Dihydrogen Loss from a 14-Electron Rhodium(III) Bis-Phosphine Dihydride To Give a Rhodium(I) Complex That Undergoes Oxidative Addition with Aryl Chlorides

Thomas M. Douglas, Adrian B. Chaplin, and Andrew S. Weller*

Department of Chemistry, Inorganic Chemistry Laboratories, University of Oxford, Oxford OX1 3QR, U.K.

Received April 29, 2008

Summary: Dihydrogen loss from the 14-electron Rh(III) bisphosphine dihydride $[Rh(P^{i}Bu_{3})_{2}H_{2}][BAr^{F}_{4}]$ forms a complex tentatively identified as $[Rh(P^{i}Bu_{3})_{2}(L_{2})][BAr^{F}_{4}]$ (L_{2} = solvent or agostic interactions), which reacts with dichloroethane or fluorobenzene to form $[Rh(P^{i}Bu_{3})_{2}(ClCH_{2}CH_{2}Cl)][BAr^{F}_{4}]$ and $[Rh(P^{i}Bu_{3})_{2}(\eta^{6}-C_{6}H_{5}F)][BAr^{F}_{4}]$, respectively. $[Rh(P^{i}Bu_{3})_{2}(L_{2})_{2}]$ - $[BAr^{F}_{4}]$ or its adducts undergo oxidative addition of aryl halides $(C_{6}H_{5}X; X = Cl, Br)$ at room temperature to give the dimeric species $[Rh(P^{i}Bu_{3})_{2}(C_{6}H_{5})(\mu-X)]_{2}$.

The use of haloarene substrates is ubiquitous in organic chemistry, and the oxidative addition of C-halogen bonds to low-coordinate transition metals, in particular Pd(0),¹ is a key step in cross-coupling reactions.² Recently a number of examples of oxidative addition of aryl halides to rhodium and iridium complexes have been reported,³ reactions which are suggested to proceed through low-coordinate electronically unsaturated intermediates. Examples of well-characterized group 9 species capable of oxidative addition with aryl halides are particularly useful in the study of the emerging fields of C-C and C-N coupling⁴ and polychloroarene dehydrohalogenation⁵ reactions mediated by group 9 metals.

We have previously reported that bis-dihydrogen dihydride complexes $[Rh(PR_3)_2H_2(\eta^2-H_2)_2][BAr^F_4]$ (R = ⁱPr, Cy; Ar^F = C₆H₄(CF₃)₂) are formed from addition of H₂ to CD₂Cl₂ solutions of $[Rh(PR_3)_2(nbd)][BAr^F_4]$ (nbd = norbornadiene).⁶ Removing

(4) See for example: (a) Grushin, V. V.; Alper, H. Chem. Rev. 1994, 94, 1047–1062. (b) Ishiyama, T.; Hartwig, J. J. Am. Chem. Soc. 2000, 122, 12043–12044. (c) Wang, X.; Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005, 127, 4996–4997. (d) Lewis, J. C.; Berman, A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 2493–2500.

Figure 1. [Rh(PⁱBu₃)₂H₂][BAr^F₄] (1; 40% probability ellipsoids). The anion, minor disordered components, and most hydrogen atoms have been omitted for clarity. Key bond distances (Å) and angles (deg): Rh1–P1, 2.3067(12); Rh1–P2, 2.2990(11); Rh1–C3, 2.90(3); Rh1–C15, 2.891(5); P1–Rh1–P2, 175.09(4).

the H₂ atmosphere results in loss of the dihydrogen ligands and formation of dihydride species, suggested to be stabilized by solvent molecule coordination or by agostic C–H····Rh interactions. We now report that, on changing the phosphine ligand to triisobutylphosphine (PⁱBu₃), removing the H₂ atmosphere results instead in the generation of a complex with no hydride ligands that can be considered as the kinetic equivalent of "12electron" [Rh(PⁱBu₃)₂][BAr^F₄]. This complex undergoes clean oxidative addition with unactivated aryl bromides and chlorides at room temperature to give coordinatively unsaturated Rh(III) aryl halides.

