Base-Promoted Selective Activation of Benzylic Carbon-**Hydrogen Bonds of Toluenes by Iridium(III) Porphyrin**

Chi Wai Cheung and Kin Shing Chan*

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China

*Recei*V*ed July 25, 2007*

 K_2CO_3 and NaOPh promoted the rate of benzylic carbon-hydrogen bond activation (BnCHA) of toluenes with iridium(III) porphyrin carbonyl chloride (Ir(ttp)Cl(CO)) to give iridium porphyrin benzyls in high yields. Mechanistic studies suggested that K_2CO_3 initially converted Ir(ttp)Cl(CO) to Ir(ttp)X (X $=$ OH⁻, KCO₃⁻), which reacted very fast with toluenes to yield Ir(ttp)H. Ir(ttp)H then reduced the carbonyl
ligand in unreacted Ir(ttp)Cl(CO) to yield Ir(ttp)Me. Ir(ttp)H also dimerized debydrogenatively to give ligand in unreacted Ir(ttp)Cl(CO) to yield Ir(ttp)Me. Ir(ttp)H also dimerized dehydrogenatively to give [Ir(ttp)]2, especially promoted in the presence of base, which further reacted with toluenes to yield iridium benzyls. Weaker base of NaOPh converted Ir(ttp)Cl(CO) to Ir(ttp)OPh, which selectively promoted BnCHA to yield iridium benzyls.

Introduction

Selective intermolecular carbon-hydrogen bond activation (CHA) by transition metal complexes is an important area of research in organometallic chemistry for the controlled activation and functionalization of hydrocarbons.¹ The activation of toluenes is particularly important since the catalytic functionalization of toluenes can yield industrially important chemicals such as benzyl alcohols, $\frac{2}{3}$ benzaldehydes, $\frac{3}{3}$ and benzoic acids.⁴ The selectivity of benzylic CHA (BnCHA) for functionalization is therefore important as competitive aromatic CHA (ArCHA) has been reported.⁵

CHA by low valent $Rh(I)^6$ and $Ir(I)^7$ complexes have been extensively studied. The commonly accepted mechanism involves classical oxidative addition pathway to give Rh(III) and Ir(III) products.^{1a,e} CHA by high valent Rh(III)^{8,9} and Ir(III)^{10,11} complexes have also been investigated, and various mechanisms are proposed: oxidative addition via M(III)-M(V)-M(III) species $(M = Rh⁸$ or Ir^{11a,c}), *σ*-bond metathesis,^{8,10,11f} and heterolytic cleavage.¹² Rh(V)¹³ and Ir(V)¹⁴ complexes were even observed in the analogous silicon-hydrogen bond activation. However, no Rh(V) and Ir(V) complexes formed by CHA have been directly observed. This makes CHA by Rh(III) and Ir(III) complexes mechanistically intriguing since the mechanistic details of CHA by high-valent Rh(III) and Ir(III) complexes have not been fully defined.

We have reported that Rh(III) and Ir(III) porphyrins are unique high valent complexes in undergoing CHA. Selective aldehydic CHA of aryl aldehydes by $Rh^{III}(ttp)Cl^8$ and $Ir^{III}(ttp)$ - $Cl(CO)^{10}$ (ttp = tetrakis(p-tolyl)porphyrin dianion) without ArCHA have been observed. We have discovered that in the absence of base, Rh(ttp)Cl reacted with toluene to give both ArCHA and BnCHA products. With K_2CO_3 added, the rates of reactions were enhanced, and only selective BnCHA products in high yields were isolated for a variety of functionalized toluenes.⁹ We thus have extended our investigation of CHA of

(11) (a) Burger, P.; Bergman, R. G. *J. Am. Chem. Soc.* **1993**, *115*, 10462– 10463. (b) Tellers, D. M.; Bergman, R. G. *Organometallics* **2001**, *20*, 4819– 4832. (c) Wong-Foy, A. G.; Bhalla, G.; Liu, X. Y.; Periana, R. A. *J. Am. Chem. Soc.* **2003**, *125*, 14292–14293. (d) Bhalla, G.; Periana, R. A. *Angew. Chem., Int. Ed.* **2005**, *44*, 1540–1543. (e) Tenn, W. J.; Young, K. J. H.; Bhalla, G.; Oxgaard, J.; Goddard, W. A.; Periana, R. A. *J. Am. Chem. Soc.* **2005**, *127*, 14172–14173. (f) Tenn, W. J.; Young, K. J. H.; Oxgaard, J.; Nielsen, R. J.; Goddard, W. A.; Periana, R. A. *Organometallics* **2006**, *25*, 5173–5175.

(12) Oxgaard, J.; Tenn, W. J.; Nielsen, R. J.; Periana, R. A.; Goddard, W. A. *Organometallics* **2007**, *26*, 1565–1567.

(13) (a) Fernandez, M.-J.; Bailey, P. M.; Bentz, P. O.; Ricci, J. S.; Koetzle, T. F.; Maitlis, P. M. *J. Am. Chem. Soc.* **1984**, *106*, 5458–5463. (b) Karshtedt, D.; Bell, A. T.; Tilley, T. D. *Organometallics* **2006**, *25*, 4471– 4482.

(14) (a) Fernandez, M.-J.; Maitlis, P. M. *Organometallics* **1983**, *2*, 164– 165. (b) Klei, S. R.; Tilley, T. D.; Bergman, R. G. *J. Am. Chem. Soc.* **2000**, *122*, 1816–1817.

^{*} Corresponding author. E-mail: ksc@cuhk.edu.hk.

^{(1) (}a) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. *Acc. Chem. Res.* **1995**, *28*, 154–162. (b) Shilov, A. E.; Shul'pin, G. B. *Chem. Re*V*.* **¹⁹⁹⁷**, *⁹⁷*, 2879–2932. (c) Crabtree, R. H. *J. Chem. Soc., Dalton Trans.* **2001**, *17*, 2437–2450. (d) Labinger, J. A.; Bercaw, J. E. *Nature* **2002**, *417*, 507–514. (e) Lersch, M.; Tilset, M. *Chem. Re*V*.* **²⁰⁰⁵**, *¹⁰⁵*, 2471–2526. (2) Chatterjee, D.; Mitra, A.; Roy, B. C. *React. Kinet. Catal. Lett.* **²⁰⁰⁰**,

⁷⁰, 147–151.

⁽³⁾ Gündüz, G.; Akpolat, O. *Ind. Eng. Chem. Res.* **1990**, *29*, 45–48.

⁽⁴⁾ Kaeding, W. W.; Lindblom, R. O.; Temple, R. G.; Mahon, H. I.

*Ind. Eng. Chem. Proc. Des. De*V*.* **¹⁹⁶⁵**, *⁴*, 97–101. (5) (a) Collman, J. P. Boulatov, R. *Inorg. Chem.* **²⁰⁰¹**, *⁴⁰*, 2461–2464. (b) Johansson, L.; Ryan, O. B.; Rømming, C.; Tilset, M. *J. Am. Chem. Soc.* **2001**, *123*, 6579–6590. (c) Zhong, H. A.; Labinger, J. A.; Bercaw, J. E. *J. Am. Chem. Soc.* **2002**, *124*, 1378–1399. (d) Heyduk, A. F.; Driver, T. G.; Labinger, J. A.; Bercaw, J. E. *J. Am. Chem. Soc.* **2004**, *126*, 15034– 15035. (e) Zhao, S.-B.; Song, D.; Jia, W.-L.; Wang, S. *Organometallics* **2005**, *24*, 3290–3296. (f) Driver, T. G.; Day, M. W.; Labinger, J. A.; Bercaw, J. E. *Organometallics* **2005**, *24*, 3644–3654.

^{(6) (}a) Jones, W. D.; Feher, F. J. *Organometallics* **1983**, *2*, 562–563. (b) Periana, R. A.; Bergman, R. G. *Organometallics* **1984**, *3*, 508–510. (c) Jones, W. D.; Feher, F. J. *Acc. Chem. Res.* **1989**, *22*, 91–100.

^{(7) (}a) Janowicz, A. H.; Bergman, R. G. *J. Am. Chem. Soc.* **1982**, *104*, 352–354. (b) Hoyano, J. K.; Graham, W. A. G. *J. Am. Chem. Soc.* **1982**, *104*, 3723–3725. (c) Hoyano, J. K.; McMaster, A. D.; Graham, W. A. G. *J. Am. Chem. Soc.* **1983**, *105*, 7190–7191. (d) Bianchini, C.; Masi, D.; Meli, A.; Peruzzini, M.; Sabat, M.; Zanobini, F. *Organometallics* **1986**, *5*, 2557– 2559. (e) Mohammad, H. A. Y.; Grimm, J. C.; Eichele, K.; Mack, H.-G.; Speiser, B.; Novak, F.; Quintanilla, M. G.; Kaska, W. C.; Mayer, H. A. *Organometallics* **2002**, *21*, 5775–5784. (f) Feller, M.; Karton, A.; Leitus, G.; Martin, J. M. L.; Milstein, D. *J. Am. Chem. Soc.* **2006**, *128*, 12400– 12401.

⁽⁸⁾ Chan, K. S.; Lau, C. M. *Organometallics* **2006**, *25*, 260–265.

⁽⁹⁾ Chan, K. S.; Chiu, P. F.; Choi, K. S. *Organometallics* **2007**, *26*, 1117–1119.

⁽¹⁰⁾ Song, X.; Chan, K. S. *Organometallics* **2007**, *26*, 965–970.

Table 2. Base Effect on CHA of Toluene with Ir(ttp)Cl(CO)

Ir(ttp)Cl **l** $\frac{1}{200 \degree C}$, time, N₂ $\frac{1}{2b}$ $\frac{1}{3}$ $\frac{1}{3}$

(2)

toluenes with iridium porphyrin. We now report that NaOPh can promote the rate and selectivity of BnCHA with iridium porphyrin.

Result and Discussion

Initially, Ir(ttp)Cl(CO) did not react with toluene at 150 $^{\circ}$ C in 3 days. A very slow reaction occurred at 200 °C in 9 days to give Ir(ttp)Bn in 55% yield (Table 1, eq 1, entry 2). *p*-Xylene and 4-fluorotoluene also reacted slowly to generate BnCHA complexes (Table 1, entries 1 and 3). 4-Nitrotoluene decomposed Ir(ttp)Cl(CO) (Table 1, entry 4). Likely, the low reactivity is due to the coordinative saturation of Ir(ttp)Cl(CO).

In view of successful base-promoted BnCHA by $Rh(ttp)Cl⁹$, various bases were examined. Coordinating organic base, pyridine, and noncoordinating bulky organic base, 2,6-di-*tert*butylpyridine were not effective at all. Improvements in rate enhancement and yields were observed with inorganic bases (Table 2, eq 2). Stronger inorganic bases¹⁵ led to shorter reaction times but lower yields of Ir(ttp)Bn and lower selectivity as Ir(ttp)Me also formed (Table 2, entries 1–4). Weaker bases of NaOPh and NaF¹⁵ reacted more slowly, but they were more selective in BnCHA to yield Ir(ttp)Bn only (Table 2, entries 5 and 6). K_2CO_3 and NaOPh were therefore selected as the optimized bases to further examine the scope of base-promoted BnCHA since they reacted sufficiently fast and gave higher yields of Ir(ttp)Bn in higher selectivity. The optimized amount of base was found to be 20 equivalents with reference to Ir(ttp)Cl(CO) since a lower equivalent of K_2CO_3 (10 equiv) slowed down the reaction rates (Table 3, eq 3, entries 1 and 2), and a higher equivalent of K_2CO_3 (30 equiv) gave similar yields of Ir(ttp)Bn and Ir(ttp)Me in 2 h (Table 3, entry 3 and 4).

 $K₂CO₃$ and NaOPh were also used in the reactions of Ir(ttp)Cl(CO) with various 4-substituted toluenes (Table 4, eq 4). Both bases enhanced BnCHA with the stronger base K_2CO_3 showing a larger rate enhancement than NaOPh (Table 4, entries

Table 3. Optimization of Base Equivalent in CHA of Toluenes with Ir(ttp)Cl(CO)

K_2CO_3 , time $Ir(ttp)BnCl(CO) + PhCH3$ \rightarrow Ir(ttp)Bn + Ir(ttp)Me 2 _h temp, N_2								
entry	K_2CO_3 (equiv)	$temp$ ^o C	time	vield $2b/\%$	(3) vield $3/\%$			
$\mathcal{D}_{\mathcal{L}}$	10 20 20	150 150 200	3 d 2 d 3.5 _h	63 66 61	3			

Table 4. Effect of K_2CO_3 and NaOPh on CHA of Toluene with **Ir(ttp)Cl(CO)**

4 30 200 2 h 60 7

1–3). NaOPh was more selective without any Ir(ttp)Me formed and generally higher yielding in BnCHA when compared with $K₂CO₃$. Furthermore, 4-nitrotoluene successfully reacted to give **2d** (Table 4, entry 4).

Synthesis of Authentic Samples. Iridium porphyrin benzyls **2a**, **2b**, **2c**, and **2e** were successfully synthesized by reductive benzylation of Ir(ttp)Cl(CO) (eq 5).^{16–18} Ir(ttp)Cl(CO) was first reduced by NaBH₄ with base to yield $Ir(ttp)^{-}$, which was then further reacted with benzyl bromides to yield iridium benzyls.

$$
Ir(ttp)Cl(CO) \frac{1. NaBH4, NaOH, 2 h}{2. p-FG-C6H4CH2Br, 2 h} \frac{Ir(ttp)Br7 - FG}{FG = Me, 2a, 52\%;} \frac{3. p-FG}{HF, 80 \degree C, N2} \frac{FG}{F, 2c, 54\%;} \frac{1}{5}
$$
 (5)

X-ray Details. The collection and processing parameters of single-crystal data for complexes **2a**, **2d**, and **2e** are given in Table 5 and Supporting Information. Table 6 lists the selected bond lengths and angles. The bond lengths of Ir-C in Ir(ttp)CH₂Ar and Ir-C-C_{aryl} angles are not affected by the *para*-substituents (Table 6). In the solid state, **2a**, **2d**, and **2e** adopt monomeric structures. However, due to the rotation of the molecule of **2d**, disorder of the X-ray structure results. Both disordered and simplified ORTEP drawings of **2d** are reported in Supporting Information. As a representative, Figure 1 shows the molecular structure of $Ir(ttp)Bn(p-tBu)$ (2e) (30% thermal ellipsoids).

