probability. Selected interatomic distances [Å] and angles $[deg]$: Ir-Sn: 2.6447(14), Ir-P1: 2.347(4), Ir-P2: 2.352(5), Ir-C1: 1.87(2), Ir-C2: 2.20(2), Ir-C3: 2.247(19), C1-O1: 1.15(2), C2-C3: 1.44(3), P1-Ir-Sn: 92.36(12), P2-Ir-Sn: 96.83(14), P1-Ir-P2: 170.72(18), C1-Ir-Sn: 113.0(6), C1-Ir-C2: 123.4(8), C1-Ir-C3: 160.9(8), C1-Ir-P1: 85.0(5), C1-Ir-P2: 90.2(5), C2-Ir-P1: 88.4(5), C2-Ir-P2: 87.6(5), C2-Ir-Sn: 123.3(6), C3-Ir-P1: 90.9(5), C3-Ir-P2: 91.0(5), C3-Ir-Sn: 85.7(5).

in *trans* position to the hydride is slightly longer than the Ir-Sn distance in *trans* position to the CO ligand. Unfortunately, the hydrogen atoms Ir-H of both structures could not be found in the difference Fourier maps. The molecular structures of **5** and **6** are pictured in Figures 4 and 5 together with selected distances and angles.

NMR Spectroscopy in Solution. In order to gain more information about the solution behavior of the synthesized compounds, a multinuclear NMR study has been carried out. In general, the tin coordination of stannaborate in $2-6$ is

Figure 4. ORTEP plot of the anion of [Et₃NMe][IrH₂(SnB₁₁H₁₁)(CO)-(PPh3)2] (**5**). H atoms and the cation have been omitted for clarity; ellipsoids are at 30% probability. Selected interatomic distances [Å] and angles [deg]: Ir-Sn: 2.6601(13), Ir-P2: 2.322(4), Ir-P1: 2.329(4), Ir-C1: 1.93(2), C1-O1: 1.12(2), P2-Ir-P1: 162.20(13), C1-Ir-Sn: 87.1(5), P1-Ir-Sn: 95.38(10), P2-Ir-Sn: 98.73(10), C1-Ir-P2: 96.4(6), C1-Ir-P1: 95.1(6).

Figure 5. ORTEP plot of the anion of [Et₃NMe]₂[IrH(SnB₁₁H₁₁)₂(CO)-(PPh3)2] (**6**). H atoms and the cation have been omitted for clarity; ellipsoids are at 30% probability. Selected interatomic distances [Å] and angles [deg]: Ir-Sn1: 2.6524(7), Ir-Sn2: 2.6740(7), Ir-P1: 2.374(2), Ir-P2: 2.368(2), Ir-C1: 1.895(10), C1-O1: 1.131(10), Sn1-Ir-Sn2: 98.19(2), C1-Ir-P1: 89.0(3), C1-Ir-P2: 87.8(3), C1-Ir-Sn1: 170.6(3), C1-Ir-Sn2: 91.2(3), P1-Ir-Sn1: 90.28(6), P1-Ir-Sn2: 94.30(6), P2-Ir-P1: 165.48(8), P2-Ir-Sn1: 90.63(6), P2-Ir-Sn2: 99.90(6).

indicated by broad signals at -15 ppm in the ${}^{11}B$ { ${}^{1}H$ } NMR
spectra ²⁴ The ${}^{31}P$ { ${}^{1}H$ } NMR spectrum of 2 features one singlet spectra.24 The 31P{1 H} NMR spectrum of **2** features one singlet at 8.6 ppm, flanked by tin satellites with ${}^{2}J(^{119/117}Sn-{}^{31}P) =$
97 Hz. The integration of these satellites confirms the presence 97 Hz. The integration of these satellites confirms the presence of two coordinated heteroborate units.