Addition of H₂ (4 atm) to [Rh(PⁱBu₃)₂(nbd)][BAr^F₄] in CH₂Cl₂ solution results in the immediate formation of [Rh(PⁱBu₃)₂H₂]-[BAr^F₄] **1** (eq 1), which has been characterized by NMR and IR spectroscopy, ESI-MS, and X-ray crystallography. Complex **1** can be characterized in CD₂Cl₂ solution under an argon atmosphere. The molecular structure of **1** is shown in Figure 1 and reveals two Rh····H−C agostic interactions trans to the (located) hydride ligands (Rh···C(3) = 2.90(3) Å, Rh···C(15) = 2.891(5) Å) and is closely related to "14-electron" iridium bis-phosphine and *N*-heterocyclic carbene hydrides reported by Caulton⁷ and Nolan,⁸ respectively. ¹H and ³¹P{¹H} NMR spectra are consistent with the solid-state structure. In the ³¹P{¹H} NMR

^{*} To whom correspondence should be addressed. E-mail: andrew.weller@chem.ox.ac.uk.

^{(1) (}a) Stambuli, J. P.; Incarvito, C. D.; Buhl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 1184–1194. (b) Barrios-Landeros, F.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 6944–6945. (c) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685–4696.

⁽²⁾ Corbet, J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651-2710.

^{(3) (}a) Douvris, C.; Řeed, C. A. Organometallics 2008, 27, 807–810.
(b) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2004, 126, 3068–3069. (c) Willems, S T. H.; Budzelaar, P. H. M.; Moonen, N. N. P.; Gelder, R.; Smits, J. M. M.; Gal, A. W. Chem. Eur. J. 2002, 8, 1310–1320. (d) Gatard, S.; Celenligil-Cetin, R.; Guo, C.; Foxman, B. M.; Ozerov, O. V. J. Am. Chem. Soc. 2006, 128, 2808–2809. (e) Fan, L.; Parkin, S.; Ozerov, O. V. J. Am. Chem. Soc. 2005, 127, 16772–16773, and references therein. Oxidative addition of CH₂Cl₂ or benzyl chloride has been reported for cationic Rh(I) complexes: Dorta, R.; Shimon, L. J. W.; Rozenberg, H.; Milstein, D. Eur. J. Inorg. Chem. 2002, 1827–1834.
(4) See for example: (a) Grushin, V. V.; Alper, H. Chem. Rev. 1994,

^{(5) (}a) Esteruelas, M. A.; Herrero, J.; Oliván, M. *Organometallics* **2004**, *23*, 3891–3897. (b) Atienza, M. A.; Esteruelas, M. A.; Fernández, M.; Herrero, J.; Oliván, M. *New J. Chem.* **2001**, *25*, 775–776. (c) Esteruelas, M. A.; Herrero, J.; López, F. M.; Martín, M.; Oro, L. A. *Organometallics* **1999**, *18*, 1110–1112.

⁽⁶⁾ Ingleson, M. J.; Brayshaw, S. K.; Mahon, M. F.; Ruggiero, G. D.; Weller, A. S. *Inorg. Chem.* **2005**, *44*, 3162–3171.

⁽⁷⁾ Cooper, A. C.; Clot, E.; Huffman, J. C.; Streib, W. E.; Maseras, F.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. **1999**, *121*, 97–106.

⁽⁸⁾ Scott, N. M.; Pons, V.; Stevens, E. D.; Heinekey, D. M.; Nolan, S. P. Angew. Chem., Int. Ed. 2005, 44, 2512–2515.

Figure 2. [Rh(PⁱBu₃)₂(ClCH₂CH₂Cl)][BAr^F₄] (**3b**) and [Rh(PⁱBu₃)₂(η^{6} -C₆H₅F)][BAr^F₄] (**3c**) (40% probability ellipsoids). The anions, minor disordered components, and most hydrogen atoms have been omitted for clarity.

spectrum a single environment is observed that shows coupling to rhodium (δ 28.3, *J*(RhP) = 107 Hz). The ¹H NMR spectrum displays a high-field doublet of triplets for hydrides, while a single set of resonances is observed for the ⁱBu protons, indicating rapid exchange between agostic and free C–H groups. This exchange is not frozen out at 190 K. The IR spectrum (CD₂Cl₂) shows a very broad, medium-intensity band characteristic of agostic interactions at 2668 cm^{-1.7} Using a slightly different protocol (starting from Rh(PⁱBu₃)₂H₂Cl and Na[BAr^F₄]) the analogous complex [Rh(PⁱBu₃)₂H₂][BAr^F₄] (**2**) was also synthesized (Supporting Information).