Mechanism: No Base. Scheme 1 illustrates the proposed mechanism for the reactions without and with bases. In the absence of a base (Scheme 1, Pathway I), $Ir(ttp)Cl(CO)$ presumably reacts with the benzylic C-H bond of toluene,

⁽¹⁵⁾ Lide, D. R., Ed. *CRC Handbook of Chemistry and Physics*, 85th ed; CRC Press: Cleveland, OH, 2004.

⁽¹⁶⁾ Yeung, S. K.; Chan, K. S. *Organometallics* **2005**, *24*, 6426–6430. (17) Ogoshi, H.; Setsune, J.-I.; Yoshida, Z.-I. *J. Organomet. Chem.* **1978**, *159*, 317–328.

⁽¹⁸⁾ Ogoshi, H.; Setsune, J.-I.; Omura, T.; Yoshida, Z.-I. *J. Am. Chem. Soc.* **1975**, *97*, 6461–6466.

Table 5. Crystal Data and Summary of Data Collection and Refinement for 2a, 2d, and 2e

param	2a	2d	2e
formula	$C_{56}H_{45}N_{4}Ir.2H_{2}O$	$C_{55}H_{42}N_5O_2Ir$	$C_{59}H_{51}N_4Ir$
cryst size (mm)	$0.40 \times 0.30 \times 0.20$	$0.40 \times 0.30 \times 0.20$	$0.40 \times 0.30 \times 0.20$
fw	1002.19	997.14	1008.24
cryst syst	monoclinic	monoclinic	monoclinic
space group	P2(1)/c	P2(1)/c	P2(1)/n
$a(\AA)$	13.870(3)	7.6573(12)	12.755(3)
b(A)	22.020(4)	16.574(3)	22.544(6)
c(A)	15.361(3)	21.973(3)	16.701(4)
α (deg)	90	90	90
β (deg)	95.34(3)	90.180(3)	100.692(6)
γ (deg)	90	90	90
V, \mathring{A}^3	4671.3 (16)	2788.7(7)	4719 (2)
Z	4	$\mathfrak{2}$	4
D_{calcd} , Mg/m ³	1.425	1.188	1.419
radiation (λ) , \AA	0.71073	0.71073	0.71073
θ range, deg	2.11 to 25.00	1.54 to 28.02	1.53 to 25.00
F(000)	2024	1000	2040
reflens colled	8575	18222	25303
indpndt rflns	8215	6677	8315
data/restraints/params	8215/0/568	6677/155/631	8315/0/577
goodness of fit	1.043	1.095	1.074
final R_1^a/wR_2^b [$I > 2\sigma(I)$]	0.0503/0.1372	0.0582/0.1621	0.0422/0.1022
final R_1^a/wR_2^b (all data)	0.0945/0.1569	0.1024/0.1925	0.0658/0.1198
w_1/w_2^c	0.0768/4.5632	0.1088/0.0000	0.0664/0.3854

 ${}^{a}R_{1} = \sum (|F_{0}| - |F_{c}|)/\sum |F_{0}|$. ${}^{b}wR_{2} = \sum \left\{ \sum [w(F_{0}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{0}^{2})^{2}] \right\}^{1/2}$. c Weighting scheme $w^{-1} = \sigma^{2} (F_{0}^{2}) + (w_{1} P)^{2} + w_{2} P$, where $P = (F_{0}^{2} + F_{c}^{2}) / 3$ $2F_c^2$)/3.

Table 6. Selected Bond Lengths and Bond Angles of Compounds 2a, 2d, and 2e

entry	FG	Ir-C length (A)	$Ir-C-Caryl$ bond angle (deg)
	Me, $2a$	2.089(9)	115.2(6)
	$NO2$, 2d	2.186 $(4)^a$	114.8 $(4)^b$
κ	H^{\prime} Bu, 2e	2.073(6)	117.1(4)

^a Average of 2 Ir-C bond lengths from 2 kinds of disordered structures. ^{*b*} Average of 4 Ir-C-C_{aryl} bond angles from 4 kinds of disordered structures.

Figure 1. ORTEP drawing of $Ir(ttp)Bn(p-Bu)$ (2e) in 30% probability displacement ellipsoids.

which is a sterically more accessible bond than arene C-H bonds, via *σ*-bond metathesis^{10,11f} or its variant form of internal electrophilic substitution (IES).¹⁹ Complete dissociation of Ir(ttp) \dot{Cl} (CO) into Ir(ttp)^{+10,20} for BnCHA is less probable, and this can be attributed into 2 reasons. (i) $Ir(ttp)BF_4$ (an inseparable mixture of Ir(ttp)BF₄ and Ir(ttp)(CO)BF₄)¹⁰ with the much less coordinating BF_4 ⁻ reacted with toluene at 200 °C in 2 h to

generate only Ir(ttp)(*p*-tol) in 26% yield via electrophilic aromatic substitution²¹ without any Ir(ttp)Bn (eq 6). (ii) Ir(ttp)(p tol) did not further react with toluene at 200 °C in 1.5 days to yield any Ir(ttp)Bn, and therefore it is not an intermediate to give Ir(ttp)Bn. The dissociation of Cl^- from Ir(ttp) $Cl(CO)$ does take part during BnCHA because of the decreased rate in the reaction between Ir(ttp)Cl(CO) and toluene added with CsCl (10 equiv) at 200 °C to yield Ir(ttp)Bn in 61% yield with unreacted Ir(ttp)Cl(CO) recovered in 12% yield in 15 days (eq 7). BnCHA without base does not involve Ir(ttp)H as the intermediate since no Ir(ttp)H was observed in the course of the reaction of Ir(ttp)Cl(CO) with *p*-xylene (100 equiv) in C_6D_6 at 200 °C in 22 days to yield Ir(ttp)Bn(*p*-Me) in 47% yield.

$$
\text{Ir(ttp)}\text{BF}_4 + \text{PhCH}_3 \xrightarrow{\text{200 °C, 2 h, N}_2} \text{Ir(ttp)}(p - \text{tol}) +
$$

"
$$
\text{HBF}_4 \text{''} \quad (6)
$$

$$
\begin{array}{ccc}\n\text{Ir(ttp)} \text{BF}_{4} + \text{PhCH}_{3} & \xrightarrow{200 \text{ °C, 2 h, N}_{2}} & \text{Ir(ttp)}(p - \text{tol}) + \\
& & \xrightarrow{200 \text{ °C, CsCl (10 equiv)}} & \text{``HBF}_{4} \text{''} & (6) \\
\text{Ir(ttp)Cl(CO)} + \text{PhCH}_{3} & \xrightarrow[15 \text{ d, N}_{2}]{200 \text{ °C, CsCl (10 equiv)}} & \text{unreacted} \\
& & \text{Ir(ttp)} \text{Bn} + \text{Ir(ttp)} \text{Cl(CO)} & (7)\n\end{array}
$$

Ir(ttp)Cl(CO) + PhCH₃ $\frac{200 \text{ °C, CsCl (10 equiv})}{15 \text{ d, N}_2}$

Ir(ttp)Bn +
 Mechanism: Strong Base. In the preser

(Scheme 1, Pathway II) such as K₂CO₃, wor

of hydroxide generated by thermal hydroly

200 °C with a smal **Mechanism: Strong Base.** In the presence of a strong base (Scheme 1, Pathway II) such as K_2CO_3 , which is a precursor of hydroxide generated by thermal hydrolysis of carbonate at 200 \degree C with a small amount of water present,²² or NaOH, Ir(ttp)X ($X = OH^{-}$, KCO_3^{-}) **A** probably forms first by rapid
ligand substitution 11f,23 Ir(ttp)X further reacts with toluene to ligand substitution.^{11f,23} Ir(ttp)X further reacts with toluene to yield Ir(ttp)H.^{17,24} This is supported by the initial formation of Ir(ttp)H as the only iridium porphyrin species in the independent reaction of Ir(ttp)Cl(CO) with $Ph^{13}CH_3$ (50 equiv) and Cs_2CO_3

⁽¹⁹⁾ In the internal electrophilic substitution (IES) mechanism, the lone pair on an M-X ligand forms an X-H bond, while the orbital making up the M-X bond turns into a coordinating lone pair (ref 12).

⁽²⁰⁾ Aoyamac, Y.; Yoshida, T.; Sakurai, K.; Ogoshi, H. *Organometallics* **1986**, *5*, 168–173.

⁽²¹⁾ Zhou, X.; Tse, M. K.; Wu, D.-D.; Mak, T. C. W.; Chan, K. S. *J. Organomet. Chem.* **2000**, *598*, 80–86.

⁽²²⁾ L'vov, B. V. *Thermochim. Acta* **1997**, *303*, 161–170.

^{(23) (}a) Fulton, J. R.; Holland, A. W.; Fox, D. J.; Bergman, R. G. *Acc. Chem. Res.* **2002**, *35*, 44–56. (b) Cámpora, J.; Palma, P.; del Río, D.; Álvarez, E. *Organometallics* **2004**, *23*, 1652–1655.

⁽²⁴⁾ Collman, J. P.; Kim, K. *J. Am. Chem. Soc.* **1986**, *108*, 7847–7849.

in C_6D_6 at 150 °C in 30 min (eq 8). The characteristic high field hydride signal was observed at -57.4 ppm by ¹H NMR spectroscopy. However, no benzyl alcohol was observed by GCspectroscopy. However, no benzyl alcohol was observed by GC-MS analysis in the reaction mixture of Ir(ttp)Cl(CO) with toluene and NaOH (20 equiv) or K_2CO_3 (20 equiv) at 200 °C. As the fate of the organic coproducts remains unclear, we can only conclude that toluene is a hydride donor or reducing agent. The detailed mechanism of conversion of Ir(ttp)Cl(CO) to Ir(ttp)H with toluene and bases is still unclear. As Ir(ttp)OH could not be successfully prepared from the reaction of Ir(ttp)Cl(CO) with KOH, its observation in the reaction mixture remains difficult. Presumably, Ir(ttp)X reacts very rapidly with toluene to give Ir(ttp)H (Scheme 1, Pathway **IIa**) which further reacts with toluene to yield Ir(ttp)Bn (Scheme 1, Pathway **IIb**). The intermediacy of Ir(ttp)H was further established by the separate reaction of Ir(ttp)H with toluene at 200 $^{\circ}$ C in 1 h to give Ir(ttp)Bn in 48% yield (eq 9).

$$
\text{Ir(ttp)Cl(CO)} + \text{Ph}^{13}\text{CH}_{3} \xrightarrow{\text{Cs}_{2}\text{CO}_{3}(20 \text{ equiv}, \text{C}_{6}\text{D}_{6})} \text{Ir(ttp)H (8)}
$$
\n
$$
\text{Ir(ttp)H} + \text{PhCH}_{3} \xrightarrow{\text{200 °C}, 1 \text{ h}, \text{N}_{2}} \text{Ir(ttp)Bn} \qquad (9)
$$

Cs₂CO₃ (20 equiv), C₆D₆

150 °C, 30 min

200 °C, 1 h, N₂

160 °C, 1 h, N₂

200 °CH₃ reacted with 1

h to give Ir(ttp)¹

d, respectively (eq

he redu Ir(ttp)H + PhCH₃^{200 °C,1 h, N₂
Ir(ttp)Bn (9)
Ir(ttp)H can also reduce unreacted Ir(ttp)Cl(CO) to Ir(ttp)Me
(Scheme 1, Pathway II_c). Ph¹³CH₃ reacted with Ir(ttp)Cl(CO)
and Cs₂CO₃ at 150 °C in 2 h to give Ir(} Ir(ttp)H can also reduce unreacted Ir(ttp)Cl(CO) to Ir(ttp)Me (Scheme 1, Pathway II_c). Ph¹³CH₃ reacted with Ir(ttp)Cl(CO) and Cs_2CO_3 at 150 °C in 2 h to give Ir(ttp)¹³CH₂Ph and Ir(ttp)Me in 8% and 17% yield, respectively (eq 10). No Phmetal hydride species to yield metal methyl complexes has been widely reported,^{25,26} it is highly likely that $PhCH_3$ reduces Ir(ttp)Cl(CO) to Ir(ttp)H, which further reduces unreacted Ir(ttp)Cl(CO), most likely the CO ligand, to Ir(ttp)Me. Indeed, Ir(ttp)H (4 equiv) with $Cs₂CO₃$ (20 equiv) were found to reduce Ir(ttp)Cl(CO) (1 equiv) in toluene- d_8 at 150 °C in 4 days to yield Ir(ttp)Bn- d_7 (19%) and Ir(ttp)Me (10%) (eq 11). The presence of base is important in the reduction of Ir(ttp)Cl(CO) as the reaction of Ir(ttp)H (4 equiv) with Ir(ttp)Cl(CO) (1 equiv) without any base in toluene- d_8 was incomplete even at 200 \textdegree C in 19 days, yielding Ir(ttp)Bn-*d*⁷ (23%) and Ir(ttp)-Me (5%) with unreacted Ir(ttp)Cl(CO) and Ir(ttp)H (eq 12). Therefore, the Ir(ttp) anion, which is formed by deprotonation of Ir(ttp)H with base, is probably the reacting species. The base-promoted reduction of Ir(ttp)Cl(CO) with Ir(ttp)H was also successfully carried out in C_6D_6 in 150 °C to yield Ir(ttp)Me in 10% yield (eq 13).

$$
Ir(ttp)Cl(CO) + Ph13CH3 \xrightarrow[150 °C, 2 h]{Cs_2CO_3(20 \text{ equiv})}
$$

\n
$$
Ir(ttp)13CH2Ph + Ir(ttp)CH3 (10)
$$

\n
$$
Ir(ttp)H + Ir(ttp)Cl(CO) \xrightarrow[Cs_2CO_3(20 \text{ equiv}), C_6D_5CD_3]{17\%}
$$

\n
$$
Ir(ttp)H + Ir(ttp)Cl(CO) \xrightarrow[19\%]{Cs_2CO_3(20 \text{ equiv}), C_6D_5CD_3}
$$

\n
$$
Ir(ttp)H + Ir(ttp)Cl(CO) \xrightarrow[19\%]{C_6D_5CD_3}
$$

\n
$$
Ir(ttp)H + Ir(ttp)Cl(CO) \xrightarrow[19\%]{C_6D_5CD_3}
$$

\n
$$
Ir(ttp)CH3 + Ir(ttp)Cl(CO) + Ir(ttp)H (12)
$$

\n
$$
= \frac{\text{unreacted} \text{unreacted} \text{unreacted}}{\text{19\%} \text{19\%} \text{19\%}}
$$

\n
$$
Ir(ttp)H + Ir(ttp)Cl(CO) + \xrightarrow[19\%]{Cs_2CO_3(100 \text{ equiv}), C_6D_6}
$$

\n
$$
I = \frac{\text{19\%} \text{19\%}}{\text{19\%} \text{19\%}} \text{19\%}
$$

\n
$$
Ir(ttp)CH3(13)
$$

\n
$$
Ir(ttp)Me \text{ is not an intermediate of} Ir(ttp)Bn \text{ as it reacted}
$$

\n
$$
= \frac{\text{19\%} \text{19\%}}{\text{19\%} \text{19\%}} \text{19\%}
$$

\n
$$
I = \frac{\text{19\%} \text{19\%}}{\text{19\%}} \text{19\%}
$$

\n
$$
I = \frac{\text{19\%} \text{19\%}}{\text{19\%} \text{19\%} \text{19\%}}
$$

\n
$$
I = \frac{\
$$

+ $\frac{C_{52}CO_3 (100 \text{ equiv}), C_6D_6}{150 \text{ °C}, 11 \text{ d}}$
Ir(
ermediate of Ir(ttp)Bn a
9 °C in 14 days to yield
ery of Ir(ttp)Me in 46%
 $\zeta_2CO_3(20 \text{ equiv})$ at 200
8n with the recovery of
Ie Generation. The sour
(ttp)Me is probabl Ir(ttp)Me is not an intermediate of Ir(ttp)Bn as it reacted slowly with toluene at 200 °C in 14 days to yield only a trace of Ir(ttp)Bn with the recovery of Ir(ttp)Me in 46% yield, and it reacted with toluene and $K_2CO_3(20 \text{ equiv})$ at 200 °C in 3 days to yield a trace of Ir(ttp)Bn with the recovery of Ir(ttp)Me in 92% yield.