After the addition of CO or C_2H_4 , in the ¹¹B{¹H} NMR spectra of these reaction mixtures signals of uncoordinated $(-6, -11, -12)$ ppm) and coordinated stannaborate can be detected.²⁴ In addition, the ${}^{31}P{^1H}$ NMR spectra of the dicarbonyl **3** and the ethylene adduct **4** exhibit singlets with tin satellites at 3.7 ppm $[^2J(1^{19/117}Sn-3^{1}P) = 160$ Hz], and 7.4 ppm $[^2J(1^{19/117}Sn-3^{1}P) = 180$ Hz], respectively. In contrast to compound 2, the integration of these $J(^{119/117}\text{Sn}^{-31}\text{P}) = 180 \text{ Hz}$],
and 2 the integration of these respectively. In contrast to compound **2**, the integration of these

Figure 6. ¹H NMR (top) and ¹H $\{31P\}$ NMR (bottom) of [Et₃NMe]- $[IrH₂(SnB₁₁H₁₁)(CO)(PPh₃)₂]$ (5).

satellites indicates the presence of one coordinated heteroborate. The ¹H NMR spectrum of 4 consists of two broad resonances at 1.74 and 0.35 ppm for the ethylene protons. These signals couple with each other $({}^{1}H-{}^{1}H$ COSY) and can be assigned to resonances in the ${}^{13}C(^{1}H)$ spectrum at 21.2 npm (1.74 npm) resonances in the ¹³C{¹H} spectrum at 21.2 ppm (1.74 ppm) and 27.6 ppm (0.35 ppm) through recording a ${}^{1}H-{}^{13}C$ HSQC spectrum spectrum.

After addition of H₂ to complex 2, the ¹¹B{¹H} NMR spectrum of the reaction mixture exhibits signals for coordinated and uncoordinated tin nucleophiles.

In the ${}^{31}P\{{}^{1}H\}$ NMR spectrum of the dihydride 5 the integration of the tin satellites corresponds with coordination of one stannaborate ligand. In the case of the formation of complex $\mathbf{6}$, in the ¹¹B $\{^1H\}$ NMR spectrum of the reaction mixture only coordinated heteroborate can be detected. Due to different substituents in *trans* position to the stannaborate ligands, two signals can be observed in the ¹¹B{¹H} spectrum at -14.8 and -15.6 ppm. In the ³¹P{¹H} spectrum of 6 this different *trans* environment of the tin ligands spectrum of **6**, this different *trans* environment of the tin ligands leads to one resonance at -5.8 ppm with two tin coupling constants: ${}^{2}J(119/117}Sn-31P) = 130$ Hz and ${}^{2}J(119/117}Sn-31P) = 234$ Hz $= 234$ Hz.

In the hydride region of the ${}^{1}H$ NMR spectrum of the dihydride 5, two triplets of doublets at -9.9 and -11.1 ppm can be observed (Figure 6). The doublet structure of both signals with ${}^{2}J({}^{1}H-{}^{1}H) = 4$ Hz arises from the *cis* coupling of the hydrides with each other. Upon ${}^{31}P$ decoupling of the ${}^{1}H$ hydrides with each other. Upon ³¹P decoupling of the ¹H spectrum, the triplet structure of both signals with ${}^{2}J(^{3}P-{}^{1}H)$
= 17 Hz vanishes and the corresponding tin satellites can be $=$ 17 Hz vanishes and the corresponding tin satellites can be observed more clearly. These tin satellites allow the specific assignment of the resonance at -9.9 ppm $[^2 J (119/117 \text{Sn}^{-1} \text{H}) =$
87 Hz₁ to the hydride in cis position to the tin heterohorate 87 Hz] to the hydride in *cis* position to the tin heteroborate. Therefore, the resonance at -11.1 ppm $\left[\frac{2J(119)}{Sn}-1\right]=668$
Hzl can be ascribed to the resonance in *trans* position to the Hz] can be ascribed to the resonance in *trans* position to the stannaborate moiety.

In the hydride spectra of protonation product **6**, one triplet can be observed at -9.7 ppm with $2J(^{31}P-^{1}H) = 13$ Hz. The examination of the ¹H₁³¹P₁ NMR spectrum reveals tin satellites examination of the ${}^{1}H{^{31}P}$ NMR spectrum reveals tin satellites with a small *cis* coupling of 94 Hz and a large *trans* coupling of 632 Hz.

The $^{119}Sn(^{1}H)$ NMR spectra of the synthesized iridium complexes contain very broad signals at -497 ppm (2) , -500 ppm (**3**), -530 ppm (**4**), -531 ppm (**5**), and -502 ppm (**6**). Since uncoordinated stannaborate exhibits one resonance at -550 ppm, these signals indicate the coordination of the heteroborate. Remarkably, the resonances are significantly shifted toward lower frequencies compared to hitherto know η ¹(Sn)-coordinated stannaborate complexes.²⁴ Since the NMR

spectra of **²**-**⁶** are consistent with the solid-state structures, it can be summarized that the solid-state structures of all compounds remain intact in solution.