Evaporating a pale yellow solution of 1 to dryness and placing the residue under vacuum (16 h, 5×10^{-2} Torr) resulted in the slow loss of H₂ to give an air-sensitive orange solid that we tentatively formulate as $[Rh(P^{i}Bu_{3})_{2}(L_{2})][BAr^{F}_{4}]$ (3a) (eq 2, L₂) = solvent, agostic or anion coordination). Alternatively, rapid H_2 removal from 1 in CH_2Cl_2 solution can be achieved by addition of tert-butylethylene (tbe, 5 equiv, 5 min) as a hydrogen acceptor, evaporating the solution to dryness, and washing the resulting orange powder with pentane to remove excess the. ¹H and ³¹P{¹H} NMR spectra are identical for both preparation methods, indicating that the is not bound to the metal. The ¹H NMR spectrum (CD₂Cl₂, 298-190 K) of 3a shows peaks due to a single PⁱBu₃ environment, a featureless hydride region, and no evidence for coordination of the $[BAr_4^F]^-$ anion through a η^6 -arene interaction.⁹ The ${}^{31}P{}^{1}H{}$ and ${}^{19}F$ NMR spectra (CD_2Cl_2) both show single environments at δ 44.9 (J(RhP) = 207 Hz) and δ –61.1, respectively. The latter observation further suggests that the anion is not bound through a η^6 -arene interaction in solution.9a Additional evidence comes from changing the $[BAr^{F_4}]^-$ anion in **3a** for the carborane anion $[closo-HCB_{11}(CH_3)_{11}]^-$ ¹⁰, which resulted in no change in the chemical shift or coupling constant in the ³¹P{¹H} NMR

spectrum (CD₂Cl₂). The ³¹P{¹H} NMR spectrum of **3a** remains relatively sharp and unchanged in chemical shift between 298 and 190 K, suggesting that reversible C-H activation of one of the alkylphosphines, which would result in inequivalent phosphorus environments as recently reported by Caulton for (PNP)Rh (PNP = ${}^{t}Bu_2PCH_2SiMe_2)_2N$), is probably not occurring.¹¹ Crystalline material obtained from CH₂Cl₂/pentane solutions showed a grossly disordered solid-state structure from which, unfortunately, no useful structural information could be obtained. Microanalysis and ESI-MS data were consistent with a formulation that *does not* contain CH₂Cl₂, a ¹H NMR spectrum (C₆H₅F) of dissolved crystals showed no liberated CH₂Cl₂, and a solid-state ²H NMR experiment of a sample of 3a prepared in CD₂Cl₂ showed no deuterium signal, consistent with the absence of coordinated CD₂Cl₂. In the solid state, in the absence of coordinated solvent, such a complex would undoubtedly have supporting Rh ···· HC agostic interactions¹² or interactions with the $[BAr_{4}^{F}]^{-}$ anion,⁹ while in *solution* a bound CH_2Cl_2 solvent molecule¹³ or agostic interactions are likely present, given that we have no evidence for anion coordination. Infrared spectroscopic measurements on microcrystalline 3a (KBr) or dissolved **3a** (CD_2Cl_2) show no characteristic stretches for agostic C-H interactions, thus suggesting anion and solvent coordination, respectively. However, given that those signals observed in 1 are particularly broad, we cannot discount that they are present but are too broad to be observed. A d⁸ ML₂ fragment would be expected to be bent rather than linear and thus be well set up for interactions with solvent, arene, or agostic C-H bonds.¹⁴

Whatever the precise structure of **3a**, solvent-trapping experiments confirm that the ${Rh(P^iPr_{3})_2}^+$ fragment has been formed.

(14) Otsuka, S. J. Organomet. Chem. 1980, 200, 191-205.

