General Routes to Alkyl Phosphatrioxaadamantane Ligands

Joanne H. Downing, Joëlle Floure, Katie Heslop, Mairi F. Haddow, Jonathan Hopewell, Matteo Lusi, Hirahataya Phetmung, A. Guy Orpen, Paul G. Pringle,* Robert I. Pugh, and Damaris Zambrano-Williams

School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K.

Received February 15, 2008

The secondary phosphine CgPH (CgP = 6-phospha-2,4,8-trioxa-1,3,5,7-tetramethyladamantyl group) is made in 50% yield by a modification of the literature method (avoiding high pressures of PH₃) by bubbling PH₃ through an acidified solution of 2,4-pentanedione at 0 °C. Under similar conditions the ethyl analogue ^{Et}CgPH is formed from 3,5-heptanedione in 75% yield. The halophosphines CgPCl and CgPBr are made by treatment of CgPH with *N*-halosuccinimide. CgPBr is also made by treatment of CgPH with Br₂. Three methods are described for the synthesis of CgPR, where R = alkyl: (a) the previously reported acid-catalyzed condensation reaction of RPH₂ with 2,4-pentanedione, which has been extended to R = ⁱPr; (b) treatment of CgP(BH₃)Li with RX followed by borane deprotection with Et₂NH, which has been used for R = ⁱPr, benzyl, *n*-C₂₀H₄₁; (c) treatment of CgPBr with RMgX, which has been used for R = ⁱPr, Me. The complexes [PtCl₂(CgPH)₂] (1), [PdCl₂(CgPH)₂] (2), [PdCl₂(CgPR)₂] (where R = ⁱPr (**3a**), Cy (**3b**)), and [PtCl₂(CgPR)₂] (where R = ⁱPr (**4a**), Cy (**4b**), *n*-C₂₀H₄₁ (**4c**)) are described. The crystal structures of CgPH, CgPCl, [CgP(CH₂Ph)₂]Br, CgP(*n*-C₂₀H₄₁), and complexes **1**, **3b**, and **4c** are reported. From the ν (CO) values for *trans*-[RhCl(CO)(CgPX)₂], the σ -donor/ π -acceptor properties of CgPX are in the order X = ⁱPr > Me > Ph > H > Cl.

Introduction

The first metal complexes of ligands containing the 6-phospha-2,4,8-trioxa-1,3,5,7-tetramethyladamantyl group (denoted CgP throughout; see Chart 1) were reported in the late 1990s,¹ and since then, several examples have emerged of the applications of CgP ligands in metal complex catalyzed hydroformylation,^{2,3} alkene carbonylation,⁴ C–C coupling,^{5,6} and hydrogenation.⁷ We have

* To whom correspondence should be addressed. E-mail: paul.pringle@bristol.ac.uk.

(1) (a) Gee, V.; Orpen, A. G.; Phetmung, H.; Pringle, P. G.; Pugh, R. I. *Chem. Commun.* **1999**, 901. (b) Suykerbuyk, J. C. L. J.; Drent, E.; Pringle, P. G. World Pat. WO9842717, 1998. (to Shell).

(2) Baber, R. A.; Clarke, M. L.; Heslop, K. M.; Marr, A. C.; Orpen, A. G.; Pringle, P. G.; Ward, A.; Zambrano-Williams, D. E. *Dalton Trans.* **2005**, 1079.

(3) (a) Clarke, M. L.; Roff, G. J. *Chem. Eur. J.* **2006**, *12*, 7979. (b) Almeida Lenero, K. Q.; Drent, E.; van Ginkel, R.; Pugh, R. I. World Pat. WO2005058788, 2005. (to Shell). (c) Ahlers, W.; Slany, M. World Pat. WO2001085662, 2001. (to BASF). (d) Ahlers, W.; World Pat. WO2001085661, 2001. (to BASF).

(4) (a) Pugh, R. I.; Pringle, P. G.; Drent, E. *Chem. Commun.* 2001, 1476.
(b) Butler, I. R.; Baker, P. K.; Eastham, G. R.; Fortune, K. M.; Horton, P. N.; Hursthouse, M. B. *Inorg. Chem. Commun.* 2004, *7*, 1049. (c) Drent, E.; Pringle, P. G.; Pugh, R. I. World Pat. WO2001028972, 2001. (to Shell).
(d) Eastham, G. World Pat. WO2005118519, 2005. (to Lucite). (e) Eastham, G.; Tindale, N. World Pat. WO2005079981, 2005. (to Lucite). (f) Drent, E.; Ernst, R.; Jager, W. W. World Pat. WO2004103948, 2004. (to Shell).
(g) Eastham, G. World Pat. WO2004024322, 2004. (to Lucite). (h) Drent, E.; van der Made, R. H.; Pringle, P. G.; Pugh, R. I. World Pat. WO2003070679, 2003. (to Shell).
(i) Drent, E.; van der Made, R. H.; Pringle, P. G.; Pugh, R. I. World Pat. WO2003070370, 2003. (to Shell). (j) Sava, X.; Slany, M.; Röper, M. World Pat. WO2003031457, 2003. (to BASF). (k) Slany, M.; Schaefer, M.; Röper, M. Ger Pat. DE10228293, 2003. (to BASF). (l) Schaefer, M.; Slany, M.; Zeller, E.; Röper, M. World Pat. WO2002026382, 2002. (to BASF).

(5) (a) Gerristma, D.; Brenstrum, T.; McNulty, J.; Capretta, A. *Tetrahedron Lett* 2004, 45, 8319. (b) Brenstrum, T.; Gerristma, D. A.; Adjabeng, G. M.; Frampton, C. S.; Britten, J.; Robertson, A. J.; McNulty, J.; Capretta, A. *J. Org. Chem.* 2004, 69, 7635. (c) Ohnmacht, S. A.; Brenstrum, T.; Bleicher, K. H.; McNulty, J.; Capretta, A. *Tetrahedron Lett.* 2004, 45, 5661. (d) Adjabeng, G. M.; Brenstrum, T.; Frampton, C. S.; Robertson, A. J.; Hillhouse, J.; McNulty, J.; Capretta, A. *J. Org. Chem.* 2004, 69, 5082.

Chart 1. Enantiomeric Structures of the CgP Moiety

shown previously that the rigid CgP substituent is at least as bulky as 'Bu₂P and resembles (PhO)₂P in terms of σ/π -bonding characteristics.² It is this unusual combination of stereoelectronic characteristics which might be at the root of the remarkable catalytic performance of ligands containing CgP. The C_1 symmetry of the CgP group means that enantiomers of its derivatives, labeled α and β in Chart 1, are formed.

Previously, CgPR species (R = alkyl, aryl) have been synthesized by the reaction of RPH₂ with acetylacetone,^{2,8} by metal-catalyzed RBr substitutions using CgPH,⁶ or by radicalinitiated P–H addition of CgPH to alkene.^{6,9} We report here general methods for the synthesis of monodentate ligands of the type CgPR (R = alkyl) from the secondary phosphine CgPH or bromophosphine CgPBr. The stereoelectronic properties of these ligands are assessed from the structural and spectroscopic properties of some coordination complexes of CgPH and CgPR.