IR Spectroscopy. The IR spectra of all compounds contain the B-H stretching vibrations at about 2470 cm⁻¹. In addition,
the CO stretching mode of the trianion 2 gives rise to a signal the CO stretching mode of the trianion **2** gives rise to a signal at 1972 cm^{-1} . This is in good agreement with the CO stretching mode of Vaska's complex.²² The CO stretching frequencies of dicarbonyl **3** and the ethylene adduct **4** can be detected at 1955 and 1942 cm^{-1} , respectively, which are slightly shifted to lower wavenumbers in comparison with **2**. In the IR spectrum of the dihydride 5, two Ir-H stretching modes at 2166 and 2100 cm^{-1} as well as one CO vibration at 1980 cm^{-1} can be found and compare well with the stretching modes in $[IrClH₂(PPh₃)₂$ -(CO)].22 Finally, the IR spectrum of the protonation product **6** shows one Ir-H stretching mode at 2250 cm^{-1} and one CO stretching vibration at 2053 cm⁻¹, which is in good agreement with the corresponding stretching modes of $[IrCl₂H(PPh₃)₂$ - (CO)].²⁰

Conclusion

Stanna-*closo*-dodecaborate reacts readily with Vaska's complex under formation of the trigonal bipyramidal compound $[\text{Ir}(\text{SnB}_{11}H_{11})_2(\text{CO})(\text{PPh}_3)_2]^3$ ⁼ (2). In this compound, one stannaborate moiety is coordinated in a labile manner and can be easily substituted by CO or ethylene. In addition, oxidative *cis* addition of H_2 can be accomplished under extrusion of one heteroborate unit. It was further found that the iridium center in **2** shows basicity and can be protonated by the addition of HCl, HBF4, and protic cations such as $[Et₃NH]⁺$ and $[Bu₃NH]⁺$.

Experimental Section

General Comments. All manipulations were carried out under an argon atmosphere in Schlenk glassware. Solvents were dried and purified by standard methods and were stored under argon. NMR spectra were recorded on a Bruker DRX-250 NMR spectrometer equipped with a 5 mm ATM probe head and operating at 250.13 MHz (¹H), 80.25 MHz (¹¹B), 101.25 MHz (³¹P) and 92.25 MHz (¹¹⁹Sn). Chemical shifts are reported in δ values in ppm relative to external TMS (¹H, BF₃ • Et₂O (¹¹B), 85% aqueous H₃PO₄
(³¹P) or SnMe, (¹¹⁹Sn)) using the chemical shift of the solvent ²H $(31P)$, or SnMe₄ (119 Sn)) using the chemical shift of the solvent ²H resonance frequency. Elemental analyses were performed by the Institut für Anorganische Chemie Universität Tübingen using a Vario EL analyzer.

The starting material $[IrCl(CO)(PPh_3)_2]$ was synthesized according to the literature procedure.²⁹ [Me₄N]₂[SnB₁₁H₁₁], [Bu₃NMe]₂- $[SnB₁₁H₁₁], [Et₃NMe]₂[SnB₁₁H₁₁], and [Et₄N]₂[SnB₁₁H₁₁] were$ synthesized using a modified protocol of the original work of the group of $Todd.³⁰$

Crystallography. X-ray data for compounds **²**-**⁶** were collected on a Stoe IPDS 2T diffractometer and were corrected for Lorentz and polarization effects and absorption by air. The programs used in this work are Stoe's X-Area³¹ and the WinGX suite of programs³² including SHELXS³³ and SHELXL³⁴ for structure solution and refinement. Numerical absorption correction based on crystal-shape optimization was applied for **2**, **5**, and **6** with Stoe's X-Red and X-Shape.^{35,36}

Synthesis of $[Me_4N]_3[Ir(SnB_{11}H_{11})_2(CO)(PPh_3)_2]$ **(2).** To a solution of 39 mg (0.05 mmol) of $[IrCl(CO)(PPh₃)₂]$ in 10 mL of

⁽²⁹⁾ Burk, M. J.; Crabtree, R. H. *Inorg. Chem.* **1986**, *25*, 931.