Mechanism of Ir(ttp)Me Generation. The source of proton in the methyl group of Ir(ttp)Me is probably from water. In view of the rapid generation of Ir(ttp)H without Ir(ttp)D in the reaction of Ir(ttp)Cl(CO) with toluene- d_8 (50 equiv) and Cs₂CO₃ (20 equiv) at 150 °C in 20 min, water, which is intrinstically present in trace amount in base used, probably acts as an alternative proton source for the generation of Ir(ttp)H. However, no reaction occurred when Ir(ttp)Cl(CO) and water (100 equiv) in benzene were heated at 200 °C for 8 days to yield Ir(ttp)Me. Thus, water does not directly react with the CO ligand in Ir(ttp)Cl(CO) to yield Ir(ttp)Me. Indeed, base is also essential in the formation of Ir(ttp)Me. It is proposed that $Ir(ttp)D$ was generated and rapidly exchanged with the trace of water present to yield Ir(ttp)H before reducing CO in Ir(ttp)Cl(CO) to yield Ir(ttp)Me (eq 14). In fact, facile proton exchange of Ir(ttp)D with H₂O (50 equiv) added with Cs_2CO_3 (40 equiv) in C_6D_6 at 150 °C did occur to yield Ir(ttp)H (eq 15). Complete conversion

⁽²⁵⁾ Transition-metal coordinated CO can be reduced by hydride sources to yield metal-methyl complexes. (a) Treichel, P. M.; Shubkin, R. L. *Inorg. Chem.* **1967**, *6*, 1328–1334. (b) Lapinte, C.; Catheline, D.; Astruc, D. *Organometallics* **1988**, *7*, 1683–1691.

⁽²⁶⁾ The carbonyl group of $Rh(ttp)C(O)Ph$ was proposed to be reduced by Rh(ttp)H to yield Rh(ttp)Bn (ref 8).

of Ir(ttp)H to Ir(ttp)D with D_2O (50 equiv) in C_6D_6 added with $Cs₂CO₃$ (40 equiv) in the same reaction conditions of BnCHA confirms the occurrence of proton exchange (eq 16). Therefore, only Ir(ttp)H was present without any Ir(ttp)D during CO reduction (eq 14). The conversion of $Ir(ttp)D$ to $Ir(ttp)H$ is likely due to the base-promoted proton transfer via Ir(ttp) dimer, $[Ir(ttp)]_2$ ²⁷ which was observed in the proton exchange of Ir(ttp)D with H₂O (eq 15) and Ir(ttp)H with D₂O (eq 16).

$$
Ir(ttp)Cl(CO) + C_6D_5CD_3 \xrightarrow{\qquad 150 \text{ °C, Cs}_2CO_3(20 \text{ equiv}), \text{ } C_6D_6} \qquad \qquad 14 \text{ d}
$$
\n
$$
Ir(ttp)Bn-d_7 + Ir(ttp)CH_3 \qquad (14)
$$

$$
\text{Ir(ttp)D} + \underset{50 \text{ equiv}}{\text{H}_2\text{O}} \xrightarrow{\text{150 °C, Cs}_2\text{CO}_3 \text{ (40 equity), } C_6\text{D}_6} \text{Ir(ttp)H}
$$
\n
$$
\xrightarrow{\text{13 h}} \text{Ir(ttp)H}
$$
\n
$$
\xrightarrow{\text{13 h}} \text{I}
$$
\n
$$
\xrightarrow{\text{15}}
$$

$$
\rm{Ir(ttp)H} + \underset{50 \text{ equiv}}{D_2O} \xrightarrow{150 \text{ °C, Cs}_2CO_3 \text{ (40 equiv), C}_6D_6} \rm{Ir(ttp)D(16)}
$$

150 °C, Cs₂CO₃ (20 equiv), C₆D₆

14 d

Ir (ttp)Bn-d₇ + Ir (ttp)CI

42%

13 h

13 h

13 h

13 h

13 h

14 d

14 t

14 d

Ir (ttp)CI s_{44%}

Ir (t

13 h

14 d

14 d

15 d

15 d

16 d

16 d

16 d

16 d

16 d

16 d
 150 °C, Cs₂CO₃ (40 equiv), C₆D₆

13 h

13 h

13 h

13 h

13 h

13 m

13 h

16 proton from water intered in the addition of D₂O to the l

12 hen toluene-d₈, Cs₂ 150 °C, Cs₂CO₃ (40 equiv), C₆D₆

36 h

f proton from water into

e addition of D₂O to the b

hen toluene-d₈, Cs₂CO₃ (2

eacted with Ir(ttp)Cl(CO)

and Ir(ttp)CD₃ formed at a

mount of D₂O was increase
 The incorporation of proton from water into Ir(ttp)Me is further confirmed by the addition of D_2O to the base-promoted reactions of toluene. When toluene- d_8 , Cs_2CO_3 (20 equiv), and D₂O (10 equiv) were reacted with Ir(ttp)Cl(CO) at 150 °C, a mixture of Ir(ttp)CH₃ and Ir(ttp)CD₃ formed at a ratio of 5.45: 1 (eq 17a). When the amount of D_2O was increased to 50 equiv, the ratio of Ir(ttp)CH₃/Ir(ttp)CD₃ became 2.54:1 with an increase in the proportion of Ir(ttp)CD₃ (eq 17b). The addition of D₂O (50 equiv) still did not give $Ir(ttp)CD_3$ in 100% yield.

The base-promoted reactions of toluene by Ir(ttp)Cl(CO) with various other bases were also studied at 150 °C (Table 7, eq 18). The rates of reactions and the ratios of Ir(ttp)CH3/Ir(ttp)Bn increased with more basic salts (MOH $> M_2CO_3$) (Table 7, entries 2–5). Furthermore, the Ir(ttp)Me/Ir(ttp)Bn ratio increased down the group of metal ions in the bases ($Cs > K > Na > Li$, Table 7, entries 1–6). The above trends can be rationalized by the nucleophilicity of a base. A more nucleophilic OH^- reacts faster than CO_3^2 in ligand substitution with Ir(ttp)Cl(CO) to give Ir(ttp)X (X: OH^- > MCO_3^- , Scheme 1, Pathway II), which
also reacts faster with toluene to produce Ir(ttp)H (Scheme 1) also reacts faster with toluene to produce Ir(ttp)H (Scheme 1, pathway \mathbf{II}_a). Further reaction of $\text{Ir}(\text{ttp})$ H with toluene forms Ir(ttp)Bn (Scheme 1, Pathway II_b) or with unreacted Ir(ttp)-Cl(CO) to yield Ir(ttp)Me (Scheme 1, Pathway **IIc**).

Table 7. Base Effect on the Formation of Ir(ttp)Me

$$
Ir(ttp)Cl(CO) + PhCH_3 \xrightarrow[150\text{ °C, time, N}_2]{\text{base (equiv)}} Ir(ttp)Bn + Ir(ttp)CH_3
$$
\n(18)

With a stronger base, more rapid deprotonation of Ir(ttp)H gives $[\text{Ir(ttp)}]$ ^{- M ⁺¹⁷ (Scheme 2, pathway **I**). The Ir(ttp) anion} then attacks the CO ligand of Ir(ttp)Cl(CO) followed by dissociation of Cl^- to give presumably Ir(ttp)C(O)Ir(ttp) \mathbf{B}^{28} (Scheme 2, Pathway **II**), which dissociates homolytically and rapidly to yield the Ir^{II}(ttp) radical and Ir^{III}(ttp)C(O) carboncentered radical²⁹ **C** (Scheme 2, Pathway **II_a**). The Ir^{III}(ttp)C(O) radical probably further reacts with Ir(ttp)H to give Ir(ttp)CHO and $Ir^H(ftp)$ radicals^{27b,30} (Scheme 2, Pathway **III**). Ir(ttp)CHO is further reduced by Ir(ttp)H to yield Ir(ttp)Me³¹ (Scheme 2, pathway **IV**). In view of the higher yield of Ir(ttp)Me with a stronger base in base-promoted BnCHA, the Ir(ttp) anion is probably the reacting species for Ir(ttp)Me formation (Scheme 2, pathways **II**–**IV**).

Mechanism of Ir(ttp)Bn Formation. [Ir(ttp)]₂ is probably another reacting species to generate Ir(ttp)Bn in base-promoted BnCHA. The formation of $[Ir(ttp)]_2$ was supported by its observation in 41% yield in the reaction of $Ir(ttp)Cl(CO)$ with toluene- d_8 (50 equiv) and Cs_2CO_3 in C_6D_6 at 150 °C in 1 h (eq 19). The spectroscopic identification of $[Ir(ttp)]_2$ was confirmed using an authentic sample of $[\text{Ir}(\text{ttp})]_2^{27a}$ generated by the reaction of Ir(ttp)H with 2,2,6,6-tetramethylpiperidinooxy (TEMPO) in C_6D_6 at room temperature for 5 min. Indeed, $[Ir(ttp)]_2$ did react rapidly with toluene at 200 °C in 90 min to yield Ir(ttp)Bn in 46% yield (eq 20).

$$
Ir(ttp)Cl(CO) + C_6D_5CD_3 \xrightarrow{150 ^{\circ}C, Cs_2CO_3 (20 \text{ equiv}), C_6D_6}
$$

\n
$$
Ir(ttp)H + [Ir(ttp)]_2 + Ir(ttp)Bn-d_7 + Ir(ttp)Me \qquad (19)
$$

\n
$$
38\%
$$

$$
[Ir(ttp)]_2 + PhCH_3 \xrightarrow[N_2]{1.5 \text{ h, } 200 \text{ °C}} Ir(ttp)Bn \qquad (20)
$$

150 °C, Cs₂CO₃ (20 equiv), C₆D₆

1h

+ Ir(ttp)Bn- d_7 + Ir(ttp)M
 $\frac{1.5 \text{ h}, 200 \text{ °C}}{14\%}$
 $I_3 \xrightarrow{N_2}$ Ir(ttp)Bn

thermal (eqs 21 and 22) a

ogenative dimer formation

were the summer of the position of t [Ir(ttp)]₂+PhCH₃ $\xrightarrow{\text{1.5 h, 200 °C}}$
is formed by the thermal (eqs
(eq 23) dehydrogenative di
(ttp)H remained unreacted at
ted rapidly at 150 °C to give
1). This shows that high temp $[Ir(ttp)]_2$ is formed by the thermal (eqs 21 and 22) and basepromoted (eq 23) dehydrogenative dimer formation from Ir(ttp)H. Ir(ttp)H remained unreacted at room temperature in 2 h but reacted rapidly at 150 °C to give $[Ir(ttp)]_2$ in 74% yield in 1 h (eq 21). This shows that high temperature is required for dimer formation from Ir(ttp)H. Alternatively, in the separate reaction of Ir(ttp)H with toluene (50 equiv) in C_6D_6 at 150 °C, $[Ir(ttp)]_2$ was formed in 66% yield as the major species in 30 min prior to reacting with toluene to yield Ir(ttp)Bn (eq 22). $Rh(oep)H (oep = octaethylporphyrin dianion)$ has also been

⁽²⁷⁾ The authentic sample of $[Ir(ttp)]_2$ was synthesized using the same method to synthesize [Ir(oep)]2 by reacting Ir(oep)H and TEMPO. (a) Chan, K. S.; Leung, Y.-B. *Inorg. Chem.* **1994**, *3*, 3187. The chemical shifts and splitting patterns of [Ir(ttp)]₂: in ¹H NMR spectrocscopy was similar to that of [Rh(ttp)]₂. For [Ir(ttp)]₂: ¹H NMR (C₆D₆) *δ* 9.48 (d, 4 H, *o*-phenyl), 8.33 (s, 8 H, pyrrole), 7.65 (d, 4 H, *o*′-phenyl), 2.46 (s, 12 H, *p*-methyl); m and m' -phenyl hydrogens are obscured by solvent (7.15). For $[Rh(ttp)]_2$: ¹H NMR (C₆D₆) δ 9.64 (d, 4 H, *o*-phenyl), 8.63 (s, 8 H, pyrrole), 7.75 (d, 4 H, *o*′*-*phenyl), 2.50 (s, 12 H, *p*-methyl); m and *m*′-phenyl hydrogens are obscured by solvent (7.15). (b) Wayland, B. B.; Voorhees, S. L. V.; Charles Wilker, C. *Inorg. Chem.* **1986**, *25*, 4039–4042.