^{(9) (}a) Douglas, T. M.; Molinos, E.; Brayshaw, S. K.; Weller, A. S. Organometallics **2007**, *26*, 463–465. (b) Powell, J.; Lough, A.; Saeed, T. J. Chem. Soc., Dalton Trans. **1997**, 4137–4138.

^{(10) (}a) Korbe, S.; Schreiber, P. J.; Michl, J. *Chem. Rev.* **2005**, *106*, 5208–5249. (b) Clarke, A. J.; Ingleson, M. J.; Kociok-Kohn, G.; Mahon, M. F.; Patmore, N. J.; Rourke, J. P.; Ruggiero, G. D.; Weller, A. S. *J. Am. Chem. Soc.* **2004**, *126*, 1503–1517.

⁽¹¹⁾ Verat, A. Y.; Pink, M.; Fan, H.; Tomaszewski, J.; Caulton, K. G. *Organometallics* **2008**, *27*, 166–168.

^{(12) (}a) Urtel, H.; Meier, C.; Eisentrager, F.; Rominger, F.; Joschek, J. P.; Hofmann, P. *Angew. Chem., Int. Ed.* **2001**, *40*, 781. (b) Baratta, W.; Mealli, C.; Herdtweck, E.; Ienco, A.; Mason, S. A.; Rigo, P. A. *J. Am. Chem. Soc.* **2004**, *126*, 5549–55629. (c) Ingleson, M. J.; Mahon, M. F.; Weller, A. S. *Chem. Commun.* **2004**, *21*, 2398–2399.

⁽¹³⁾ For examples of coordinated CH₂Cl₂ see: (a) Butts, M. D.; Scott, B. L.; Kubas, G. J. *J. Am. Chem. Soc.* **1996**, *118*, 11831. (b) Huang, D. J.; Huffman, J. C.; Bollinger, J. C.; Eisenstein, O.; Caulton, K. G. *J. Am. Chem. Soc.* **1997**, *119*, 7398. (c) Taw, F. L.; Mellows, H.; White, P. S.; Hollander, F. J.; Bergman, R. G.; Brookhart, M.; Heinekey, D. M. *J. Am. Chem. Soc.* **2002**, *124*, 5100.

Figure 3. Synthesis of 4a,b (left) and a plot illustrating first-order oxidative addition at different C_6H_5Cl concentrations (right).

Figure 4. $[Rh(P^{i}Bu_{3})_{2}(C_{6}H_{5})(\mu-Cl)]_{2}[BAr^{F}_{4}]_{2}$ (**4a**) (40% probability ellipsoids). The anions, minor disordered components, and hydrogen atoms have been omitted for clarity.

Thus, repeating the synthesis in ClCH₂CH₂Cl rather than CD₂Cl₂ solvent afforded an air-sensitive complex with NMR spectroscopic characteristics very similar to those of **3a** in CD₂Cl₂ solution (δ (³¹P) 32.1, *J*(RhP) = 204 Hz) that could also be characterized by X-ray crystallography as the dichloroethane adduct¹⁵ [Rh(PⁱBu₃)₂(ClCH₂CH₂Cl)][BAr^F₄] (**3b**) (Figure 2). Use of fluorobenzene as the solvent gave the arene adduct [Rh(PⁱBu₃)₂(η ⁶-C₆H₅F)][BAr^F₄] (**3c**) (Figure 2). **3b,c** can also be cleanly generated by adding the appropriate ligand to CH₂Cl₂ solutions of **3a** (eq 2).

Interestingly **2** does not lose H₂ readily and addition of the to CH₂Cl₂ solutions results in slow decomposition. We speculate that this is because the bulky *tert*-butyl groups in **2** cannot fold back sufficiently to allow access to a trigonal transition-state with a dihydrogen-like ligand, most likely required for the loss of H₂ from **1**. Similar attempts to remove all the hydrides from [Rh(PR₃)₂H₂(η^2 -H₂)₂][BAr^F₄] (R = ⁱPr or Cy) gave mixtures of products, showing that the PⁱBu₃ ligands provide just the right balance of steric and electronic support to facilitate H₂ loss and stabilize the resulting complex.