⁽³⁰⁾ Chapman, R. W.; Chester, J. G.; Folting, K.; Streib, W. E.; Todd, L. J. *Inorg. Chem.* **1992**, *31*, 979.

⁽³¹⁾ Stoe & Cie. GmbH *X-AREA 1.26*; Darmstadt, 2004.

acetonitrile was added 40 mg (0.1 mmol) of $[Me_4N]_2[SnB_{11}H_{11}]$. Slow diffusion of $Et₂O$ into the yellow solution resulted in the formation of 67 mg (92% yield) of large yellow crystals of **2**. IR (ATR): 2472 (BH), 1972 cm⁻¹ (CO). ¹H NMR (CD₃CN): 7.49–6.96
(30H PPh₂) 2.93 (36H Me₂N). ¹¹R1¹H) NMR (CD₂CN): -15.2 $(30H, PPh_3), 2.93$ (36H, Me_4N). ¹¹B{¹H} NMR (CD₃CN): -15.2. (30H, PPh₃), 2.93 (36H, Me₄N). ¹¹B{¹H} NMR (CD₃CN): -15.2. ¹³C{¹H} NMR (CD₃CN): 185.1 (CO), 134.6, 128.6, 126.9 (PPh₃), 54.9 (Me_4N). ³¹P{¹H} NMR (CD₃CN): 8.6 [² $J(^{119/117}Sn^{-31}P) =$
97 Hz₁ ¹¹⁹Sn^{{1}H} NMR (CD-CN): -492 Anal Calcd (%) for 97 Hz]. $^{119}Sn({}^{1}H)NMR$ (CD₃CN): -492. Anal. Calcd (%) for C_nH_n_B₂. Found: C₁39.92. C49H88B22IrN3OP2Sn2: C, 40.18; H, 6.06; N, 2.87. Found: C, 39.92; H, 6.19; N, 3.24.

Alternative Synthesis of ($[Bu_3NMe]_3[2]$ **).** $[IrCl(CO)(PPh_3)_2]$ (150 mg, 0.19 mmol) dissolved in 30 mL of CH_2Cl_2 was treated with 250 mg (0.38 mmol) of $[Bu_3NMe]_2[SnB_{11}H_{11}]$ at RT. After stirring for 30 min the dichloromethane phase was washed several times with 30 mL of water. Evaporation of all volatiles under vacuum gave $[Bu_3NMe]_3[Ir(SnB_{11}H_{11})_2(CO)(PPh_3)_2]$ in almost quantitative yield.

Synthesis of $[Et_4N][Ir(SnB₁₁H₁₁)(CO)₂(PPh₃)₂]$ **(3).** To a solution of 39 mg (0.05 mmol) of $[IrCl(CO)(PPh₃)₂]$ in 10 mL of acetonitrile was added 51 mg (0.1 mmol) of $[Et_4N]_2[SnB_{11}H_{11}]$. The resulting solution of $[Et_4N]_3[Ir(SnB_{11}H_{11})_2(CO)(PPh_3)_2]$ was freeze-pumped and gaseous CO was added. After coming to RT and stirring for 10 min, the solution was layered with $Et₂O$ to yield 43 mg (76% yield) of **3** as light yellow needles. IR (ATR): 2467 (BH), 1955 cm⁻¹ (CO). ¹H NMR (CD₃CN): 7.73-7.23
(30H PPb) 2 96 (8H Ft.N) 0 96 (12H Ft.N) ¹¹R¹H) NMR (30H, P*Ph*3), 2.96 (8H, *Et*4N), 0.96 (12H, *Et*4N). 11B{1 H} NMR (CD₃CN): -14.7. ¹³C{¹H} NMR (CD₃CN): 184.2 (CO, 2(³¹P-¹³C) = 13.6 Hz) 133.6 130.9 128.2 (PPb₂) 51.8 (*Ft.N*) $J(^{31}P-^{13}C) = 13.6$ Hz), 133.6, 130.9, 128.2 (*PPh*₃), 51.8 (*Et*₄N), 55.6 *(Et*₄N), 55.6 *(Et*₄N), J^3P_1 ¹ H) MMR (CD-CN); 3.7 I^2 $I^{(119/117}S_{n-}^{31}P) =$ 6.5 (Et_4N) . ³¹P{¹H} NMR (CD₃CN): 3.7 $[^2J(119/117\text{Sn}^{-31}P) =$
160 Hz₁⁻¹¹⁹Sn^{{1}H} NMR (CD₃CN): -500 Anal Calcd (%) 160 Hz]. $^{119}Sn(^{1}H) NMR (CD_3CN): -500$. Anal. Calcd (%)
for C_{te}H_eR₁. IrNO.P.Sn: C 47.97: H 5.34: N 1.22 Found: C for $C_{46}H_{61}B_{11}$ IrNO₂P₂Sn: C, 47.97; H, 5.34; N, 1.22. Found: C, 47.77; H, 5.73; N, 1.30.