⁽²⁸⁾ An analogue of $Ir(ttp)C(O)Ir(ttp)$, $Rh(oep)C(O)Rh(oep)$, had been reported. (a) Wayland, B. B.; Woods, B. A.; Coffin, V. L. *Organometallics,* **1986**, *5*, 1059–1062. (b) Coffin, V. L.; Brennen, W.; Wayland, B. B. *J. Am. Chem. Soc.* **1988**, *110*, 6063–6069.

⁽²⁹⁾ Cui, W.; Li, S.; Wayland, B. B. *J. Organomet. Chem.* **2007**, *692*, 3198–3206.

^{(30) (}a) Paonessa, R. S.; Thomas, N. C.; Halpern, J. *J. Am. Chem. Soc.* **1985**, *107*, 4333–4335. (b) Wayland, B. B.; Sherry, A. E.; Poszmik, G.; Bunn, A. G. *J. Am. Chem. Soc.* **1992**, *114*, 1673–1681.

⁽³¹⁾ The reduction of a carbonyl ligand coordinated to transition metal to yield methyl ligand had been reported to proceed via a metal-formyl intermediate. Thus, Ir(ttp)CHO was proposed to be formed in the reduction of Ir(ttp)Cl(CO) by Ir(ttp)H.25b

Scheme 2. Mechanism of Reduction of Ir(ttp)Cl(CO) by Ir(ttp)H to Generate Ir(ttp)Me

reported to react to yield $[Rh(oep)]_2$ and H_2 .³² In the presence of Cs_2CO_3 (20 equiv) (eq 23), a small amount of $[Ir(ttp)]_2$ in 25% yield had already formed from the dehydrogenative dimerization of Ir(ttp)H at ambient temperature, and a high yield of $[Ir(ttp)]_2$ in 89% yield was formed in 30 min. Thus, the base also promoted the dimer formation of $Ir(ttp)H$ to $[Ir(ttp)]_2$. Indeed, the base promoted the rate of BnCHA with Ir(ttp)H since the reaction of Ir(ttp)H with toluene (50 equiv) in C_6D_6 at 150 °C with Cs_2CO_3 (20 equiv) was complete to yield Ir(ttp)Bn in 55% in 6 days (eq 24), whereas the same reaction without base was still incomplete in 6 days (eq 25). Base probably deprotonates Ir(ttp)H to give the Ir(ttp) anion¹⁷ for faster formation of $[\text{Ir(ttp)}]_2$, which in turn leads to faster rate of BnCHA.

$$
2Ir(ttp)H \xrightarrow[1.5 \text{ h}, 150 \text{ °C}]{C_6D_6} [Ir(ttp)]_2 + H_2
$$
 (21)

$$
2Ir(ttp)H \xrightarrow{C_6D_6} [Ir(ttp)]_2 + H_2
$$
 (21
\n
$$
Ir(ttp)H + PhCH_3 \xrightarrow{C_6D_6} Ir(ttp)H + [Ir(ttp)]_2 +
$$
\n
$$
Ir(ttp)H + PhCH_3 \xrightarrow{C_5C_3(20 \text{ equiv}), C_6D_6} Ir(ttp)H + [Ir(ttp)]_2 +
$$
\n
$$
Ir(ttp)H + PhCH_3 \xrightarrow{C_52C_3(20 \text{ equiv}), C_6D_6} Ir(ttp)H + [Ir(ttp)]_2 +
$$
\n
$$
Ir(ttp)H + [Int(ttp)]_2 +
$$
\n
$$
I(ttp)H + [Int(ttp)]_2 + [Int(ttp)]_2 +
$$
\n
$$
I(ttp)H + [Int(ttp)]_2 + [Int
$$

Ir(ttp)Bn (22) 4%

$$
Ir(ttp)H + PhCH_{3} \xrightarrow[50\text{ equiv}]{Cs_{2}CO_{3}\,(20\text{ equiv}),\,C_{6}D_{6}}}_{150\text{`C},\,30\text{ min}} Ir(ttp)H + [Ir(ttp)]_{2} + \\
$$

$$
\text{Ir}(\text{ttp})\text{Bn} \quad (23)
$$

$$
Ir(ttp)H + PhCH_3 \xrightarrow{Cs_2CO_3 (20 \text{ equiv}), C_6D_6} Ir(ttp)Bn \quad (24)
$$

_{50 equiv} 150 °C, 6 d

$$
Ir(ttp)H + PhCH_3 \xrightarrow{C_6D_6} Ir(ttp)H + Ir(ttp)Bn \quad (25)
$$

_{50 equiv} 150 °C, 6 d _{37%} 37%

Cs₂CO₃ (20 equiv), C₆D₆

150 °C, 30 min

PhCH₃ Cs₂CO₃ (20 equ

96 equiv 150 °C, 6

hCH₃ C₆D₆

y reacts with toluer

in a termolecular

timp) (tmp = tetran $\frac{C_8C_9(C_3 \text{ (20 equity), } C_6D_6)}{150 \text{ °C}, 6 \text{ d}}$
 $\frac{C_6D_6}{150 \text{ °C}, 6 \text{ d}}$

If (ttp)H -
 $\frac{150 \text{ °C}, 6 \text{ d}}{37\%}$

s with toluene to yiermolecular mecha

tmp = tetramesitylp

leed, [Ir(toep)]₂ has

led both Ir(oep Ir(ttp)H + PhCH₃ $\frac{C_6D_6}{150 \text{°C, 6 d}}$ Ir(ttp)H + Ir(ttp)Bn (25)

[Ir(ttp)]₂ probably reacts with toluene to yield both Ir(ttp)Bn

and Ir(ttp)H, likely in a termolecular mechanism³³ analogous

to BnCHA with Rh(t $[Ir(ttp)]_2$ probably reacts with toluene to yield both $Ir(ttp)$ Bn and Ir(ttp)H, likely in a termolecular mechanism 33 analogous react with toluene to yield both Ir(oep)Bn and Ir(oep) H^{34} However, direct reaction of Ir(ttp)H with toluene to yield Ir(ttp)Bn and H₂ cannot be excluded. $[Ir(ttp)]_2$ probably reacts faster with toluene than Ir(ttp)H. It is because Ir(ttp)H, which was generated from the reaction of $[Ir(ttp)]_2$ with toluene, was consumed slowly in the reaction of Ir(ttp)H with toluene (50 equiv) in C_6D_6 at 150 °C (eq 25). Ir(ttp)Me was probably not generated from $[\text{Ir(ttp)}]_2$ as it did not form in the reaction of $[Ir(ttp)]_2$ with toluene (50 equiv) at 150 °C both with and without $Cs₂CO₃$ (20 equiv) (eqs 24 and 25).

Mechanism: Weak Base. In the presence of the weak base of NaOPh (Scheme 1, Pathway **III**), Ir(ttp)Cl(CO) undergoes ligand substitution³⁵ with NaOPh to give Ir(ttp)OPh. This is confirmed by the rapid conversion of Ir(ttp)Cl(CO) to Ir(ttp)OPh in 95% yield in the reaction of Ir(ttp)Cl(CO) with toluene (100 equiv) and NaOPh (20 equiv) in benzene- d_6 in 2 h as observed by ¹H NMR spectroscopy (eq 26). The identity of Ir(ttp)OPh was confirmed by an authentic sample of Ir(ttp)OPh prepared in 86% yield by reacting Ir(ttp)Cl(CO) with NaOPh (2 equiv) in benzene at 150 °C for 12 h. Ir(ttp)OPh then reacts with toluene to yield Ir(ttp)Bn (Scheme 1, Pathway **IIIa**). The intermediacy of Ir(ttp)OPh was supported by the reaction of Ir(ttp)OPh with toluene- d_8 at 200 °C in 1 day to yield Ir(ttp)Bn*d*⁷ in 75% isolated yield and PhOH in 31% yield by GC-MS analysis (eq 27). The absence of signals of Ir(ttp)H and benzyl phenyl ether³⁶ by ¹H NMR spectroscopy in the reaction of Ir(ttp)OPh with toluene (100 equiv) in C_6D_6 at 200 °C for 10 days further supported the direct reaction of Ir(ttp)OPh with toluene to yield Ir(ttp)Bn and PhOH. The slower substitution of chloride by the less nucleophilic phenoxide anion (Scheme 1, Pathway **III**) and the lower reactivity of Ir(ttp)OPh with its bulky and less basic phenoxide anion (Scheme 1, Pathway **IIIa**) account for the longer reaction time of BnCHA with NaOPh than with K_2CO_3 .

$$
Ir(ttp)Cl(CO) + \underset{20 \text{ equiv}}{\text{NaOPh}} \xrightarrow{\text{PhCH}_3 (100 \text{ equiv}), C_6D_6} Ir(ttp)OPh
$$
\n
$$
{}^{(100 \text{ equiv})} \xrightarrow{200 \text{°C, 2 h}} Ir(ttp)OPh
$$
\n
$$
{}^{(26)}
$$

$$
\text{Ir(ttp)OPh} \xrightarrow{C_6\text{D}_5\text{CD}_3, 200\text{°C}, 1 \text{ d}, \text{N}_2} \text{Ir(ttp)Bn-d}_7 + \text{PhOH}_{31\%} \tag{27}
$$

NaOPh $\xrightarrow{\text{PhCH}_3 (100 \text{ equiv}, C_6D_6)}$
 $\xrightarrow{20 \text{ equiv}} \xrightarrow{\text{200 °C}, 2 \text{ h}} \text{Ir}(\text{ttp})\text{Bn-}a$
 $\xrightarrow{\text{75\%}} \text{Ir}(\text{ttp})\text{Bn-}a$

ore detailed mechanisms $\text{K} = \text{OH}^-$, KCO_3^- , OPh^-)
 $\text{oxidative addition and (ii) } \sigma^{\text{L}}$

theme 3). Oxi Ir(ttp)OPh $\frac{C_6D_5CD_3, 200 \degree C, 1 \text{ d}, N_2}{P}$

cheme 3 lists more detailed m

in with Ir(ttp)X (X = OH⁻, KCC

sible classes: (i) oxidative addition

its variants (Scheme 3). Oxidative

in way i) involves the *cis*-add Scheme 3 lists more detailed mechanisms for the BnCHA step with Ir(ttp)X ($X = OH^{-}$, KCO_3^- , OPh⁻) with two major
possible classes: (i) oxidative addition and (ii) σ -bond metathesis possible classes: (i) oxidative addition and (ii) *σ*-bond metathesis and its variants (Scheme 3). Oxidative addition (Scheme 3, Pathway **i**) involves the *cis*-addition of the $PhCH_2-H$ bond to Ir(ttp)X to generate a 7-coordinate $Ir(V)$ intermediate with three substituents on the *cis*-face of a porphyrin ligand, which is too crowded for reaction. Therefore, oxidative addition is less likely to occur. Classical *σ*-bond metathesis (Scheme 3, Pathway **ii**), and one of its variant forms, *σ*-complex-assisted metathesis (*σ*-CAM)37 (Scheme 3, Pathway **iii**), involves the concerted rearrangement of bonds through a 4-center, 4-electron transition state. However, they are less favorable as suggested by the very slow analogous reaction of Ir(ttp)Me with toluene at 200 $^{\circ}$ C in

⁽³²⁾ Wayland, B. B.; Del Rossi, K. J. *J. Organomet. Chem.* **1984**, *276*, C27–C30.

^{(33) (}a) Sherry, A. E.; Wayland, B. B. *J. Am. Chem. Soc.* **1990**, *112*, 1259–1261. (b) Wayland, B. B.; Ba, S.; Sherry, A. E. *J. Am. Chem. Soc.* **1991**, *113*, 5305–5311. (c) Zhang, X.-X.; Wayland, B. B. *J. Am. Chem. Soc.* **1994**, *116*, 7897–7898. (d) Cui, W.; Zhang, X. P.; Wayland, B. B. *J. Am. Chem. Soc.* **2003**, *125*, 4994–4995.

⁽³⁴⁾ Del Rossi, K. J.; Wayland, B. B. *J. Chem. Soc. Chem. Commun.* **1986**, 1653–1655.

⁽³⁵⁾ Rees, W. M.; Churchill, M. R.; Fettinger, J. C.; Atwood, J. D. *Organometallics* **1985**, *4*, 2179–2185.

⁽³⁶⁾ Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E. *Tetrahedron* **2005**, *61*, 10757–10773.

⁽³⁷⁾ The difference between *σ*-complex-assisted metathesis and classical *σ*-bond metathesis in CHA is that the former involves the pre-coordination of the C-H bond to the metal center before concerted bond rearrangement, whereas the latter involves the direct concerted rearrangement of bonds. Perutz, R. N.; Sabo-Etienne, S. *Angew. Chem., Int. Ed.* **2007**, *46*, 2578–2592.

14 days to give just a trace of Ir(ttp)Bn with the recovery of Ir(ttp)Me in 46% yield. Another refinement of classical *σ*-bond metathesis, the internal electrophilic substitution $(IES)^{12}$ (Scheme 3, Pathway **iv**), is probably the more likely mechanism with the participation of the lone electron pair of the oxygen atom of the phenoxide ligand. The oxygen in the phenoxide ligand in Ir(ttp)OPh is sp^3 hybridized with the filled *p*-type lone pair orbital of oxygen conjugated with the π system of the aromatic group. As the distortion of the *p* orbital of oxygen from the *π* system of the aromatic group in phenol at high temperature has been reported³⁸ with the low energy barrier for OH rotation about the C-O bond in phenol (3.47 kcal/mol),³⁹ it is highly probable that the filled *p* orbital of oxygen does not further overlap with the π system of the aromatic group in the phenoxide ligand at the reaction temperature of 200 °C. The electron density of the *p* orbital of oxygen in the phenol group can be enhanced and freely available to abstract the proton of toluene during IES.

Isotope Effect. The observed isotope effect $(k_H/k_D)_{obs}$ for the BnCHA of toluene with Ir(ttp)Cl(CO) was measured by a competition experiment with an equimolar mixture of solvent toluene and toluene- d_8 . At 200 °C, $(k_H/k_D)_{obs}$ was measured to be 2.37 without base after 9 days, 2.16 with K_2CO_3 after 3.5 h, and 2.18 with NaOPh after 2 days by 1 H NMR spectroscopy. These values suggest that the cleavages of benzylic $C-H$ bonds are involved in or occur prior to the rate-determining steps in the BnCHA. The observed isotope effect $(k_H/k_D)_{obs}$ for BnCHA of toluene at 200 °C with Ir(ttp)H and $[Ir(ttp)]_2$ was measured to be 2.30 and 2.10, resepectively, which are similar to (k_H) k_D _{obs} of 2.16 in BnCHA with Ir(ttp)Cl(CO) and K₂CO₃ at 200 °C. This implies that both Ir(ttp)H and $[Ir(ttp)]_2$ are the intermediates involved in the rate-determining step (RDS) in the base-promoted BnCHA of toluene with Ir(ttp)Cl(CO) (Scheme 1, pathway \mathbf{II}_b). Moreover, a pre-equilibrium⁴⁰ exists between Ir(ttp)H and $[Ir(ttp)]_2$ prior to BnCHA at 200 °C (Scheme 4), and the generation of $[Ir(ttp)]_2$ from $Ir(ttp)H$ is facile at high temperature as supported by independent experiments (eqs 21 and 22), especially in the presence of base (eq 23).