Addition of bromo- or chlorobenzene to 3a in CH_2Cl_2 solution at room temperature resulted in the quantitative

formation (NMR) of new species that have been characterized as the products of aryl halide oxidative addition at the cationic Rh(I) center: $[Rh(P^{i}Bu_{3})_{2}(C_{6}H_{5})(\mu-X)]_{2}[BAr^{F}_{4}]_{2}$ (4a, X = Cl; 4b, X = Br). The reaction with bromobenzene is instant at room temperature (< 5 min), but that with chlorobenzene takes longer (8 h). In this latter case the immediate formation of an intermediate species is observed. The crystal structure of $[Rh(P^{i}Bu_{3})_{2}(C_{6}H_{5})(\mu-Cl)]_{2}$ (4a) is presented in Figure 4 and shows a dimeric complex with bridging chloride ligands. Each Rh(III) is formally a 16-electron species with a vacant site in the coordination sphere, lying opposite the aryl group $(Rh \cdots C > 3.4 \text{ Å})$. The intermediate species in this oxidative addition reaction has been identified spectroscopically as $[Rh(P^{i}Bu_{3})_{2}(\eta^{6}-C_{6}H_{5}Cl)][BAr^{F}_{4}]$ (5) by comparison of spectroscopic data with those of 3c. When 5 is formed in situ from addition of chlorobenzene to 3a in CD₂Cl₂, its transformation to 4b follows first-order kinetics with a rate that is independent of chlorobenzene concentration (Figure 3; $k = (1.78 \pm 0.05) \times 10^{-4} \text{ s}^{-1}$), indicating that the ratelimiting step is oxidative cleavage of the bound aryl halide to the metal center, possibly via a η^6 to η^2 ring slippage mechanism.¹⁶ The formation of **4a**,**b** via a η^6 -haloarene intermediate parallels that observed by Budzelaar and coworkers on the neutral Rh(nacnac)(coe) complex (nacnac = ArNC(Me)CHC(Me)NAr, $Ar = 2,6-Me_2C_6H_3$, coe = ciscyclooctene) to give dimeric Rh(III) aryl halides.^{3c} The structure of 4a is also closely related to the dimeric alkylrhodium(III) complex [RhCl₂(CH₂CH₃){P^tBu₂(CH₂CH₂C₆H₃-2,6-Me₂)}]₂.¹⁷ Addition of an excess (10 equiv) of PⁱBu₃ to a CH₂Cl₂ solution of 3a inhibited oxidative addition of haloarenes, consistent with the mechanism proposed. Complexes 3b,c also underwent oxidative addition of aryl halides to give the same products, but in the case of 3c the rate is slower, presumably due to competitive exchange between the arenes.

In conclusion, we report the H₂ loss from a "14-electron" Rh(III) complex to give a series of solvent-stabilized lowcoordinate cationic Rh(I) species (3a-c) in solution, which are capable of oxidative addition of unactivated aryl halides at room temperature. These products are themselves unsaturated, and it is tempting to speculate that this feature will allow them to take part in further reactivity that will result in useful coupling reactions. Studies are currently underway to probe this, and preliminary results indicate that 3a will promote C-C coupling between 4-bromotoluene and (4-*tert*butylphenyl)boronic acid in the presence of base. Finally, we note that species such as 3b are inferred, but not isolated,

⁽¹⁵⁾ Moxham, G. L.; Brayshaw, S. K.; Weller, A. S. Dalton Trans. 2007, 1759–1761.

⁽¹⁶⁾ Ahlquist, M.; Norrby, P. O. Organometallics 2007, 26, 550–553.
(17) Canepa, G.; Brandt, C. D.; Werner, H. J. Am. Chem. Soc. 2002, 124, 9666–9667.

Communications

intermediates in cycloaddition reactions mediated by Rh(I) bis-phosphines.¹⁸

Acknowledgment. We thank the EPSRC and the University of Oxford for support, Amber Thompson for assistance with X-ray crystallography, and Michael Willis and

James Osbourne for experimental assistance in the preliminary C-C coupling study.

Supporting Information Available: Text, figures, and tables giving full experimental details, kinetic data, and characterization data and CIF files giving crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

OM800373D

⁽¹⁸⁾ Gilbertson, S. R.; Hoge, G. S. Tetrahedron Lett. 1998, 39, 2075–2078.