Results and Discussion

Cage Phosphine Synthesis. The parent cage phosphine CgPH was originally made by Epstein and Buckler⁸ in 81% yield in

- (8) Epstein, M.; Buckler, S. H. J. Am. Chem. Soc. 1961, 83, 3279.
- (9) Cunningham, T. J.; Elsegood, M. R. J.; Paul, F.; Kelly, P. F.; Martin,
- B.; Smith, M. B.; Staniland, P. M. Eur. J. Inorg. Chem. 2008, 2326.

⁽⁶⁾ Adjabeng, G. M.; Brenstrum, T.; Wilson, J.; Frampton, C. S.; Robertson, A.; Hillhouse, J.; McNulty, J.; Capretta, A. Org. Lett. **2003**, *5*, 953.

⁽⁷⁾ Hadovic, A.; Lough, A. J.; Morris, R. H.; Pringle, P. G.; Zambrano-Williams, D. E. *Inorg. Chim. Acta* **2006**, *359*, 2864.

Figure 1. Crystal structure of CgPH showing 50% probability ellipsoids. All hydrogen atoms except H1 are omitted for clarity. Selected bond lengths (Å) and angles (deg): P1-C4 = 1.865(2), P1-C1 = 1.872(2), P1-H1 = 1.30(4); C4-P1-C1 = 93.54(9), C4-P1-H1 = 95.0(17), C1-P1-H1 = 101.8(17).

less than 1 h from the acid-catalyzed condensation reaction of acetylacetone with PH₃ under 2-3 atm pressure (eq 1). We found that CgPH was precipitated in 15% yield when PH₃ was bubbled through an acidified aqueous solution of acetylacetone at atmospheric pressure for 7 h at 25 °C. In an attempt to improve this yield, the PH₃ addition was carried out at higher temperatures, but this led to lower yields, and at 80 °C, no CgPH precipitate was observed. Instead, a complicated mixture of products was formed, as evidenced by the 10 significant ³¹P resonances across the range -40 to +20 ppm, none of which corresponded to CgPH. Under atmospheric pressure, the best yields of CgPH (50%) were obtained when the reaction was conducted at 0 °C (see Experimental). Under similar conditions we have also obtained the previously reported⁸ cage phosphine ^{Et}CgPH (eq 1) in 75% yield (see the Experimental Section). The air sensitivity of the EtCgPH oil contrasts with the air stability of the crystalline CgPH.

The complicated mechanism of the cage formation reaction has been discussed previously,^{1,8,10} with many intermediates purported to be involved in a series of equilibria. The formation of CgPH is probably driven by its precipitation, and the improved yields in ice cold aqueous media are likely a consequence of the higher solubility of the gaseous PH₃ and the lower solubility of CgPH at lower temperatures.

Crystals of CgPH suitable for X-ray crystallography were obtained by slow cooling of its MeOH solution (Figure 1). CgPH crystallizes in the space group $P2_1/c$ with one molecule in the asymmetric unit; this crystal structure has previously been reported at a different temperature.⁶

The literature route to CgPR ($R = CH_2CHMe_2$, *n*-C₈H₁₇, *c*-C₆H₁₁)^{8,11} is by the acid-catalyzed condensation reaction of primary phosphines RPH₂ with acetylacetone (eq 2), and this was used to make the new compound CgPⁱPr, though the reaction is slow (11 days) and the yield modest (41%). Another disadvantage of the route shown in eq 2 is that for each CgPR, the corresponding noxious primary phosphine RPH₂ has to be used. To avoid this, we have sought to use CgPH (which is now commercially available) as a starting material for general syntheses of CgPR.

Our first strategy was to attempt to make CgPR via quaternisation of CgPH (Scheme 1). Thus, a 1:1 mixture of CgPH and PhCH₂Br (BzBr) was refluxed in MeCN but after 6 days, less than 10% quaternization to [CgPH(Bz)]Br was apparent from the ³¹P NMR spectrum of the solution. Addition of NEt₃ to the NMR sample did give a ³¹P NMR signal consistent with the desired product CgPBz (δ_P –24.4). However, since benzyl bromide is a particularly reactive electrophile, its slowness of reaction with CgPH led us to abandon this as a potentially general route.

A small amount (2% yield) of crystalline material separated from the MeCN solution of the quaternisation reaction mixture. The spectroscopic data (see the Experimental Section) and X-ray crystallography revealed that this product was [CgPBz₂]Br, presumably formed by quaternization of CgPBz with BzBr. [CgPBz₂]Br crystallizes in the space group $P\bar{1}$ with one molecule in the asymmetric unit, indicating that the crystal structure contains a racemic mixture of the α and β enantiomers of the cage phosphine (Figure 2). The phosphonium cage P–C bond lengths of 1.856(2) and 1.851(2) Å are slightly shorter than those (1.865–1.883 Å) found in the crystal structures of the uncom-

⁽¹⁰⁾ Bekiaris, G.; Lork, E.; Offermann, W.; Roschenthaler, G. V. Chem. Ber. 1997, 130, 1547.

⁽¹¹⁾ Carraz, C.-A.; Stephan, D. W. Organometallics 2000, 19, 3791.

Figure 2. Crystal structure of $[CgPBz_2]Br$ showing 50% probability ellipsoids. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): P1-C18 = 1.8131(18), P1-C11 = 1.8169(19), P1-C2 = 1.851(2), P1-C9 = 1.856(2); C18-P1-C11 = 107.52(9), C18-P1-C2 = 113.70(9), C11-P1-C2 = 113.72(9), C18-P1-C9 = 108.49(8), C11-P1-C9 = 116.00(9), C2-P1-C9 = 97.28(9), P1-C11-C12-C13 = 84.1(2), P1-C18-C19-C20 = 104.8(2).

plexed cage phosphines described here. The benzyl groups are orientated such that the torsion angles C18–P1–C11–C12 and C11–P1–C18–C19 are 151.1 and 66.1°, respectively.

Figure 3. Crystal structure of $CgP(n-C_{20}H_{41})$ showing 50% probability ellipsoids. All hydrogens and all except the first four carbons of the $C_{20}H_{41}$ substituent are omitted for clarity. Selected bond lengths (Å) and angles (deg): P1-C11 = 1.854(2), P1-C1 = 1.875(2), P1-C4 = 1.883(2); C11-P1-C1 = 101.66(10), C11-P1-C4 = 102.08(9), C1-P1-C4 = 92.59(10), C1-P1-C11-C12 = -101.10(16), C4-P1-C11-C12 = 163.66(15), P1-C11-C12-C13 = -70.1(2).

The low nucleophilicity of CgPH (evident from its slow reaction with BzBr) can be rationalized in terms of its bulk and the electron-withdrawing nature of the cage. Lithiation of its borane adduct CgPH(BH₃), prepared by treatment of CgPH with BH₃ in THF (Scheme 2), provided a versatile nucleophilic source of the CgP group. Thus, treatment of CgPH(BH₃) with *n*-BuLi gave CgPLi(BH₃) (δ_P -32.5, J(PB) = 31 Hz), which reacted smoothly with BzBr to give CgP(Bz)(BH₃), and upon borane deprotection with Et₂NH, the desired CgPBz was obtained in 62% overall yield. On occasion, after the lithiation step, the unreactive bis(borane) species [CgP(BH₃)₂]Li (broad signal at δ_P 3.1) was detected. [CgP(BH₃)₂]Li is formed upon treatment of CgPLi(BH₃) with BH₃ and therefore may arise from the presence of an excess of BH₃, but it was also observed to form slowly in solutions of CgPLi(BH₃), presumably by abstraction of BH3 from another CgPLi(BH3). Therefore, to minimize the formation of [CgP(BH₃)₂]Li, the presence of free BH₃ was avoided and CgPLi(BH₃) was generated in dilute solution and used immediately (see the Experimental Section).