Since the kinetic isotope effect (KIE) of the BnCHA of toluene with $Rh(tmp)$ is 6.5^{33b} and a linear transition state was

Scheme 4. Parallel BnCHA of Toluene with Ir(ttp)H and $[\text{Ir(ttp)}]_2$

2 Ir(ttp)H
$$
\longrightarrow
$$
 PhCH₃ 2 Ir(ttp)Bn + 2 H₂
+ H₂ \parallel - H₂
[Ir(ttp)]₂ \longrightarrow PrCH₃ \longrightarrow Ir(ttp)Bn + Ir(ttp)H

suggested, the small KIE in BnCHA with iridium porphyrin cannot be accounted totally by the analogous linear transition state proposed in the BnCHA of toluene by $[Ir(ttp)]_2$. Probably a parallel pathway of BnCHA by Ir(ttp)H with a bent transition state can rationalize the small observed values (Scheme 4, Pathway **I**).

Ir(ttp)Bn did not react with 4-fluorotoluene (50 equiv) in C_6D_6 at 200 °C in 3 days without base. In 6 days, Ir(ttp)Bn reacted with 4-fluorotoluene and the ratio of Ir(ttp)Bn/Ir(ttp)Bn(p-F) was found to be 11.5:1. Ir(ttp)Bn was completely consumed only after 70 days to yield Ir(ttp)Bn(*p*-F) in 92% yield (eq 28). Besides, Ir(ttp)Bn did not react with toluene*-d*⁸ (50 equiv) added with K_2CO_3 (20 equiv) in C_6D_6 at 200 °C in 18 h, but it reacted at a longer time of 4 days to yield Ir(ttp)Bn*-d*⁷ with the ratio of Ir(ttp)Bn/Ir(ttp)Bn- d_7 of 26.8:1 (eq 29). After 14 days, the ratio of Ir(ttp)Bn/Ir(ttp)Bn*-d*⁷ was found to be 3.57:1. Therefore, these results suggest that reactions of Ir(ttp)Bn with toluene*-d*⁸ to give Ir(ttp)Bn- d_7 without and with base do not significantly affect the $(k_H/k_D)_{obs}$ values in the time scale of BnCHA. The $(k_H/k_D)_{obs}$ $(k_D)_{obs}$ values are generally truly kinetic values.

Ir(ttp)Bn + C₆D₅CD₃(50 equiv) $\frac{K_2CO_3(20 \text{ equiv})}{200 \text{ °C}, 4 \text{ d}}$
Ir(ttp)Bn:Ir(ttp)Bn:Ir(ttp)Bn
Hammett Plot. In order to gain preliminary electroni
toluenes on base-promoted BnCHA, the Hammett p
nstructed from com **Hammett Plot.** In order to gain preliminary electronic effects of toluenes on base-promoted BnCHA, the Hammett plot was constructed from competition experiments using an equimolar mixture of 4-substituted toluenes (100 equiv) and toluene (100 equiv) with Ir(ttp)Cl(CO) and K_2CO_3 (20 equiv) at 200 °C in benzene (Table 8, eq 30). Because of the very slow reacton of benzyl exchange of Ir(ttp)Bn with 4-fluorotoluene (eq 28) and

⁽³⁸⁾ Pratt, D. A.; de Heer, M. I.; Mulder, P.; Ingold, K. U. *J. Am. Chem. Soc.* **2001**, *123*, 5518–5526.

⁽³⁹⁾ Zierkiewicz, W.; Michalska, D.; Hobza, P. *Chem. Phys. Lett.* **2004**, *386*, 95–100.

⁽⁴⁰⁾ An anologue of Ir(ttp)H, Rh(oep)H, was in equilibrium with $[Rh(oep)]_2$ and H_2 (ref 32).

Figure 2. Hammett plot of base-promoted BnCHA of toluenes with $Ir(ttp)Cl(CO).$

Table 8. Competition Experiments of Benzylic CHA

^a σp: *para*-substituent constant.

toluene- d_8 (eq 29), the ratios of both iridium porphyrin benzyls formed were genuine kinetic values. Figure 2 shows a nonlinear free energy relationship in the Hammett plot using the substituent constant σ_p .⁴¹ Therefore, the rate-determining step of the multistepwise reactions likely changes with the *para* substituents of toluenes.

Conclusions

In summary, we have discovered that the rates of benzylic carbon-hydrogen bond activation of toluenes by Ir(ttp)Cl(CO) were greatly enhanced by the presence of inorganic bases. Strong inorganic base K_2CO_3 generated both benzylic CHA complexes of iridium porphyrin benzyls and methyl. Weak inorganic base NaOPh selectively promoted BnCHA to yield benzylic CHA complexes only. With a strong base (e.g., Cs_2CO_3 , KOH), Ir(ttp)H and $[Ir(ttp)]_2$ were the probable intermediates observed in the formation of Ir(ttp)Me and Ir(ttp)Bn, respectively. With a weak base NaOPh, Ir(ttp)OPh was the intermediate observed in the reaction. Ir(ttp)OPh likely underwent internal electrophilic substitution in BnCHA with toluene.

Experimental Section

Unless otherwise noted, all reagents were purchased from commercial suppliers and directly used without further purification. Hexane was distilled from anhydrous calcium chloride. Benzene and toluene were distilled from sodium. Thin layer chromatography was performed on precoated silica gel 60 F_{254} plates. Ir(ttp)- $Cl(CO),¹⁶ Ir(ttp)BF₄$ (an inseparable mixture of Ir(ttp)(CO)BF₄ and Ir(ttp)BF₄),¹⁰ Ir(ttp)Me,¹⁶ and Ir(ttp)Bn¹⁶ were prepared according to the literature procedures. Neutral alumina (Merck, 70-230 mesh)/ H2O (10:1 v/v) and silica gel (Merck, 70-230 mesh) were used for column chromatography.

¹H NMR and ¹³C NMR spectra were recorded on a Bruker DPX-300 at 300 and 75 MHz, respectively. Chemical Shifts were referenced with the residual solvent protons in C_6D_6 ($\delta = 7.15$) ppm), CDCl₃ (δ = 7.26 ppm), or tetramethylsilane (δ = 0.00 ppm) in ¹H NMR spectra, and CDCl₃ (δ = 77.16 ppm) or THF-*d₈* (δ (β -CH₂) = 25.62 ppm) in ¹³C NMR spectra as the internal $(\delta(\beta - CH_2) = 25.62$ ppm) in ¹³C NMR spectra as the internal standards. Chemical shifts (δ) were reported as part per million standards. Chemical shifts (*δ*) were reported as part per million (ppm) in (*δ*) scale downfield from TMS. Coupling constants (*J*) were reported in Hertz (Hz). High resolution mass spectra (HRMS) were performed on a ThermoFinnigan MAT 95 XL mass spectrometer in fast atom bombardment (FAB) mode using 3-nitrobenzyl alcohol (NBA) matrix and $CH₂Cl₂$ as solvent, and electrospray ionization (ESI) mode using MeOH/CH₂Cl₂ (1:1) as solvent.

Independent Synthesis of (Porphyrinato)iridium(III) Benzyls [Ir(por)R]. Synthesis of (5,10,15,20-tetratolylporphyrinato)(4 methylbenzyl)iridium(III) by reductive benzylation of Ir(ttp)Cl(CO) is described as a typical example for the preparation of (porphyrinato)iridium(III) benzyl complexes.16

(5,10,15,20-Tetrakis(*p***-tolyl)porphyrinato)(4-methylbenzyl)iridium(III) [Ir(ttp)Bn(***p***-Me)] (2a).** A suspension of Ir(ttp)Cl(CO) (100 mg, 0.11 mmol) in THF (50 mL) and a solution of NaBH4 (153 mg, 67 *µ*L, 1.08 mmol) in aqueous NaOH (1.0 M, 3.0 mL) were purged separately with N_2 for 15 min. The solution of NaBH₄ was added slowly to the suspension of Ir(ttp)Cl(CO) via a cannula. The mixture was heated at 70 $^{\circ}$ C under N₂ for 2 h in a Teflon screw-capped 250 mL round-bottomed flask to give a deep brown suspension. The mixture was then cooled to room temperature under N2, and 4-methylbenzyl bromide (200 mg, 1.08 mmol) was added. The reaction mixture was further heated at 70 $^{\circ}$ C under N₂ for 2 h. A reddish brown suspension was formed. The reaction mixture was worked up by extraction with CH_2Cl_2/H_2O . The combined organic extract was dried (MgSO₄), filtered, and dried by rotary evaporation. The reddish brown residue was purified by column chromatography over alumina (70-230 mesh), eluting with a solvent mixture of $CH₂Cl₂$ and hexane (1:2). The major brown fraction was collected to give a brown solid (55 mg, 0.057 mmol, 52%) as the product after rotary evaporation. The product was further purified by recrystallization from CH_2Cl_2/CH_3OH . $R_f = 0.60$ (1:1 hexane/ CH₂Cl₂). ¹H NMR (CDCl₃, 300 MHz) δ -4.01 (s, 2 H, H₂₉), 1.69
(s, 3 H, H₂₁), 2.69 (s, 12 H, H_{25, 32}), 3.07 (d, 2 H, I = 7.8 Hz (s, 3 H, H₃₄), 2.69 (s, 12 H, H_{25–28}), 3.07 (d, 2 H, $J = 7.8$ Hz, H_{30,31}), 5.69 (d, 2 H, $J = 7.8$ Hz, H_{32,33}), 7.51 (d, 4 H, $J = 5.7$ Hz, $H_{17,19,21,23}$, 7.53 (d, 4 H, *J* = 5.7 Hz, $H_{18,20,22,24}$), 7.92 (d, 4 H, *J* = 8.4 Hz, H_{10,12,14,16}), 8.00 (d, 4 H, $J = 8.4$ Hz, H_{9,11,13,15}), 8.46 (s, 8) H, H_{1–8}). ¹³C NMR (CDCl₃, 75 MHz) δ -13.8, 21.2, 21.7, 124.1, 124.2, 127.1, 127.6, 131.3, 132.1, 133.7, 133.9, 137.2, 138.3, 139.0, 143.4. HRMS (ESIMS): Calcd for [C56H45N4Ir]+: *m*/*z* 966.3268. Found: *m*/*z* 966.3262. The single crystal used for X-ray diffraction crystallography was grown from CH₂Cl₂/MeOH.

(5,10,15,20-Tetrakis(*p***-tolyl)porphyrinato)(4-fluorobenzyl)iridium(III)** $[\text{Ir(ttp)Bn}(p-F)]$ (2c). 4-Fluorobenzyl bromide (204 mg, 135 *µ*L, 1.08 mmol) was used. Brown solid (58 mg, 0.059 mmol, 54%) was obtained. $R_f = 0.60$ (1:1 hexane/CH₂Cl₂). ¹H NMR
(CDCl₂ 300 MHz) δ –4.05 (s 2 H H₂₂) 2.69 (s 12 H H₂₅₋₂₂). (CDCl₃, 300 MHz) δ -4.05 (s, 2 H, H₂₉), 2.69 (s, 12 H, H₂₅₋₂₈), 3.07 (dd, 2 H, $J_{HH} = 8.4$ Hz, $^{4}J_{HF} = 6.0$ Hz, $H_{30,31}$), 5.56 (dd, 2 H, $J_{HH} = 8.7$ Hz, $^{3}J_{HH} = 8.9$ Hz, $H_{20,32}$), 7.51 (d, 4 H, $J = 7.2$ Hz *J*_{HH} = 8.7 Hz, ³*J*_{HF} = 8.9 Hz, H_{32,33}), 7.51 (d, 4 H, *J* = 7.2 Hz, *H*₁₃, *a*₂, *d*, *d*, *A*₁ *J*₁ = 7.2 Hz, *H*₁₃, *a*₂, *J*₃, *d*, *d*, *A*₁ *J*₁ = *A*₂ H_{17,19,21,23}), 7.53 (d, 4 H, $J = 7.2$ Hz, H_{10,12,14,16}), 7.94 (d, 4 H, $J =$ 6.9 Hz, H_{10,12,14,16}), 8.00 (d, 4 H, $J = 7.8$ Hz, H_{9,11,13,15}), 8.48 (s, 8 H, H_{1–8}). ¹³C NMR (CDCl₃, 75 MHz) δ -15.1, 21.7, 112.7 (d, J_{CF} = 21 Hz), 124.2, 125.2 (d, ${}^{3}J_{CF}$ = 7.7 Hz), 127.7, 131.4, 133.8,
37 1 137.3 138.9 143.3 157.1 (d, ${}^{1}I_{CF}$ = 241 Hz), HRMS 137.1, 137.3, 138.9, 143.3, 157.1 (d, ¹ J_{CF} = 241 Hz). HRMS
(EARMS): Calcd for [C_CH₁₂N, EIrl⁺; m/z 970.3017. Found: m/z (FABMS): Calcd for $[C_{55}H_{42}N_{4}FIr]^{+}$: *m/z* 970.3017. Found: *m/z* 970.3036.