Synthesis of $[Me_4N][Ir(SnB_{11}H_{11})(CO)(C_2H_4)(PPh_3)_2]$ **(4).** To a solution of 39 mg (0.05 mmol) of $[IrCl(CO)(PPh_3)_2]$ in 10 mL of acetonitrile was added 40 mg (0.1 mmol) of $[Me_4N]_2[SnB_{11}H_{11}]$. The resulting solution of $[Me_4N]_3[Ir(SnB_{11}H_{11})_2(CO)(PPh_3)_2]$ was freeze-pumped and gaseous ethylene was added. After coming to RT and stirring for 10 min, the solution was layered with $Et₂O$ to yield 40 mg (70% yield) of **4** as light yellow needles. IR (ATR): 2480 (BH), 1942 cm⁻¹ (CO). ¹H NMR (CD₃CN): 0.35, 1.74 (C₂H₄). 2480 (BH), 1942 cm⁻¹ (CO). ¹H NMR (CD₃CN): 0.35, 1.74 (C₂H₄).
¹³C{¹H} NMR (CD₃CN): 21.2, 27.6 (C₂H₄). ¹¹B{¹H} NMR (CD_3CN) : -14.9 . ³¹P{¹H} NMR (CD_3CN) : 7.4 $[{}^2J({}^{119/117}Sn-{}^{31}P)$
= 180 Hz₁ ¹¹⁹Sn^{{1}H} NMR (CD_3CN) : -530 Anal Calcd (%) $= 180 \text{ Hz}$]. ¹¹⁹Sn{¹H} NMR (CD₃CN): -530. Anal. Calcd (%)
for C₁₂H_aB₁J_FNOP₂Sn: C 47.14: H 5.24: N 1.28. Found: C for $C_{43}H_{57}B_{11}$ IrNOP₂Sn: C, 47.14; H, 5.24; N, 1.28. Found: C, 47.49; H, 5.21; N, 1.21.

Synthesis of [Et₃NMe][IrH₂(SnB₁₁H₁₁)(CO)(PPh₃)₂] (5). To a solution of 39 mg (0.05 mmol) of $[IrCl(CO)(PPh_3)_2]$ in 10 mL of acetonitrile was added 48 mg (0.1 mmol) of $[Et₃NMe]₂[SnB₁₁H₁₁].$ The solution of $[Et_3NMe]_3[Ir(SnB_{11}H_{11})_2(CO)(PPh_3)_2]$ was freezepumped and gaseous hydrogen was added. After coming to RT and stirring for 10 min, the solution was layered with $Et₂O$ to yield 36 mg (65% yield) of **5** as colorless crystals. IR (ATR): 2475 (BH), 2166 (IrH), 2100 (IrH), 1980 cm⁻¹ (CO). ¹H NMR (CD₃CN): -9.9
 $\binom{2}{1}$ $\binom{1}{1}$ $\binom{1}{1}$ \equiv 4 H₇ $\binom{2}{1}$ $\binom{3}{1}$ \equiv -1H₁ = 17 H₇ $\binom{1}{2}$ $\binom{1}{3}$ $\binom{1}{1}$ $\binom{3}{1}$ \equiv -1H₁ $({}^2J({}^1H-{}^1H) = 4 Hz, {}^2J({}^{31}P-{}^1H) = 17 Hz, cis-{}^2J({}^{119/117}Sn-{}^1H)$
= 87 Hz) -11 1² $I({}^1H-{}^1H) = 4 Hz, {}^2I({}^{31}P-{}^1H) = 17 Hz, trans-{}$ $= 87 \text{ Hz}$), $-11.1 \frac{[^2 J(^1H-^1H) = 4 \text{ Hz}^2 J(^{31}P-^1H) = 17 \text{ Hz}$, *trans*-
 $(^2 J(^{119/117}Sn-^1H) = 668 \text{ Hz}$ 1 $^{11}R(^1H)$ NMR (CD-CN); -15 1 $J(^{119/117}Sn^{-1}H) = 668$ Hz]. ¹¹B{¹
¹P{¹H} NMR (CD₂CN): 7.8 [²*H*¹] $H^{31}P_1^{119/117}Sn^{-1}H$ = 668 Hz]. ${}^{11}B_1^{1}H_1^{118}NMR$ (CD₃CN): -15.1.
 $H^{31}P_1^{1}H_1^{118}NMR$ (CD₃CN): 7.8 $[{}^{2}J_1^{(119/117}Sn^{-31}P)$ = 154 Hz].
 $H^{119}Sn_1^{1}H_1^{118}NMR$ (CD₃CN): -531. Anal. Calcd (%) for ¹¹⁹Sn{¹H} NMR (CD₃CN): -531. Anal. Calcd (%) for C₄₄H₆₁B₁₁IrNOP₂Sn: C, 47.54; H, 5.53; N, 1.26. Found: C, 46.98; H, 5.90; N, 1.23.