The nucleophilic route to CgPBz (Scheme 2) has been generalized to make the CgPR compounds featuring the primary and secondary alkyl substituents shown in eq 3. This route (eq 3) avoids the need for RPH₂ used in the route shown in eq 2. The 71% yield of CgPⁱPr obtained after 24 h via the nucleophilic route (eq 3) is superior to the 41% yield of the same CgPⁱPr obtained after 11 days via the hydrophosphination/condensation route (eq 2).

Crystals of CgPC₂₀H₄₁ were grown from a saturated CDCl₃ solution have space group $P\overline{1}$ and contain a racemic mixture of α and β enantiomers (Figure 3). The first P–C–C–C torsion

Figure 4. Crystal structure of CgPCl showing 50% probability ellipsoids. Most hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): P1-C1 = 1.871(3), P1-C4 = 1.871(3), P1-C11 = 2.0754(11); C1-P1-C4 = 93.70(13), C1-P1-C11 = 101.42(10), C4-P1-C11 = 101.61(10).

in the long C_{20} chain at C12–C13 is gauche at -70.1°, but all other C–C–C–C torsion angles which follow are anti. The carbon chains are packed such that the planes in which all the carbons in the long chains are packed are parallel.

Halophosphines are widely used precursors to tertiary phosphines. The chlorophosphine CgPCl was made in over 90% yield by treatment of CgPH with *N*-chlorosuccinimide in CCl₄ (eq 4). The conditions for this reaction need to be carefully controlled to avoid incomplete conversion or overoxidation with the formation of P(V) species (see the Experimental Section). The bromophosphine CgPBr can be made similarly, but a more convenient method is by treatment of CgPH with Br₂ (eq 4). The halophosphines CgPX have been fully characterized, including a crystal structure of CgPCl.

Crystals of CgPCl were grown by slow evaporation of its CCl₄ solution. The P–C bond lengths in CgPCl (see Figure 4) are similar to those in CgPH. The protons in the CH₂ groups in all the CgP ligands are diastereotopic, giving rise to four ¹H NMR signals, the multiplicity of which depends on the coupling constants ${}^{2}J(HH)$ and ${}^{3}J(PH)$. Often these signals overlap, but where they are resolved, they can be assigned by COSY NMR spectroscopy (see the Experimental Section). The ¹H NMR spectra of CgPX (X = H, Cl, Br) are similar, apart from one of the CH₂ signals which is significantly deshielded in the halophosphines, resonating at δ 2.25 in CgPCl and δ 2.41 in CgPBr compared to δ 1.73 in CgPH. The crystal structure of CgPCl shows that one of the CH_2 protons (H2A in Figure 4) is close to the chlorine (Cl···· H = 2.73 Å), and since the rigidity of the cage precludes significant conformational change in solution, it is this proton that is assigned to the deshielded CH₂ resonance in the ¹H NMR spectra of CgPCl and CgPBr.

The potential utility of CgPBr as an electrophilic precursor to CgPR was shown by treatment of CgPBr with RMgBr to give CgPR (R = Me, ⁱPr) in good yields (eq 5).

In summary, we have accessed CgPⁱPr by the three routes shown in Scheme 3 ((a) hydrophosphination/condensation, (b) nucleophilic, and (c) electrophilic) and established each to be general for CgPR.

Coordination Chemistry of CgPR. Addition of 2 equiv of secondary phosphine CgPH to [PtCl₂(cod)] in CH₂Cl₂ gave the sparingly soluble *cis*-[PtCl₂(CgPH)₂] (1). The ³¹P{¹H} NMR spectrum showed 2 singlets (in 1:1 ratio) at 1.2 and 1.6 with ¹*J*(PtP) of 3292 and 3299 consistent with the *cis* geometry and the presence of *rac* ($\alpha\alpha/\beta\beta$) and *meso* ($\alpha\beta$) diastereoisomers. Similar diastereoisomerism is detected in the high field ³¹P NMR spectra of many of the complexes reported here (see Experimental) and is associated with the *C*₁ symmetry of the CgPR ligands (see Chart 1). The proton-coupled ³¹P NMR spectrum of **1** showed two *N* doublets for the AA'XX' spin system with $|^{1}J(PH) + {}^{3}J(PH)|$ of 405 Hz, significantly larger than the *J*(PH) of 190 Hz for free CgPH; similar increases in *J*(PH) have been reported in other secondary phosphine complexes.¹²

Crystals of **1** were grown by slow diffusion of a CH_2Cl_2 solution of [PtCl₂(cod)] into a solution of CgPH in CH_2Cl_2 (Figure 5). Complex **1** crystallizes in space group *Cc* as the cis and meso isomer and has approximate mirror symmetry with the hydrogen substituents on the phosphorus atoms almost perfectly eclipsed and pointing toward each other. This is likely a consequence of the minimization of steric interactions between the CgP moieties.

⁽¹²⁾ Eberhard, M. R.; Carrington-Smith, E.; Drent, E. E.; Marsh, P. S.; Orpen, A. G.; Phetmung, H.; Pringle, P. G. *Adv. Synth. Catal.* **2005**, *347*, 1345.

Figure 5. Crystal structure of **1** showing 50% probability ellipsoids. All hydrogen atoms are omitted for clarity, apart from the P–H hydrogens. Selected bond lengths (Å) and angles (deg): Pt1–P1 = 2.2282(11), Pt1–P2 = 2.2439(12), Pt1–C11 = 2.3430(11), Pt1–Cl2 = 2.3605(11), P1–C17 = 1.856(4), P1–C12 = 1.869(4), P2–C2 = 1.866(4), P2–C7 = 1.864(4); P1–Pt1–P2 = 88.65(4), P1–Pt1–Cl1 = 91.07(4), P2–Pt1–Cl2 = 92.42(4), Cl1–Pt1–Cl2 = 87.85(4).

Addition of 2 equiv of CgPH to $[PdCl_2(cod)]$ in CH₂Cl₂ gave *trans*- $[PdCl_2(CgPH)_2]$ (**2**), as shown by the virtual triplets¹³ observed for several of the resonances in its ¹³C NMR spectrum (see the Experimental Section for the characterization data).

The palladium(II) complexes 3a,b and platinum(II) complexes 4a-c were made by addition of the tertiary phosphines CgPR to the appropriate dichlorometal precursor (see the Experimental Section for the characterization data).

Crystals of **3b** suitable for X-ray crystallography were grown from CH₂Cl₂/hexane. Complex **3b** crystallizes in space group $P\bar{1}$ with half a molecule in the asymmetric unit; the other half of the molecule is related by inversion symmetry and thus the complex is the trans and meso (α/β) isomer (see Figure 6). The

cyclohexyl groups are anti to each other; thus, the improper torsion C11–P1···P1A–C11A is 180°.