(5,10,15,20-Tetrakis(*p***-tolyl)porphyrinato)(4-***tert***-butylbenzyl)iridium(III) [Ir(ttp)Bn(***p***-***t* **Bu)] (2e).** 4-*tert*-Butylbenzyl bromide (245 mg, 1.08 mmol) was used. Brown solid (72 mg, 0.072

⁽⁴¹⁾ Isaacs, N. S. *Physical Organic Chemistry*; ELBS, Longman: Avon, U.K., 1987.

mmol, 65%) was obtained. $R_f = 0.62$ (1:1 hexane/CH₂Cl₂). ¹H NMR
(CDCl₂, 300 MHz) $\delta = 4.02$ (s, 2 H H₂₂), 0.98 (s, 9 H H₂₄ χ) (CDCl₃, 300 MHz) δ -4.02 (s, 2 H, H₂₉), 0.98 (s, 9 H, H₃₄₋₃₆), 2.69 (s, 12 H, H_{25–28}), 3.14 (d, 2 H, $J = 8.1$ Hz, H_{30,31}), 5.92 (d, 2 H, $J = 8.1$ Hz, H_{32,33}), 7.50 (d, 4 H, $J = 6.3$ Hz, H_{17,19,21,23}), 7.52 $(d, 4 H, J = 6.3 Hz, H_{18,20,22,24}), 7.98 (d, 4 H, J = 6.3 Hz, H_{10,12,14,16}),$ 7.99 (d, 4 H, $J = 6.3$ Hz, H_{9,11,13,15}), 8.44 (s, 8 H, H₁₋₈). ¹³C NMR (CDCl3, 75 MHz) *^δ* -13.6, 21.7, 30.9, 34.3, 123.3, 123.7, 124.2, 127.5, 127.6, 131.3, 133.7, 133.9, 137.2, 138.1, 139.0, 143.4, 145.2. HRMS (FABMS): Calcd for $[C_{59}H_{51}N_4Ir]^+$: *m/z* 1008.3737. Found: *m*/*z* 1008.3733. The single crystal used for X-ray diffraction crystallography was grown from CH₂Cl₂/MeOH.

Preparation of (5,10,15,20-Tetrakis(*p***-tolyl)porphyrinato) methyliridium(III) hydride [Ir(ttp)H] (4).** Ir(ttp)H was prepared according to the literature procedure for the synthesis of Ir(oep)H.17 A suspension of Ir(ttp)Cl(CO) (100 mg, 0.11 mmol) in THF (50 mL), a solution of NaBH₄ (153 mg, $67 \mu L$, 1.08 mmol) in aqueous NaOH (1.0 M, 3.0 mL), and concentrated HCl (10 mL) in water (200 mL) were purged separately with N_2 for 15 min. The solution of NaBH₄ was added slowly to the suspension of $Ir(ttp)Cl(CO)$ via a cannula. The mixture was heated at 70 °C under N_2 for 2 h in a Teflon screw-capped 250 mL round-bottomed flask to give a deep brown suspension. The mixture was then cooled in an ice–water bath under N_2 , and HCl solution was added via a cannula. The reaction mixture was stirred in an ice–water bath under N_2 until a reddish brown precipitate formed. The precipitate was collected under N_2 by suction filtration and washed with water to give $4(83)$ mg, 0.097 mmol, 88%). ¹H NMR (CDCl₃, 300 MHz) δ -57.6 (s, 1 H H₂₀) 2.68 (s, 1 H H₂₀ a) 7.50 (d, 8 H $I = 7.2$ Hz, H₂₀) 1 H, H₂₉), 2.68 (s, 12 H, H_{25–28}), 7.50 (d, 8 H, $J = 7.2$ Hz, H_{17–24}), 8.00 (d, 8 H, $J = 6.9$ Hz, H_{9–16}), 8.57 (s, 8 H, H_{1–8}). ¹³C NMR (THF-*d*8, 75 MHz)*δ* 21.9, 124.5, 128.3, 128.6, 132.0, 134.9, 138.1, 140.5, 144.8. HRMS (FABMS): Calcd for [C48H47N4Ir]-: *m*/*z* 862.2653. Found: *m*/*z* 862.2640.

Preparation of (5,10,15,20-Tetrakis(*p***-tolyl)porphyrinato)(phenoxy)iridium(III) [Ir(ttp)OPh] (5).** Ir(ttp)Cl(CO) (50 mg, 0.054 mmol), NaOPh (12.5 mg, 0.11 mmol), and benzene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 150 °C under N_2 for 12 h. The solvent was then removed under vacuum, and the reddish orange residue was purified by column chromatography over silica gel (70-230 mesh), eluting with CHCl₃. The major reddish orange fraction was collected to give **5** (44.4 mg, 0.047 mmol, 86%). $R_f = 0.30$ (CHCl₃). ¹H NMR
(CDCl₃ 300 MHz) δ 1.89 (d, 2 H, $I = 8.1$ Hz, H_{20,32}), 2.79 (s, 12) (CDCl₃, 300 MHz) δ 1.89 (d, 2 H, $J = 8.1$ Hz, H_{29,30}), 2.79 (s, 12) H, H_{25–28}), 5.66 (t, 2 H, $J = 7.8$ Hz, H_{31,32}), 5.83 (t, 1 H, $J = 7.2$ Hz, H₃₃), 7.65 (d, 8 H, $J = 7.8$ Hz, H_{17–24}), 8.14 (d, 4 H, $J = 8.1$ Hz, H₁₋₈), 8.20 (d, 4 H, $J = 8.1$ Hz, H_{9,11,13,15}), 8.99 (s, 8 H,H₁₋₈). ¹³C NMR (CDCl₃, 75 MHz) δ 21.7, 116.2, 119.5, 122.3, 125.7, 127.5, 127.8, 131.7, 134.2, 134.6, 137.7, 138.6, 141.4, 158.6. The determination of the molecular mass M^+ of Ir(ttp)OPh by FAB or ESI mass spectroscopy (MS) was unsuccessful, with the FABMS only showing the metalloporphyrin peak $[Ir(ttp)]^+ = 861$. The growth of a single crystal of Ir(ttp)OPh from $CH_2Cl_2/MeOH$ or CH_2Cl_2 /hexane for X-ray diffraction crystallography was also unsuccessful with the decomposition of Ir(ttp)OPh in the solvent.

Reaction of Ir(ttp)BF4 with Toluene: Synthesis of (5,10,15,20- Tetrakis(*p***-tolyl)porphyrinato)(4-tolyl)iridium(III) [Ir(ttp)(***p***-tol)] (6).** Ir(ttp)BF₄ [Ir(ttp)(CO)BF₄/Ir(ttp)BF₄ (10:1 ratio in ¹H NMR)]¹⁰ (15.0 mg, 0.015 mmol) and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 $\rm{^{\circ}C}$ under N₂ for 2 h. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over alumina (70-230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1:1). The major orange fraction was collected to give 6 (3.6 mg, 0.004 mmol, 26%). $R_f = 0.40$ (1:1 hexane/CH2Cl2). ¹ H NMR (CDCl3, 300 MHz) *δ* 0.47 (d, 2 H, $J = 8.4$ Hz), 1.10 (s, 3 H), 2.68 (s, 12 H, H_{25–28}), 4.56 (d, 2 H, *J* $= 8.4$ Hz), 7.50 (d, 8 H, $J = 8.1$ Hz, H_{17,19,21,23}), 8.00 (d, 8 H, $J =$ 8.1 Hz, H17,19,21,23), 8.57 (s, 8 H). 13C NMR (CDCl3, 75 MHz) *δ* 19.3, 21.7, 89.8, 124.2, 124.3, 127.6, 128.6, 129.2, 131.6, 133.8, 134.2, 137.4, 138.8, 143.1. HRMS (FABMS): Calcd for $[C_{55}H_{43}N_4Ir]^+$: *m*/*z* 952.3111. Found: *m*/*z* 952.3119.

Preparation of (5,10,15,20-Tetrakis(*p*-tolyl)porphyrinato)iri**dium(II) Dimer** [[Ir(ttp)]₂] (7). [Ir(ttp)]₂ was prepared using the literature method for the preparation of $[Ir(oep)]_2$.³⁰ Ir(ttp)H (4.2) mg, 0.005 mmol) and 2,2,6,6-tetramethylpiperidinooxy (TEMPO) (1.1 mg, 0.007 mmol) were added to a Rotaflo screw-capped NMR tube. Benzene- d_6 (0.50 mL) was added to the tube under N_2 . The reaction mixture was degassed for three freeze–thaw-pump cycles in the tube and then flame-sealed under vacuum. Compound **7** was observed by ¹H NMR spectroscopy. ¹H NMR (C_6D_6) δ 9.48 (d, 4 H, *o*-phenyl), 8.33 (s, 8 H, pyrrole), 7.65 (d, 4 H, *o*′*-*phenyl), 2.46 (s, 12 H, *p*-methyl); m and *m*′*-*phenyl hydrogens are obscured by solvent (7.15).

Reaction of Ir(ttp)Cl(CO) with Toluene. Ir(ttp)Cl(CO) (30.0 mg, 0.032 mmol) and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N_2 for 9 days. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over silica gel (70-230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1:1). The major orange fraction was collected to give **2b** (16.8 mg, 0.018 mmol, 55%).

General Procedures for Reactions of Ir(ttp)Cl(CO) with Toluene and Various Ligands or Bases. Addition of 10 Equiv of 2,6-Di-*tert***-butylpyridine.** Ir(ttp)Cl(CO) (30.0 mg, 0.032 mmol), 2,6-di-*tert*-butylpyridine (61.2 mg, 72 *µ*L, 0.32 mmol), and toluene (2 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 $^{\circ}$ C under N₂ for 10 days to give **2b** (17.5 mg, 0.018 mmol, 58%).

Addition of 10 Equiv of CsCl. Ir(ttp)Cl(CO) (15.5 mg, 0.017 mmol), CsCl (28 mg, 0.17 mmol), and toluene (1.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N_2 for 15 days. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over alumina (70-230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1:4) to obtain the brown fraction of $2b$ (9.7 mg, 0.010 mmol, 61%). CH₂Cl₂/hexane (1:1) was then used to isolate the red fraction of unreacted Ir(ttp)Cl(CO) (1.8 mg, 0.002 mmol, 12%).

Addition of 10 Equiv of NaNH2. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), NaNH_2 (8.6 mg, 0.22 mmol), and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N_2 for 15 min. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over alumina (70-230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1:1). Compounds **2b** and **3** with the same $R_f = 0.50$ (CH₂Cl₂/hexane = 1: 1) were collected in one portion, and the ratio was determined by ¹H NMR spectroscopy from the integration of the methyl protons of the Ir-CH2Ar group of **2b** and the methyl protons of the Ir-Me group of Ir(ttp)Me. Compound **2b** (9.0 mg, 0.0095 mmol, 43%) and Ir(ttp)Me (0.3 mg, 0.0003 mmol, 13%) were obtained.

Addition of 10 Equiv of NaOH. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), NaOH 12.3 mg, 0.22 mmol), and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N_2 for 1 h to give 2b (7.1 mg, 0.0075) mmol, 34%) and Ir(ttp)Me (0.1 mg, 0.0002 mmol, 7%).

Addition of 20 Equiv of Cs₂CO₃. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), Cs_2CO_3 (140 mg, 0.43 mmol), and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 200 $^{\circ}$ C under N₂ for 1 h to give 2b (7.7 mg, 0.008) mmol, 37%) and Ir(ttp)Me (0.8 mg, 0.0009 mmol, 4%).

Addition of 10 Equiv of K_2CO_3 **.** Ir(ttp)Cl(CO) (30.0 mg, 0.032 mmol), $K_2CO_3(45 \text{ mg}, 0.32 \text{ mmol})$, and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 150 °C under N_2 for 2 days to give 2b (19.5 mg, 0.020 mmol, 63%) and Ir(ttp)Me (0.3 mg, 0.0003 mmol, 1%).

Addition of 20 Equiv of K2CO3. Ir(ttp)Cl(CO) (30.0 mg, 0.022 mmol), $K_2CO_3(59 \text{ mg}, 0.43 \text{ mmol})$, and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at selected temperatures under N₂. At 150 $^{\circ}$ C, the reaction was complete in 2 days to give **2b** (18.8 mg, 0.020 mmol, 61%) and Ir(ttp)Me (0.9 mg, 0.0009 mmol, 3%). At 200 °C, the reaction was complete in 3.5 h to give **2b** (12.8 mg, 0.013 mmol, 61%) and Ir(ttp)Me (1.3 mg, 0.002 mmol, 7%).

Addition of 30 Equiv of K2CO3. Ir(ttp)Cl(CO) (30.0 mg, 0.022 mmol), $K_2CO_3(90 \text{ mg}, 0.65 \text{ mmol})$, and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 200 $^{\circ}$ C under N₂ for 2 h to give 2b (18.5 mg, 0.019) mmol, 60%) and Ir(ttp)Me (2.0 mg, 0.002 mmol, 7%).

Addition of 20 Equiv of NaOPh. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), NaOPh (50 mg, 0.43 mmol), and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 200 $^{\circ}$ C under N₂ for 2 days to give 2b (16.2 mg, 0.017 mmol, 78%).

Addition of 20 Equiv of NaF. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), NaF (18 mg, 0.43 mmol), and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 200 $^{\circ}$ C under N₂ for 6 days to give 2b (19.8 mg, 0.021 mmol, 96%).

Reaction of Ir(ttp)Cl(CO) with *p***-Xylene.** Ir(ttp)Cl(CO) (30.0 mg, 0.032 mmol) and *p*-xylene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N_2 for 3.5 days. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over alumina (70-230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1:1) as the eluent. The major orange fraction was collected to give **2a** (17.3 mg, 0.018 mmol, 56%).

General Procedures for the Reactions of Ir(ttp)Cl(CO) with *p***-Xylene and Various Bases. Addition of 20 Equiv of K₂CO₃.** Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), K₂CO₃ (59 mg, 0.43 mmol), and *p*-xylene (2.0mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 $^{\circ}$ C under N₂ for 1 h. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over silica gel (70- 230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1: 1). Compound **2a** and Ir(ttp)Me with the same $R_f = 0.50$ (CH₂Cl₂/ hexane $= 1:1$) were collected in one portion, and the ratio was determined by ¹H NMR spectroscopy from the integration of the methyl protons of the Ir-CH2Ar group of **2a** and the methyl protons of the Ir-Me group of Ir(ttp)Me. Compound **2a** (8.7 mg, 0.009 mmol, 41%) and Ir(ttp)Me (0.2 mg, 0.0002 mmol, 1%) were obtained.

Addition of 20 Equiv of NaOPh. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), NaOPh (50.0 mg, 0.43 mmol), and *p*-xylene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N_2 for 1 h. Compound 2a (14.2 mg, 0.015 mmol, 67%) was obtained.

Reaction of Ir(ttp)Cl(CO) with 4-Fluorotoluene. Ir(ttp)Cl(CO) (30.0 mg, 0.032 mmol) and 4-fluorotoluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N_2 for 9 days. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over silica gel (70-230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1:1). The major orange fraction was collected. Compound **2c** (23.2 mg, 0.024 mmol, 75%) was obtained.