Synthesis of [Et₃NMe]₂[IrH(SnB₁₁H₁₁)₂(CO)(PPh₃)₂] (6). To a solution of 39 mg (0.05 mmol) of $[IrCl(CO)(PPh₃)₂]$ in 10 mL of acetonitrile was added 48 mg (0.1 mmol) of $[Et_3NMe]_2[SnB_{11}H_{11}]$. Etheric HCl was added to the resulting solution of $[Et₃NMe]₃[Ir(SnB₁₁H₁₁)₂(CO)(PPh₃)₂].$ After stirring for 10 min, the solution was layered with Et_2O to yield 50 mg (68% yield) of **⁶** as light yellow crystals. IR (ATR): 2470 (BH), 2250 (IrH), 2053 (32) Farrugia, L. J. *J. Appl. Crystallogr.* **¹⁹⁹⁹**, *³²*, 837. (33) Sheldrick, G. M. *SHELXS-97*; Go¨ttingen, 1997.

⁽³⁴⁾ Sheldrick, G. M. *SHELXL-97*; Göttingen, 1997.
(35) Stoe & Cie. GmbH *X-RED 1.26*; Darmstadt, 2004.

⁽³⁶⁾ Stoe & Cie. GmbH *X-SHAPE 2.05*; Darmstadt, 2004.

cm⁻¹ (CO). ¹H NMR (CD₃CN): -9.7 [²*J*(³¹P-¹H) = 13 Hz, *cis*-
²*J*(^{119/117}Sn-¹H) = 94 Hz, *trans*⁻²*J*(^{119/117}Sn-¹H) = 632 Hz].
¹¹R^{*I*}¹H₁</sub> NMR (CD₂CN): -14.8 (11B) -15.6 (11B) ³¹P*I*¹H $H^2J(^{119/117}Sn-{}^{1}H) = 94$ Hz, *trans*- $2J(^{119/117}Sn-{}^{1}H) = 632$ Hz].
 $H^1B(^{1}H)$ NMR (CD₃CN): -14.8 (11B), -15.6 (11B). ${}^{31}P(^{1}H)$

NMR (CD₃CN): -5.8 $I^2N^{119/117}Sn-{}^{31}D) = 130$ Hz ${}^{2}N^{119/119}$ NMR (CD₃CN): -5.8 $[{}^{2}J({}^{119/117}Sn-{}^{31}P) = 130$ Hz, ${}^{2}J({}^{119/117}Sn-{}^{31}P) = 234$ Hz₁ ${}^{119}Sn/{}^{1}H$ NMR (CD₂CN): -502 Anal $117Sn^{-31}P$) = 234 Hz]. $119Sn(^{1}H) NMR (CD_3CN)$: -502. Anal.
Calcd (%) for C_{Ct}H_oR₂₂IrN₂OP-Sn₂: C₄₁₅₁: H₆08: N₁₉₀ Calcd (%) for $C_{51}H_{89}B_{22}IrN_2OP_2Sn_2$: C, 41.51; H, 6.08; N, 1.90. Found: C, 41.54; H, 6.53; N, 1.92.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft.

Supporting Information Available: This material is available free of charge via the Internet at http://pubs.acs.org.

OM8001679