Crystals of **4c** suitable for X-ray crystallography were grown from CH₂Cl₂ (Figure 7). Complex **4c** crystallizes as the trans and meso ($\alpha\beta$) isomer in the space group $P\overline{1}$ with two independent molecules in the asymmetric unit and, hence, four independent C₂₀ chains. The P–C–C–C and first C–C–C–C conformations vary among the four chains, but all adopt extended conformations so that the second and subsequent C–C–C–C torsion angles are close to 180°. The C₂₀ chains pack so the planes formed by the carbons in three of the chains lie roughly parallel to each other, whereas the fourth chain is rotated at 90° to this. The alkyl groups are syn to each other: i.e., the improper torsion C–P1···P2–C is close to 0° in both of the independent molecules.

In order to assess the bonding characteristics of CgPX, the ν (CO) values (in CH₂Cl₂) for the carbonylrhodium complexes **5a**-**e** were measured (see Chart 2). The order of increasing ν (CO) is X = ⁱPr > Me > Ph > H > Cl, which is as expected in terms of an increase in the electronegativity of the substituent, leading to a decrease in the σ -donor and an increase in the π -acceptor capacity of the ligand. The values also confirm the relatively electron withdrawing nature of the CgP group compared with other R₂P groups;² under the same conditions,

Figure 6. Crystal structure of *trans*- $[PdCl_2(CgPCy)_2]$ (**3b**) showing 50% probability ellipsoids. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Pd1-Cl1 = 2.2934(7), Pd1-P1 = 2.3641(6), P1-Cl1 = 1.858(2), P1-C4 = 1.890(2), P1-C1 = 1.895(2); Cl1-P1-C4 = 110.66(8), Cl1-P1-C1 = 102.30(8), C4-P1-C1 = 93.38(8).

^{(13) (}a) Redfield, D. A.; Nelson, J. H.; Cary, L. W. Inorg. Nucl. Chem. Lett. 1974, 10, 727. (b) Pregosin, P. S.; Kunz, R. Helv. Chim. Acta 1975, 58, 423. (c) van den Beuken, E. K.; Meetsma, A.; Kooijman, H.; Spek, A. L.; Feringa, B. L. Inorg. Chim. Acta 1997, 264, 171. (d) Andreasen, L. V.; Simonsen, O.; Wernberg, O. Inorg. Chim. Acta 1999, 295, 153.

Figure 7. Crystal structure of *trans*-[PtCl₂(CgPC₂₀H₄₁)₂] (**4c**) showing 50% probability ellipsoids. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å): Pt1-Cl1 = 2.298(3), Pt1-P2 = 2.300(3), Pt1-Cl2 = 2.317(3), Pt1-P1 = 2.328(3), Pt2-P4 = 2.291(4), Pt2-P3 = 2.300(4), Pt2-Cl3 = 2.302(3), Pt2-Cl4 = 2.332(3).

for *trans*-[RhCl(CO){PPh_n(C₆F₅)_{3-n}}₂], ν (CO)/cm⁻¹ is 1965 (*n* = 3), 1983 (*n* = 2), 1996 (*n* = 1), and 2005 (*n* = 0).¹⁴

Conclusion

The large bulk, robustness, and unusual electronic properties of CgPR have already been exploited in several applications in homogeneous catalysis. The three general routes to the monodentate cage tertiary phosphines CgPR described here should make accessible a great variety of CgPR ligands and stimulate further investigations of their chemistry. The routes described have been applied to the synthesis of chelating diphosphines containing CgP substituents, and this will be the subject of a future publication.

Experimental Section

Unless otherwise stated, all reactions were carried out under a dry nitrogen atmosphere using standard Schlenk line techniques. Dry N_2 -saturated solvents were collected from a Grubbs solvent

system¹⁵ in flame- and vacuum-dried glassware. MeOH was dried over 3 Å molecular sieves and deoxygenated by N₂ saturation. Commercial reagents were used as supplied unless otherwise stated. All phosphines were stored under nitrogen at room temperature. The secondary phosphine CgPH can be obtained from Cytec but, in this work, was made by the route described below. Most complexes were stable to air in the solid state and were stored in air at room temperature. The starting materials [PtCl₂(cod)],¹⁶ [PdCl₂(cod)],¹⁷ [PdCl₂(NCPh)₂],¹⁸ and [RhCl(CO)₂]₂¹⁹ were prepared by literature methods. Elemental analyses were carried out by The Microanalytical Laboratory of the School of Chemistry, University of Bristol. Electron impact and fast atom bombardment mass spectra were recorded by The Mass Spectrometry Service, University of Bristol, on MD800 and Autospec instruments. Infrared spectroscopy was carried out on a Perkin-Elmer 1600 Series FTIR spectrometer. NMR spectra were measured on a JEOL GX 300, JEOL Eclipse 400, or JEOL GX 400 spectrometer. ³¹P{¹H}, ¹³C{¹H}, and ¹H NMR spectra were recorded at the ambient temperature of the probe at 300, 100, and 121 MHz, respectively, using deuterated solvent to provide the field/frequency lock.

1,3,5,7-Tetramethyl-4,6,8-trioxa-2-phosphaadamantane (CgPH). A three-necked 1 L flask was equipped with a large magnetic stirrer bar, a thermometer, a gas inlet fitted to a mineral oil bubbler and then a gas manifold to allow for N_2/PH_3 admission (fine gas bubbles were obtained using a sintered-glass bubb attached to the bottom of a standard glass inlet), a gas outlet fitted to a mineral oil bubbler followed by a bleach trap,²⁰ and then another mineral oil bubbler. The flask was charged with acetylacetone (150 cm³, 1.46 mol) and aqueous HCl (300 cm³, 5 M), and then N_2 was passed through the

- (17) Drew, D.; Doyle, J. R. Inorg. Synth. 1972, 13, 47.
- (18) Doyle, R.; Slade, P. E.; Jonassen, H. B. Inorg. Synth. 1960, 6, 216-219.
 - (19) McCleverty, J. A.; Wilkinson, G. Inorg. Synth. 1990, 28, 84.
- (20) Ellis, J. W.; Harrison, K. N.; Hoye, P. A. T.; Orpen, A. G.; Pringle,

^{(14) (}a) Roodt, A.; Otto, S.; Steyl, G. *Coord. Chem. Rev.* 2003, 245,
121. (b) Clarke, M. L.; Halliday, G. L.; Slawin, A. M. Z.; Woollins, J. D. *Dalton Trans.* 2002, 1093.

⁽¹⁵⁾ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.

⁽¹⁶⁾ McDermott, J. X.; White, J. F.; Whitesides, G. M. J. Am. Chem. Soc. 1976, 98, 6521.