General Procedures for the Reactions of Ir(ttp)Cl(CO) with 4-Fluorotoluene and Various Bases. Addition of 20 Equiv of K₂CO₃. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), K₂CO₃ (59 mg, 0.43 mmol), and 4-fluorotoluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N2 for 2 h. Compound **2c** (13.6 mg, 0.014 mmol, 62%) was obtained.

Addition of 20 Equiv of NaOPh. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), NaOPh (50.0 mg, 0.43 mmol), and 4-fluorotoluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N_2 for 12 h. Compound 2c (16.6) mg, 0.017 mmol, 78%) was obtained.

Reaction of Ir(ttp)Cl(CO) with 4-Nitrotoluene. Ir(ttp)Cl(CO) (30.0 mg, 0.032 mmol) and 4-nitrotoluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N₂ for 1 day. Decomposition of Ir(ttp)Cl(CO) resulted.

General Procedures for the Reactions of Ir(ttp)Cl(CO) with 4-Nitrotoluene and Various Bases. Addition of 20 Equiv of K2CO3: Synthesis of (5,10,15,20-Tetrakis(*p***-tolyl)porphyrinato)(4-nitrobenzyl)iridium(III) [Ir(ttp)Bn(***p***-NO2)] (2d).** Ir(ttp)- $Cl(CO)$ (20.0 mg, 0.022 mmol), K_2CO_3 (59 mg, 0.43 mmol), and 4-nitrotoluene (1.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 $^{\circ}$ C under N₂ for 5 min. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over alumina (70-230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1:2). The major orange fraction was collected to give **2d** (17.3 mg, 0.017 mmol, 80%). $R_f = 0.50$ (1:1 CH₂Cl₂/hexane). ¹H NMR (CDCl₃, 300 MHz) δ –3.84 (s, 2 H, H₂₉), 2.70 (s, 12 H, H₂₈), 3.07 (d, 2 H, $J = 7.5$ Hz, H_{30,31}), 6.70 (d, 2 H, $J = 7.5$ Hz, H_{32,33}), 7.52 (d, 4 H, *J* = 7.3 Hz, H_{17,19,21,23}), 7.54 (d, 4 H, *J* = 7.5 Hz, H_{18,20,22,24}), 7.91 (d, 4 H, $J = 7.3$ Hz, H_{10,12,14,16}), 7.98 (d, 4 H, $J = 7.2$ Hz,H_{9,11,13,15}), 8.50 (s, 8 H,H₁₋₈). ¹³C NMR (CDCl₃, 75 MHz) *δ* –16.7, 21.7, 121.2, 123.9, 124.2, 127.4, 127.8, 130.6, 131.5, 133.7, 133.8, 137.5, 138.6, 143.0. HRMS (FABMS): Calcd for [C55H42N5O2Ir]+: *m*/*z* 997.2962. Found: *m*/*z* 997.2948. The single crystal used for X-ray diffraction crystallography was grown from CH₂Cl₂/MeOH.

Addition of 20 Equiv of NaOPh. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), NaOPh (50.0 mg, 0.43 mmol), and 4-nitrotoluene (1.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N2 for 5 min. Compound **2d** (9.3 mg, 0.0093 mmol, 43%) was obtained.

Reaction of Ir(ttp)H with Toluene. Ir(ttp)H (20.0 mg, 0.023 mmol) and toluene (2.0 mL) were degassed for three freeze–thaw- –pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 $^{\circ}$ C under N₂ for 1 h. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over alumina (70- 230 mesh), eluting with a solvent mixture of $CH₂Cl₂$ and hexane (1: 1). Compound **2b** (10.5 mg, 0.011 mmol, 48%) was obtained.

Reaction of Ir(ttp)Me with Toluene. Ir(ttp)Me¹⁶ (10.0 mg, 0.011 mmol) and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200

 $^{\circ}$ C under N₂ for 14 days. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over silica gel (70-230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1:1). A trace of 2b was observed in crude ¹H NMR only and could not be isolated. Ir(ttp)Me (4.6 mg, 0.005 mmol, 46%) was recovered.

Reaction of Ir(ttp)Me with Toluene and K_2CO_3 **.** Ir(ttp)Me $(10.0 \text{ mg}, 0.011 \text{ mmol})$, K_2CO_3 (32 mg, 0.23 mmol), and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 $^{\circ}$ C under N₂ for 3 days. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over silica gel (70-230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1:1). A trace of 2b was observed in crude ¹H NMR only and cannot be isolated. Ir(ttp)Me (9.2 mg, 0.011 mmol, 92%) was recovered.

Reaction of Ir(ttp)(p **-Tol) with Toluene.** Ir(ttp)(p -Tol) (5.0 mg, mmol) and toluene (1.0 mL) was degassed for three freeze–thaw- –pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 $^{\circ}$ C under N₂ for 1.5 days. No Ir(ttp)Bn and only unreacted $Ir(ttp)(p-Tol)$ were observed by thin-layer chromatography.

Reaction of Ir(ttp)Bn with 4-Fluorotoluene. Compound **2b** (5.0 mg, 0.005 mmol), 4-fluorotoluene (28.9 mg, 29 *µ*L, 0.26 mmol), and benzene-*d*⁶ (0.50 mL) were degassed for three freeze–thaw–pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 200 °C in a sand bath. In the course of the reaction, the amount of **2b** was decreasing, while **2c** was increasing. After 6 days, the ratio of $2b/2c$ was found to be 11.5:1 as observed by ¹H NMR spectroscopy using the *ortho*-phenyl protons of IrCH₂Ar in 2b and **2c**. After 70 days, all **2b** was consumed to give **2c** (92%, NMR yield) using benzene as the internal reference.

Reaction of Ir(ttp)Bn with Toluene-*d***⁸ and K2CO3.** Compound **2b** (6.1 mg, 0.006 mmol), toluene-*d*⁸ (32.1 mg, 34 *µ*L, 0.32 mmol), K_2CO_3 (18 mg, 0.13 mmol), and benzene- d_6 (0.60 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 200 °C in a sand bath. In the course of the reaction, the amount of **2b** was decreasing, while **2b-***d*⁷ was increasing. After 4 days, the ratio of **2b**/**2b-***d*⁷ was found to be 26.8:1 observed by ¹H NMR spectroscopy (integration of benzylic proton $= 2.000$, the integration of pyrrole signal was set as 8.29). After 14 days, the ratio of **2b**/**2b-***d*⁷ was found to be 3.57:1 as measured by FABMS. The recovery yield of **2b** was 74% (NMR yield), and the yield of **2b-***d*⁷ was 21% (NMR yield) using benzene as the internal reference. The amount of toluene was increasing in the course of reaction indicated by the increased intensity of methyl protons of toluene at 2.70 ppm.

Reaction of Ir(ttp)Cl(CO) with p **-Xylene in C₆D₆.** Ir(ttp)Cl(CO) (5.8 mg, 0.006 mmol), *p*-xylene (66.6 mg, 77 *µ*L, 0.63 mmol), and benzene-*d*⁶ (0.50 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 200 °C in a sand bath. In the course of the reaction, the amount of Ir(ttp)Cl(CO) was decreasing, while **2a** was increasing. After 22 days, **2a** (47%, NMR yield) and unreacted Ir(ttp)Cl(CO) (31%, NMR yield) were observed using the methyl protons of *p*-xylene as the reference.

Reaction of Ir(ttp)Cl(CO) with $Ph^{13}CH_3$ **and Cs₂CO₃.** Ir(ttp)Cl(CO) (5.8 mg, 0.006 mmol), Ph¹³CH₃ (29 mg, 33 μ L, 0.31 mmol), Cs_2CO_3 (41 mg, 0.13 mmol), and benzene- d_6 (0.50 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 150 °C in an oil bath. Ir(ttp)H (81%, NMR yield) was observed as an only intermediate in 30 min. Besides, Ir(ttp)Cl(CO) (10.0 mg, 0.011 mmol), Cs_2CO_3 (70 mg, 0.22 mmol), and Ph¹³CH₃ (0.10 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube. The reaction mixture was covered by aluminum foil and heated at 200 $^{\circ}$ C under N₂ in an oil bath for 2 h. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over alumina (70-230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1:1). The major orange fraction was collected to give Ir(ttp)¹³CH₂Ph (8%, NMR yield estimated from crude ¹H NMR as it could not be isolated) and Ir(ttp)Me (1.6 mg, 0.002 mmol, 17%). HRMS (FABMS): Calcd for $[C_{54}^{13}CH_{43}N_4Ir]^+$: *m/z* 953.3145. Found: *m*/*z* 953.3154.

Reduction of Ir(ttp)Cl(CO) by Ir(ttp)H with Cs_2CO_3 **. (i) In toluene-***d***8.** Ir(ttp)H (15.3 mg, 0.018 mmol), Ir(ttp)Cl(CO) (4.1 mg, 0.004 mmol), $Cs₂CO₃$ (29 mg, 0.089 mmol), and toluene- d_8 (0.50 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 150 °C in an oil bath. Ir(ttp)H was consumed after 4 days. The crude product was dried under vacuum. The products were purified by alumina column chromatography to give Ir(ttp)Bn*d*⁷ (19%, 4.0 mg, 0.004 mmol) and Ir(ttp)Me (10%, 2.0 mg, 0.002 mmol). HRMS (FABMS): Calcd for $[C_{55}H_{36}D_7N_4Ir]^+$: *m/z* 959.3551. Found: *m*/*z* 959.3554.

(ii) In benzene- d_6 . Ir(ttp)H (7.1 mg, 0.008 mmol), Ir(ttp)Cl(CO) $(1.9 \text{ mg}, 0.002 \text{ mmol})$, Cs_2CO_3 (67 mg, 0.21 mmol), and benzene*^d*⁶ (0.50 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 150 °C in an oil bath. Ir(ttp)H was consumed after 11 days. Ir(ttp)Me (10%, NMR yield) was obtained using C_6D_6 as the internal standard.

Reduction of Ir(ttp)Cl(CO) by Ir(ttp)H. Ir(ttp)H (16.3 mg, 0.019 mmol), Ir(ttp)Cl(CO) $(4.3 \text{ mg}, 0.005 \text{ mmol})$, and toluene- d_8 (0.50 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 150 °C in an oil bath. Some Ir(ttp)H remained unreacted after 7 days. The reaction temperature was increased to 200 °C for 19 days. The crude product was dried under vacuum. The products were purified by alumina column chromatography. Ir(ttp)Bn- d_7 (23%, 5.5 mg, 0.005 mmol) and Ir(ttp)Me (5%, 1.0 mg, 0.001 mmol) were obtained. Unreacted Ir(ttp)Cl(CO) (23%, NMR yield) and Ir(ttp)H (19%, NMR yield) were estimated from crude 1 H NMR.

Reaction of Ir(ttp)Cl(CO) with H₂O. Ir(ttp)Cl(CO) (9.1 mg, 0.010 mmol), H_2O (17.7 μ L, 0.98 mmol), and benzene (1.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 200 °C under N_2 for 8 days. No Ir(ttp)Me was generated, and Ir(ttp)Cl(CO) remained unreacted.

Reaction of Ir(ttp)Cl(CO) with toluene- d_8 **and Cs₂CO₃.** Ir(ttp)-Cl(CO) (9.7 mg, 0.010 mmol), toluene-*d*⁸ (53 mg, 56*µ*L, 0.52 mmol), Cs_2CO_3 (68 mg, 0.21 mmol), and benzene- d_6 (0.50 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 150 °C in an oil bath. All Ir(ttp)Cl(CO) was consumed, and Ir(ttp)H (38%, NMR yield) and $[Ir(ttp)]_2$ (41%, NMR yield) were obtained after 1 h. All Ir(ttp)H was consumed in 14 days to yield Ir(ttp)Bn d_7 (42%, NMR yield) and Ir(ttp)Me (34%, NMR yield) using residual protons of benzene as the internal reference.

Reaction of Ir(ttp)D with H₂O and Cs₂CO₃. Ir(ttp)D (3.7 mg, 0.004 mmol), H₂O (3.9 mg, 3.9µL, 0.21 mmol), Cs₂CO₃ (56 mg, 0.17 mmol), and benzene- d_6 (0.50 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was

covered by aluminum foil and heated at 150 °C in an oil bath. All Ir(ttp)D was consumed to yield Ir(ttp)H (43%, NMR yield) after 13 h using residual protons of benzene as the internal reference.

Reaction of Ir(ttp)H with D₂O and Cs₂CO₃. Ir(ttp)H (3.2 mg, 0.004 mmol), D₂O (3.7 mg, 3.3µL, 0.19 mmol), Cs₂CO₃ (48 mg, 0.15 mmol), and benzene- d_6 (0.50 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 150 °C in an oil bath. All Ir(ttp)H was consumed to yield Ir(ttp)D (20%, NMR yield) after 36 h using residual protons of benzene as the internal reference.

Reaction of Ir(ttp)Cl(CO) with toluene-*d***8, D2O, and** Cs_2CO_3 . (i) D_2O (20 Equiv). Ir(ttp)Cl(CO) (15.1 mg, 0.019 mmol), toluene- d_8 (1.0 mL), D_2O (3.3 mg, 3.0 μ L, 0.16 mmol), and $Cs₂CO₃(106 mg, 0.33 mmol)$ were degassed for three freeze–thaw-–pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 150 $^{\circ}$ C under N₂ for 3 h. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over alumina (70-230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1:2). Ir(ttp)Bn-*d*⁷ (5.1 mg, 0.005 mmol, 33%) and a mixture of Ir(ttp)Me and Ir(ttp)CD₃ (4.9 mg, 0.006 mmol, 34%) were obtained. The ratio of Ir(ttp)Me/Ir(ttp)CD₃ was found to be 5.45:1 (methyl proton from Ir(ttp)Me $= 2.535$, the integration of pyrrole signal from both Ir(ttp)Me and Ir(ttp)CD₃ was set as 8.000).

(ii) D2O (50 Equiv). Ir(ttp)Cl(CO) (14.5 mg, 0.016 mmol), toluene- d_8 (1.0 mL), D_2O (15.7 mg, 16 μ L, 0.78 mmol), and $Cs₂CO₃(102 mg, 0.31 mmol)$ were degassed for three freeze–thaw-–pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 150 °C under N_2 for 3 h. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over alumina (70-230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1:2). Ir(ttp)Bn-*d*⁷ (2.1 mg, 0.002 mmol, 14%) and a mixture of Ir(ttp)Me and Ir(ttp)CD₃ (3.8 mg, 0.004 mmol, 27%) were obtained. The ratio of $Ir(ttp)Me:Ir(ttp)CD_3$ was found to be 2.54:1 (methyl proton from Ir(ttp)Me $= 2.153$; the integration of pyrrole signal from both Ir(ttp)Me and Ir(ttp)CD₃ was set as 8.000).