P. G.; Smith, M. B. Inorg. Chem. 1992, 31, 3026.

solution for 18 h to ensure the elimination of oxygen. The reaction vessel was cooled in an ice/water bath to 0 °C, and then gaseous PH₃ was passed through the solution for 7 h at such a rate that it was absorbed by the reaction mixture (monitored by observation of the oil bubblers). Caution! PH_3 gas is highly toxic and an explosion hazard. It should be handled with extreme care. Nitrogen was again bubbled through the mixture for 16 h to ensure the elimination of any PH3 before workup. A very sensitive test for the presence of PH₃ is to use filter paper which has been dipped in a solution of AgNO3-it turns black in the presence of minute quantities of PH3 gas. The white crystalline solid was then filtered off in air, washed with water $(3 \times 200 \text{ cm}^3)$, and dried under reduced pressure to give CgPH (78.5 g, 50% yield). Anal. Found (calcd for $C_{10}H_{17}O_3P$): C, 55.5 (55.6); H, 8.3 (7.9). ³¹P NMR (CDCl₃): δ_P –49.5 (d × mult *J*(PH) = 190 Hz). ¹³C NMR (CDCl₃): $\delta_{\rm C}$ 96.6 (s), 96.3 (s), 71.9 (d, $J(\rm PC) = 18$ Hz), 70.3 (s), 45.1 (s), 45.6 (d, J(PC) = 14 Hz), 29.7 (d, J(PC) = 23 Hz), 29.0 (d, J(PC)= 12 Hz), 27.9 (s), 27.7 (s). ¹H NMR (CDCl₃, assignment by COSY and spectral simulation): $\delta_{\rm H}$ 3.08 (dm, 1H, J(PH) = 190 Hz, J(HH) = 1.6, 3.2, 0.6 Hz), 1.91 (ddd, 1H, CH₂, J(PH) = 2.6 Hz, J(HH)= 12.8, 0.6 Hz), 1.81 (ddd, 1H, CH₂, J(PH) = 6.6 Hz, J(HH) =1.6, 13.1 Hz) 1.79 (ddd, 1H, CH_2 , J(PH) = 21.4 Hz, J(HH) = 3.2, 13.1 Hz), 1.73 (d, 1H, CH_2 , J(HH) = 12.8 Hz), 1.48 (d, 3H, CH_3 , J(PH) = 14 Hz), 1.46 (d, 3H, CH₃, J(PH) = 14 Hz), 1.39 (s, 3H, CH₃), 1.38 (s, 3H, CH₃).

1,3,5,7-Tetraethyl-4,6,8-trioxa-2-phosphaadamantane (EtCg-**PH**). A three-necked 250 cm³ flask was equipped as in the preparation of CgPH above. The flask was charged with 3,5heptanedione (10 cm³, 0.073 mol) and aqueous HCl (100 cm³, 8 M), and then N_2 was passed through the solution for 18 h to ensure the elimination of oxygen. The reaction vessel was cooled in a dry ice/ethylene glycol bath to -12 °C, and then gaseous PH₃ was then passed through the solution for 7 h at such a rate that it was absorbed by the reaction mixture (monitored by observation of the oil bubblers). Caution! PH₃ gas is highly toxic and an explosion hazard. It should be handled with extreme care. Nitrogen was again bubbled through the mixture for 16 h to ensure the elimination of any PH₃ before workup. A very sensitive test for the presence of PH₃ is to use filter paper which has been dipped in a solution of AgNO₃-it turns black in the presence of minute quantities of PH₃ gas. The solution was then cooled in a salt/ice bath and neutralized by the slow addition of N₂-saturated NaOH solution (160 cm³, 5 M) until pH 7. N₂-saturated diethyl ether (200 cm³) was then added and stirred. The ethereal layer was separated and the aqueous layer washed with diethyl ether $(3 \times 20 \text{ cm}^3)$. The organic extracts were combined and dried over MgSO4, and then the solvent was removed under reduced pressure to give EtCgPH as a viscous air-sensitive oil (7.42 g, 75% yield). Anal. Found (calcd for C14H25O3P): C, 61.31 (61.73); H, 8.90 (9.26). FAB mass spectrum: m/z 272 (M⁺). ³¹P NMR (CDCl₃): δ_P -57.9 (d × mult J(PH) = 190 Hz). ¹³C NMR (CDCl₃): $\delta_{\rm C}$ 97.4 (s), 97.1 (s), 74.8 (d, $J(\rm PC) = 22$ Hz), 73.5 (d, J(PC) = 8 Hz), 41.6 (d, J(PC) = 13 Hz), 39.0 (d, J(PC)= 14 Hz), 35.7 (s), 35.5 (s), 35.2 (s), 35.0 (s), 33.7 (s), 33.3(s). ¹H NMR (CDCl₃): $\delta_{\rm H}$ 1.40–2.20 (m, 18H), 0.80–1.34 (m, 12H).

CgPH(BH₃). A solution of BH₃ • THF (37.3 cm³, 1 M in THF, 37.3 mmol) was added slowly over 30 min to a stirred, ice-cold solution of CgPH (8.00 g, 37.3 mmol) in THF (20 cm³). The reaction mixture was then warmed to room temperature and the solvent removed under reduced pressure to give a white powder. The solid was dissolved in hot THF (6 cm³) and the resulting solution cooled slowly to room temperature and then put in the freezer (-10 °C) to give the crystalline white solid CgPH(BH₃) (8.223 g, 96%). Anal. Found (calcd for for C₁₀H₂₀BO₃P): C, 52.2 (52.2); H, 8.8 (8.8). EI mass spectrum: *m/z* 230 (M⁺). ³¹P NMR (CDCl₃): $\delta_{\rm P}$ 1.5 (br q, ¹*J*(PB) = 39 Hz). ¹³C NMR (CDCl₃): $\delta_{\rm C}$ 96.8 (s), 96.6 (s), 70.9 (d, *J*(PC) = 30 Hz), 68.7 (d, *J*(PC) = 37.5 Hz), 44.2 (s), 38.3 (d, *J*(PC) = 15.0 Hz), 27.7 (d, *J*(PC) = 22.5 Hz), 25.7 (d, J(PC) = 2.0 Hz), 25.5 (d, J(PC) = 7.5 Hz). ¹H NMR (CDCl₃): $\delta_{\rm H}$ 4.40 (d, 1H, P*H*, ¹J(PH) = 180 Hz), 2.13 (m, 2H, C*H*₂), 1.82 (m, 2H, C*H*₂), 1.47 (m, 12H, C*H*₃), 1.08–0.18 (br, 3H, B*H*₃). ¹¹B NMR (CDCl₃): $\delta_{\rm B}$ 45.6 (br).

CgPCl. To a solution of CgPH (4.32 g, 20.0 mmol) in CCl_4 (50 cm³) cooled to between -5 and -10 °C was added N-chlorosuccinimide (4.42 g, 33.0 mmol) in ca. 0.5 g portions over 15 min. The reaction mixture was then cooled to -10 °C and the resulting white precipitate was filtered off and washed with CCl_4 (2 × 20 cm³). The solvent was then reduced to dryness to give CgPCl as a yellow solid (4.96 g, 93%). Accurate mass spectrum: $M_r = 250.0516$ (calcd for $C_{10}H_{16}O_3PCl$ 250.0526). ³¹P NMR (CDCl₃): δ_P 53.6.¹³C NMR (CDCl₃): $\delta_{\rm C}$ 96.6 (d, $J(\rm PC) = 1.5$ Hz), 95.8 (s), 74.8 (d, J(PC) = 23.83 Hz), 74.2 (d, J(PC) = 39.21 Hz), 43.9 (d, J(PC) =20.0 Hz, CH_2), 34.1 (s, CH_2), 27.7 (s, CH_3), 27.3 (d, J(PC) = 1.5Hz, CH_3), 26.9 (d, J(PC) = 23.8 Hz, CH_3), 26.0 (d, J(PC) = 12.3Hz, CH₃). ¹H NMR (CDCl₃): $\delta_{\rm H}$ 2.25 (d, 1H, CH₂, J(HH) = 13.5 Hz), 1.99 (d, 1H, CH_2 , J(PH) = 5.3 Hz), 1.93 (s, 1H, CH_2), 1.55 (dd, 1H, CH_2 , J(HH) = 13.5 Hz, J(PH) = 5.0 Hz), 1.41 (d, 3H, CH_3 , J(PH) = 1.3 Hz), 1.39 (s, 3H, CH_3), 1.36 (s, 6H, CH_3).

CgPBr. This could be made by a procedure similar to that for CgPCl, using N-bromosuccinimide. However, a more convenient procedure is as follows. A solution of Br_2 (1.83 mmol, 8.4 cm⁻³, 0.218 M in CH₂Cl₂) was added dropwise over 10 min to a cooled $(0 \ ^{\circ}C)$ solution of CgPH (0.368 g, 1.7 mmol) in CH₂Cl₂ (10 cm⁻³). After 1 h the solvent was removed to give a yellow-orange solid. Toluene (10 cm⁻³) was added to the solid and the suspension filtered. Removal of the toluene then yielded a white powder of CgPBr (0.393 g, 78%). Anal. Found (calcd for C₁₀H₁₆BrO₃P): C, 40.7 (40.7); H, 5.7 (5.5). EI mass spectrum: m/z 294, 296 (M⁺). ³¹P NMR (CDCl₃): δ_P 54.9. ¹³C NMR (CDCl₃): δ_C 96.8 (d, *J*(PC) = 1.5 Hz), 95.9 (s), 74.0 (d, J(PC) = 26.9 Hz), 73.0 (d, J(PC) =41.5 Hz), 43.8 (d, J(PC) = 19.2 Hz, CH_2), 34.8 (s, CH_2), 27.8 (s, CH_3), 27.3 (d, J(PC) = 2.4 Hz, CH_3), 27.06 (d, J(PC) = 23.1 Hz, CH₃), 27.03 (d, J(PC) = 12.5 Hz, CH₃). ¹H NMR (CDCl₃): $\delta_{\rm H}$ 2.41 (d, 1H, CH_2 , J(HH) = 13.5 Hz), 2.07 (s, 1H, CH_2), 2.00 (d, 1H, CH_2 , J(PH) = 7.3 Hz), 1.62 (dd, 1H, CH_2 , J(HH) = 13.5 Hz, J(PH) = 4.6 Hz, 1.43 (d, 3H, CH_3 , J(PH) = 2.7 Hz), 1.40 (s, 3H, CH₃), 1.37 (s, 3H, CH₃), 1.36 (s, 3H, CH₃).

CgPⁱPr. Method a via PH₂ⁱPr. Acetylacetone (7.1 cm³, 69.1 mmol) was added to a mixture of PH₂ⁱPr (1.0 cm³, 11.5 mmol) and 10 M aqueous HCl (10 cm³) and the resulting solution stirred at room temperature. After 6 days, a white precipitate had formed, and after a further 5 days, the precipitate was filtered off washed with water $(3 \times 20 \text{ cm}^3)$. The filtrate then contained more precipitated product, and this too was filtered off and washed with water $(2 \times 20 \text{ cm}^3)$. The combined yield of CgPⁱPr was 1.19 g (41%). Anal. Found (calcd for $C_{13}H_{23}O_3P$ + 0.25H₂O): C, 59.4 (59.5); H, 9.2 (9.0). EI mass spectrum: *m/z* 258 (M⁺). ³¹P NMR (CDCl₃): δ_P -7.4. ¹³C NMR (CDCl₃): δ_C 96.3 (s), 95.8 (s), 73.4 (d, J(PC) = 25 Hz), 72.8 (d, J(PC) = 13 Hz), 45.7 (d, J(PC) = 15Hz), 38.2 (s), 29.9 (d, J(PC) = 21 Hz), 28.6 (d, J(PC) = 12 Hz), 28.3 (s), 28.0 (s), 23.8 (d, J(PC) = 24 Hz), 21.3 (d, J(PC) = 21Hz), 21.1 (d, J(PC) = 9 Hz). ¹H NMR (CDCl₃): $\delta_{\rm H}$ 1.90–2.08 (m, 2H), 1.64-1.86 (m, 3H), 1.45 (s, 3H), 1.40 (s, 3H), 1.39 (s, 3H), 1.37 (s, 3H), 1.24 (dd, 3H, ${}^{2}J(PH) = 17.1$ Hz, ${}^{3}J(HH) = 7.6$ Hz), 1.09 (dd, 3H, ${}^{2}J(PH) = 11.3$ Hz, ${}^{3}J(HH) = 7.6$ Hz).

Method b via CgPH(BH₃). A solution of BuLi (0.5 cm³, 1.6 M in hexane, 0.80 mmol) was added dropwise over 5 min to a solution of CgPH(BH₃) (185 mg, 0.80 mmol) in THF (10 cm²) at -78 °C. The resulting bright yellow solution was then warmed to room temperature and stirred for a further 15 min. The solution was then recooled to -78 °C, and a solution of 2-bromopropane (0.076 cm³, 0.81 mmol) in THF (10 cm³) was added dropwise over 15 min. The mixture was then warmed to room temperature and stirred for a further 24 h. The ³¹P NMR spectrum of the solution showed a broad signal at δ_P 23.5 consistent with the formation of

Alkyl Phosphatrioxaadamantane Ligands

CgPⁱPr(BH₃). An excess of distilled Et₂NH (2.0 cm³, 19 mmol) was added, and the solution was stirred for a further 24 h. The ³¹P NMR spectrum of this solution showed the borane adduct had been completely converted to CgPⁱPr. The volatiles were removed under reduced pressure to leave a white solid. Pentane (40 cm³) was added, and the colorless solution was filtered free of LiBr and Et₂NHBH₃ by cannula. The solvent was then removed under reduced pressure to give a white solid, which was recrystallized from hot methanol (10 cm³) to give white solid CgPⁱPr (147 mg, 71% yield).

Method c via CgPBr. ⁱPrMgCl (7.52 mmol, 3.76 cm³, 2 M in THF) was added dropwise over 15 min to a solution of CgPBr (0.40 g, 1.36 mmol) in toluene (10 cm³) at room temperature. The solution was then stirred for 1 h, quenched with water (5 cm³), and extracted using hexane (3 \times 10 cm³). Removal of the solvent under reduced pressure gave white solid CgPⁱPr (0.23 g, 66% yield).