Ir(ttp)Me Generation in Reaction of Ir(ttp)Cl(CO) with Toluene. Addition of 10 Equiv of LiOH.H2O. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), LiOH.H₂O (9.1 mg, 0.22 mmol), and toluene (2.0 mL) were degassed for three freeze–thaw–pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 150 \degree C under N₂ for 3 days. The solvent was then removed under vacuum, and the reddish brown residue was purified by column chromatography over alumina (70-230 mesh), eluting with a solvent mixture of CH_2Cl_2 and hexane (1:1). Compound 2b and Ir(ttp)Me with the same R_f $= 0.50$ (CH₂Cl₂/hexane $= 1: 1$) were collected in one portion, and the ratio was determined by ¹H NMR spectroscopy from the integration of the methyl protons of the Ir- $CH₂Ar$ group of **2b** and the methyl protons of the Ir-Me group of Ir(ttp)Me. Compound **2b** (12.8 mg, 0.013 mmol, 62%) and Ir(ttp)Me (4.4 mg, 0.005 mmol, 23%) were obtained.

Addition of 10 Equiv of NaOH. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), NaOH (8.7 mg, 0.22 mmol), and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 150 °C under N_2 for 1 day to give 2b (9.1 mg, 0.010) mmol, 44%) and Ir(ttp)Me (4.0 mg, 0.005 mmol, 21%).

Addition of 10 Equiv of KOH. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), KOH (12.1 mg, 0.22 mmol), and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 150 °C under N_2 for 1 day to give 2b (5.6 mg, 0.006) mmol, 27%) and Ir(ttp)Me (4.5 mg, 0.005 mmol, 24%).

Addition of 20 Equiv of Na₂CO₃. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), $Na₂CO₃$ (46 mg, 0.43 mmol), and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 150 °C under N_2 for 10 days to give 2b (16.2) mg, 0.017 mmol, 79%) and Ir(ttp)Me (1.9 mg, 0.002 mmol, 10%).

Addition of 20 Equiv of K2CO3. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), K_2CO_3 (60 mg, 0.43 mmol), and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 150 °C under N_2 for 2 days to give 2b (13.6 mg, 0.014 mmol, 66%) and Ir(ttp)Me (0.6 mg, 0.0006 mmol, 3%).

Addition of 20 Equiv of Cs₂CO₃. Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), Cs_2CO_3 (141 mg, 0.43 mmol), and toluene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 150 °C under N_2 for 1 h to give 2b (9.5 mg, 0.010) mmol, 46%) and Ir(ttp)Me (6.6 mg, 0.008 mmol, 35%).

Dehydrogentative Dimerization of Ir(ttp)H. Ir(ttp)H (4.1 mg, 0.005 mmol) and benzene- d_6 (0.50 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 150 °C in an oil bath. $[Ir(ttp)]_2$ (78%, NMR yield) was obtained after 90 min using residual protons of benzene as the internal reference.

Reaction of $[\text{Ir}(\text{ttp})]_2$ **with Toluene.** Ir(ttp)H (19.9 mg, 0.023) mmol), TEMPO (5.0 mg, 0.032 mmol), and benzene (0.50 mL) were stirred in a Telfon screw-capped tube for 30 min under N_2 to prepare $[Ir(ttp)]_2$ *in situ*. Benzene and unreacted TEMPO were then removed under vacuum overnight. Toluene (1.0 mL) was added to the tube, and the reaction mixture was degassed for three freeze–thaw-pump cycles. The reaction mixture was covered by aluminum foil and heated at 200 °C for 90 min. Excess toluene was removed under vaccum. The brown residue was purified by column chromatography using CH₂Cl₂/hexane (1:2) as an eluent. Ir(ttp)Bn (10.0 mg, 0.11 mmol, 46%) was obtained.

Reaction of Ir(ttp)H with toluene (50 Equiv) and Cs_2CO_3 **.** Ir(ttp)H (4.4 mg, 0.005 mmol), toluene (23.5 mg, 27 *µ*L, 0.26 mmol), Cs_2CO_3 (33 mg, 0.10 mmol), and benzene- d_6 (0.50 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 150 °C in an oil bath. Ir(ttp)H $(2\%$, NMR yield) and $[Ir(ttp)]_2$ (89%, NMR yield), and Ir(ttp)Bn (4%, NMR yield) were obtained after 30 min using residual protons of benzene as the internal reference. The reaction was complete in 6 days to yield Ir(ttp)Bn (55%, NMR yield).

Reaction of Ir(ttp)H with and toluene (50 Equiv). Ir(ttp)H (4.2 mg, 0.005 mmol), toluene (22.5 mg, 26 *µ*L, 0.24 mmol), and benzene- d_6 (0.50 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 150 °C in an oil bath. Ir(ttp)H (5%, NMR yield), $[Ir(ttp)]_2$ (66%, NMR yield), and Ir(ttp)Bn (4%, NMR yield) were obtained after 30 min using residual protons of benzene as the internal reference. The reaction was still complete in 6 days to yield Ir(ttp)Bn (40%, NMR yield) and unreacted Ir(ttp)H (37%, NMR yield).

Reaction of Ir(ttp)Cl(CO) with PhCH3 and NaOPh in C_6D_6 . Ir(ttp)Cl(CO) (10.1 mg, 0.011 mmol), PhCH₃ (100.6 mg, 116 μ L, 1.09 mmol), NaOPh (25 mg, 0.11 mmol), and benzene- d_6 (0.50 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 200 °C in a sand bath. Ir(ttp)Cl(CO) was consumed after 2 h to give Ir(ttp)OPh (95%, NMR yield) using the methyl proton of toluene as the internal reference.

Reaction of Ir(ttp)OPh with PhCH₃ in C_6D_6 **.** Ir(ttp)OPh (6.6) mg, 0.0069 mmol), PhCH3 (63.7 mg, 73.5 *µ*L, 0.69 mmol), and

benzene- d_6 (0.50 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped NMR tube and then flame-sealed under vacuum. The reaction mixture was covered by aluminum foil and heated at 200 °C in a sand bath. In the course of the reaction, the amount of Ir(ttp)OPh was decreasing, while the amount of **2b** was increasing. Ir(ttp)OPh was consumed after 10 days to yield $2b$ (80%, NMR yield), using methyl protons of PhCH₃ as the internal reference. No Ir(ttp)H and PhOBn were found during the course of the reaction.

Reaction of Ir(ttp)OPh with Toluene-*d***8.** Ir(ttp)OPh (50.0 mg, 0.052 mmol) and toluene- d_8 (1.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C for 1 day. The solvent was extracted under vacuum and trapped under liquid N_2 . PhOH in 31% was detected in the solvent by GC-MS analysis using 4-*tert*-butylphenol as the internal standard. Compound **2b** (44.9 mg, 0.047 mmol, 90%) was obtained after column chromatography using alumina, eluting with a mixture of $CH₂Cl₂/hexane$ (1:2).

Isotope Effect with Ir(ttp)Cl(CO). A premixed equimolar solvent mixture of toluene (867 mg, 1.0 mL, 9.4 mmol)/toluene- d_8 (940 mg, 1.0 mL, 9.4 mmol) and Ir(ttp)Cl(CO) (30.0 mg, 0.032 mmol) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N_2 for 9 days. The isotope ratio of $2b$ to $2b-d_7$ was determined to be 2.37 (benzylic CHA, integration of benzylic proton $= 1.407$; the integration of pyrrole signal was set as 8.000) by ¹H NMR. The isotope ratio was also measured by FABMS to be 2.40.

Addition of 20 Equiv of K₂CO₃. A premixed equimolar solvent mixture of toluene (867 mg, 1.0 mL, 9.4 mmol)/toluene-*d*⁸ (940 mg, 1.0 mL, 9.4 mmol), Ir(ttp)Cl(CO) (30.0 mg, 0.032 mmol), and K_2CO_3 (88 mg, 0.64 mmol) was heated at 200 °C under N₂ for 3.5 h. The isotope ratio of **2b** to **2b-***d*⁷ was determined to be 2.16 (benzylic CHA, integration of benzylic proton $= 1.367$; the integration of pyrrole signal was set as 8.000) by ¹H NMR. The isotope ratio was also measured by FABMS to be 2.16.

Addition of 20 Equiv of NaOPh. A premixed equimolar solvent mixture of toluene (867 mg, 1.0 mL, 9.4 mmol)/toluene- d_8 (940 mg, 1.0 mL, 9.4 mmol), Ir(ttp)Cl(CO) (20.0 mg, 0.022 mmol), and NaOPh (51 mg, 0.44 mmol) was heated at 200 $^{\circ}$ C under N₂ for 2 days. The isotope ratio of **2b** to **2b-***d*⁷ was determined to be 2.18 (benzylic CHA, integration of benzylic proton $= 1.389$; the integration of pyrrole signal was set as 8.000) by ¹H NMR. The isotope ratio was also measured by FABMS to be 2.18.

Isotope Effect with Ir(ttp)H. A premixed equimolar solvent mixture of toluene (434 mg, 0.50 mL, 4.7 mmol)/toluene- d_8 (470 mg, 0.50 mL, 4.7 mmol) and Ir(ttp)Cl(CO) (15.0 mg, 0.017 mmol) was degassed for three freeze–thaw-pump cycles in a Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N_2 for 2 h. The isotope ratio of 2b to **2b-***d*⁷ was determined to be 2.30 (benzylic CHA, integration of benzylic proton $= 1.407$; the integration of pyrrole signal was set as 8.000) by $\mathrm{^{1}H}$ NMR. The isotope ratio was also measured by FABMS to be 2.13.

Isotope Effect with $[\text{Ir(ttp)}]_2$ **.** Ir(ttp)]₂ was prepared *in situ* by stirring Ir(ttp)H (20.8 mg, 0.024 mmol) and TEMPO (5.3 mg, 0.034 mmol) in benzene (1.0 mL) in a Teflon-screw capped tube for 0.5 h. The solvent, unreacted TEMPO, and coproduct TEMPOH were removed under vacuum overnight. A premixed equimolar solvent mixture of toluene (434 mg, 0.50 mL, 4.7 mmol)/toluene- d_8 (470 mg, 0.50 mL, 4.7 mmol) and $[\text{Ir(ttp)}]_2$ prepared *in situ* were degassed for three freeze–thaw-pump cycles in the Teflon screwcapped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N_2 for 1.25 h. The isotope ratio of 2b to **2b-***d*⁷ was determined to be 2.10 (benzylic CHA, integration of benzylic proton $= 1.354$; the integration of pyrrole signal was set as 8.000) by 1 H NMR.

Competition Reactions in Base-Promoted BnCHA. Addition of *p***-Xylene (100 Equiv) and Toluene (100 Equiv).** Ir(ttp)Cl(CO) (15.4 mg, 0.017 mmol), K₂CO₃ (46 mg, 0.33 mmol), *p*-xylene (177 mg, 205 *µ*L, 1.67 mmol), toluene (154 mg, 177 *µ*L, 1.67 mmol), and benzene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 $^{\circ}$ C under N₂ for 6 h. The ratio of $2a$ to $2b$ was determined to be 2.050 by ${}^{1}H$ NMR spectroscopy from the integration of the *meta*-phenyl protons of Ir-CH2Ar group of **2a** and **2b.**

Addition of 4-Fluorotoluene (100 Equiv) and Toluene (100 Equiv). Ir(ttp)Cl(CO) (16.0 mg, 0.017 mmol), K_2CO_3 (48 mg, 0.35) mmol), *p*-fluorotoluene (191 mg, 191 *µ*L, 1.73 mmol), toluene (160 mg, $184 \mu L$, 1.73 mmol , and benzene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N_2 for 4.5 h. The ratio of 2c to 2b was determined to be 1.303 by $\mathrm{^{1}H}$ NMR spectroscopy from the integration of the *meta*-phenyl protons of Ir-CH2Ar groups of **2c** and **2b.**

Addition of 4-Nitrotoluene (100 Equiv) and Toluene (100 Equiv). Ir(ttp)Cl(CO) (15.8 mg, 0.017 mmol), K_2CO_3 (47 mg, 0.34 mmol), 4-nitrotoluene (234 mg, 1.71 mmol), toluene (158 mg, 182 μ L, 1.71 mmol), and benzene (2.0 mL) were degassed for three freeze–thaw-pump cycles in a Teflon screw-capped tube. The reaction mixture was covered by aluminum foil and heated at 200 °C under N₂ for 3.5 h. The ratio of 2d to 2b was determined to be 5.067 by $1H$ NMR spectroscopy from the integration of the *meta*-phenyl protons of Ir-CH₂Ar groups of 2d and 2b.

X-ray Structure Determination. All single crystals were immersed in Paraton-N oil and sealed under N_2 in thin-walled glass capillaries. Data were collected at 293 K on a Bruker SMART 1000 CCD diffractometer using Mo $K\alpha$ radiation. An empirical absorption correction was applied using the SADABS program.⁴² All structures were solved by direct methods and subsequent Fourier difference techniques and refined anisotropically for all nonhydrogen atoms by full-matrix least-squares calculations on $F₂$ using the SHELXTL program package.⁴³ All hydrogen atoms were geometrically fixed using the riding model. X-ray data are listed in Table 5.

Acknowledgment. We thank the Research Grants Council of the HKSAR, China (CUHK 400105) for financial support.

Supporting Information Available: Text, tables, and figures of crystallographic data for complexes **2a**, **2d**, and **2e** (CIF and PDF), ¹ H and 13C NMR spectra for **2a**, **2c**, **2d**, **2e**, Ir(ttp)H (**4**), Ir(ttp)OPh (5) , Ir(ttp)Ph(p -Me) (6) , and ¹H NMR spectrum for $[\text{Ir(ttp)}]_2$ (7). This material is available free of charge via the Internet at http://pubs.acs.org.

OM700751H

⁽⁴²⁾ Sheldrick, G. M. *SADABS: Program for Empirical Absorption Correction of Area Detector Data*; University of Gottingen: Gottingen, Germany, 1996.

⁽⁴³⁾ Sheldrick, G. M. *SHELXTL 5.10 for Windows NT: Structure Determination Software Programs*; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 1997.