CgPBz was made in 62% yield by method b. Anal Found (calcd for for $C_{17}H_{23}O_3P$): C, 66.7 (66.5); H, 7.5 (7.1). EI mass spectrum: *m*/*z* 306 (M⁺). ³¹P NMR (CDCl₃): δ_P –24.4. ¹³C NMR (CDCl₃): δ_C 143.5 (d, 1*J*(PC) = 10.5 Hz), 140.3 (s), 130.2 (d, *J*(PC) = 7.0 Hz), 127.8 (s), 127.2 (d, *J*(PC) = 2.0 Hz), 96.6 (s), 95.4 (s), 76.1 (d, *J*(PC) = 26 Hz), 72.7 (d, *J*(PC) = 5 Hz), 44.7 (d, *J*(PC) = 14 Hz), 37.4 (s), 27.8 (d, *J*(PC) = 11 Hz), 27.3 (s), 26.9 (s), 26.7 (s), 25.6 (s). ¹H NMR (CDCl₃): δ_H 7.75–6.95 (m, 5H, Ph), 3.11 (dd, 2H, *CH*₂Ph, ²*J*(PH) = 16 Hz, ²*J*(HH) = 4 Hz), 2.59 (2H, *CH*₂, ²*J*(PH) = 16 Hz, ²*J*(HH) = 4 Hz), 1.98–1.05 (m, 16H, 2*CH*₂ and 4*CH*₃).

CgPC₂₀**H**₄₁ is a white solid which was made in 82% yield by method b. Anal. Found (calcd for C₃₀H₅₇O₃P), C, 72.7 (72.5); H, 11.6 (11.5). EI mass spectrum: m/z 497 (M⁺ + 1). ³¹P NMR (CDCl₃): $\delta_{\rm P}$ -28.1. ¹³C NMR (CDCl₃): $\delta_{\rm C}$ 96.7 (s), 95.8 (s), 76.7 (d, *J*(PC) = 1.5 Hz), 72.3 (d, *J*(PC) = 19 Hz), 44.8 (d, *J*(PC) = 22 Hz), 37.3 (d, *J*(PC) = 4 Hz), 30–23 (alkyl C). ¹H NMR (CDCl₃): $\delta_{\rm H}$ 2.81–0.78 (m).

CgPMe is an off-white solid which was made in 75% yield by method c. Accurate mass spectrum: $M_r = 230.1070$ (calcd for $C_{11}H_{19}O_3P$, 230.1072). ³¹P NMR (CDCl₃): $\delta_P - 41.5$. ¹³C NMR (CDCl₃): δ_C 96.8 (s), 95.8 (s), 72.2 (d, J(PC) = 6 Hz), 71.5 (d, J(PC) = 21 Hz), 44.4 (d, J(PC) = 16 Hz, CH₂), 36.2 (d, J(PC) =1.5 Hz, CH₂), 28.0 (d, J(PC) = 13 Hz, CH₃), 27.5 (d, J(PC) =23.0 Hz, CH₃), 26.2 (d, J(PC) = 13.0 Hz, CH₃), 4.0 (d, J(PC) = 25Hz, CH₃), ¹H NMR (CDCl₃): $\delta_H 1.96-1.81$ (m, 2H), 1.75 (d, 1H, J(HH) = 13.2 Hz), 1.53 (dd, 1H, J(HH) = 13.2, 4.0 Hz), 1.35 (s, 6H), 1.28 (d, 3H, J(PH) = 12.9 Hz), 1.25 (d, 3H, J(PH) = 12.5Hz), 0.92 (d, 3H, J(PH) = 3.3 Hz).

cis-[PtCl₂(CgPH)₂] (1). A solution of CgPH (0.800 g, 3.70 mmol) in CH₂Cl₂ (10 cm³) was added to a solution of [PtCl₂(cod)] (0.690 g, 1.90 mmol) in CH₂Cl₂ (10 cm³) and the mixture stirred for 4 h. The white solid product (0.820 g, 64% yield) that had precipitated was filtered off and washed with pentane. Anal. Found (calcd for C₂₀H₃₄Cl₂O₆P₂Pt): C, 34.4 (34.4); H, 5.2 (4.9). ³¹P NMR (CDCl₃): $\delta_{\rm P}$ 1.2 (¹*J*(PtP) = 3292 Hz) and 1.6 (¹*J*(PtP) = 3299 Hz), |¹*J*(PH) + ³*J*(PH)| = 405 Hz. Complex 1 was very sparingly soluble, and no ¹³C NMR spectrum was obtained. Crystals of 1 grew when a CH₂Cl₂ solution of CgPH was allowed to diffuse into a CH₂Cl₂ solution of [PtCl₂(cod)].

cis-[PdCl₂(CgPH)₂] (2). A solution of CgPH (1.00 g, 4.60 mmol) in CH₂Cl₂ (15 cm³) was added to a solution of [PdCl₂(cod)] (0.660 g, 2.30 mmol) in CH₂Cl₂ (15 cm³) and the mixture stirred for 10 min. The cloudy solution was concentrated to 5 cm³, and then pentane (15 cm³) was added to precipitate the yellow solid product (1.07 g, 75% yield), which was filtered off and washed with pentane. Anal. Found (calcd for C₂₀H₃₄Cl₂O₆P₂Pd): C, 39.4 (39.4); H, 6.0 (5.6). ³¹P NMR (CDCl₃): δ_{P} 3.0, 2.7 (d, |¹J(PH) + ³J(PH)| = 368 Hz). ¹³C NMR (CDCl₃): δ_{C} 96.8 (s), 96.7 (s), 73.6 (t, |¹J(PC) + ³J(PC)| = 19.8 Hz), 73.4 (t, |¹J(PC) + ³J(PC)| = 13.8 Hz), 72.2 (t, |¹J(PC) + ³J(PC)| = 26.0 Hz), 46.65 (s), 46.60 (s), 39.9 (s), 39.7

			Table 1. X-ray Cryst	tallographic Data			
	CgPH	CgPCI	$CgP(C_{20}H_{41})$	$[CgPBz_2]Br$	1	3b	4c
color, habit	colorless block	colorless block	colorless block	colorless block	colorless prism	yellow block	colorless stalk
size (mm)	$0.28 \times 0.24 \times 0.20$	$0.30 \times 0.24 \times 0.20$	$0.25\times0.10\times0.05$	$0.2 \times 0.2 \times 0.1$	$0.30 \times 0.21 \times 0.18$	$0.28 \times 0.24 \times 0.20$	$0.38 \times 0.10 \times 0.06$
empirical formula	$C_{10}H_{17}O_{3}P$	$C_{10}H_{16}CIO_3P$	$C_{30}H_{57}O_{3}P$	$C_{24}H_{30}BrO_{3}P$	$C_{21}H_{36}Cl_4O_6P_2Pt$	$C_{32}H_{54}Cl_2O_6P_2Pd$	$C_{60}H_{114}Cl_2O_6P_2Pt$
M_r	216.21	250.65	496.73	477.36	783.33	773.99	1259.44
cryst syst	monoclinic	monoclinic	triclinic	triclinic	monoclinic	triclinic	triclinic
space group	$P2_1/c$	$P2_1/c$	$P\overline{1}$	$P\overline{1}$	C_{C}	$P\overline{1}$	$P\overline{1}$
<i>a</i> (Å)	8.176(2)	9.656(3)	8.6589(13)	10.108(5)	12.0568(4)	8.3750(19)	14.959(3)
b (Å)	8.0969(13)	8.3144(18)	10.335(9)	10.339(4)	21.1776(6)	9.9901(14)	16.978(3)
<i>c</i> (Å)	16.669(3)	15.116(2)	17.863(2)	11.856(2)	12.7975(4)	11.0436(19)	26.764(5)
α (deg)	06	06	89.713(14)	71.83(2)	90.00	87.130(14)	85.08(3)
β (deg)	94.144(13)	100.463(12)	77.730(14)	88.97(3)	114.415(4)	85.581(16)	84.42(3)
γ (deg)	90	06	73.231(17)	73.25(3)	90.00	84.121(17)	76.65(3)
$V(\text{\AA}^3)$	1100.7(4)	1193.4(5)	1493.0(13)	1123.7(8)	2975.43(16)	915.6(3)	6568(2)
Ζ	4	4	2	2	4	1	4
$\mu \ (\mathrm{mm}^{-1})$	0.23	0.439	1.008	1.923	5.215	0.779	2.31
$T(\mathbf{K})$	173	173	100	173	100	100	100
no. of rflns: total/indep (R_{int})	5082/1723 (0.0255)	6005/2090 (0.0510)	11 870/5119 (0.0369)	11 702/5059 (0.0257)	65 740/8380 (0.0494)	7939/3201 (0.0205)	75 284/30 029 (0.1530)
final R1 and wR2	0.0331, 0.0903	0.0418, 0.0980	0.0476, 0.1232	0.0284, 0.0643	0.0274, 0.0578	0.0195, 0.0508	0.1024, 0.2447
largest peak, hole (eA^{-3})	0.366, -0.240	0.323, -0.279	0.450, -0.220	0.355, -0.263	2.46, -1.57	0.275, -0.330	1.870, -2.977

(s), 29.0 (s), 28.8 (s), 27.7 (s), 27.6 (s), 27.4 (s), 27.3 (s). ¹H NMR (CDCl₃): $\delta_{\rm H}$ 4.28 (m, 2H, PH, |¹J(PH) + ³J(PH)| = 363 Hz), 2.80 (m, 4H, CH₂), 1.97 (m, 4H, CH₂), 1.68 (m, 12H, CH₃), 1.43 (m, 6H, CH₃), 1.39 (m, 6H, CH₃).

trans-[PdCl₂(CgPⁱPr)₂] (3a). A solution of CgPⁱPr (44 mg, 0.17 mmol) in CH₂Cl₂ (2 cm³) was added to a solution of [PdCl₂(NCPh)₂] (30 mg, 0.078 mmol) in CH₂Cl₂ (1 cm³). The pale yellow solution was stirred for 30 min at room temperature, after which time a yellow precipitate had formed, which was filtered off, washed with CH₂Cl₂ (2 cm³), and dried. The yellow solid product was sparingly soluble (33 mg, 62% yield). Anal. Found (calcd for C₂₆H₄₆Cl₂O₆P₂Pd): C, 44.8 (45.0); H, 6.8 (6.7). FAB mass spectrum: *m*/*z* 658 (M⁺ – Cl). ³¹P NMR (CDCl₃): δ_P 13.1, 13.3. Complex **3b** as an orange solid was made similarly from CgPCy in 72% yield. Satisfactory elemental analyses were not obtained, but a crystal structure was determined (see the Results and Discussion). FAB mass spectrum: *m*/*z* 739 (M⁺ – Cl). ³¹P NMR (CDCl₃): δ_P 9.2, 9.4.

trans-[PtCl₂(CgPⁱPr)₂] (4a). A solution of CgPⁱPr (44 mg, 0.17 mmol) in CH₂Cl₂ (2 cm³) was added to a solution of [PtCl₂(cod)] (30 mg, 0.080 mmol) in CH₂Cl₂ (1 cm³). The pale yellow solution was stirred for 2 h at room temperature, and then all the volatiles were removed under reduced pressure. The yellow residue was recrystallized from diethyl ether/pentane to give the off-white solid product (32 mg, 51% yield). Anal. Found (calcd for 4a · 2CH₂Cl₂, C₂₈H₅₀Cl₆O₆P₂Pt): C, 35.0 (35.3); H, 5.0 (5.3). FAB mass spectrum: *m*/*z* 783 (M⁺). ³¹P NMR (CDCl₃): δ_P 3.08 (*J*(PtP) = 2600 Hz), 3.16 (*J*(PtP) = 2610 Hz). ¹⁹⁵Pt NMR (CDCl₃): δ_{Pt} 868 (*J*(PtP) = 2600 Hz), 871 (*J*(PtP) = 2610 Hz). Complex 4b was made similarly from CgPCy in 68% yield. FAB mass spectrum: *m*/*z* 862 (M⁺). ³¹P NMR (CDCl₃): δ_P -0.0 (*J*(PtP) = 2599 Hz), 0.1 (*J*(PtP) = 2599 Hz).

trans-[PtCl₂(CgPC₂₀H₄₁)₂] (4c). A solution of CgPC₂₀H₄₁ (380 mg, 0.76 mmol) in CH₂Cl₂ (5 cm³) was added to a solution of [PtCl₂(cod)] (130 mg, 0.35 mmol) in CH₂Cl₂ (5 cm³). The pale yellow solution was stirred for 1 h at room temperature, and then the volatiles were removed under reduced pressure. The yellow residue was triturated with diethyl ether (50 cm³) to give the pale yellow solid, which was filtered off, washed with diethyl ether (20 cm³), and dried to give 4c (430 mg, 98% yield). An analytically pure sample of 4c was crystallized by slow evaporation of a CH₂Cl₂ solution. Anal. Found (calcd fofor C₆₀H₁₁₄Cl₂O₆P₂Pt): C, 56.9 (57.2); H, 8.8 (9.1). FAB mass spectrum: *m*/*z* 1188 (M⁺ – 2Cl). ³¹P NMR (CDCl₃): $\delta_{\rm P}$ 1.22 (*J*(PtP) = 2594 Hz), 1.41 (*J*(PtP) = 2602 Hz). ¹H NMR (CDCl₃): $\delta_{\rm H}$ 2.13–0.75.

trans-[RhCl(CO)(CgPH)₂] (5d). A solution of CgPH (144 mg, 0.67 mmol) in CH₂Cl₂ (5 cm³) was added to a solution of [Rh₂Cl₂(CO)₄] (65 mg, 0.17 mmol) in CH₂Cl₂ (10 cm³). The pale yellow solution was stirred for 10 min at room temperature, and then the solution was reduced to ca. 2 cm³. Addition of pentane (10 cm³) precipitated the yellow solid product (140 mg, 70%). Anal. Found (calcd for C₂₁H₃₄ClO₇P₂Rh): C, 42.3 (42.1); H, 6.0 (5.7).

³¹P NMR (CD₂Cl₂): δ_P 14.4 (*J*(RhP) = 117 Hz). IR (CH₂Cl₂): ν (CO) 1989 cm⁻¹. The analogous complexes *trans*-[RhCl(CO)(Cg-PX)₂] (**5a**-**c**,**e**) were made in situ and characterized in solution by IR (see the Results and Discussion) and ³¹P NMR (CD₂Cl₂): **5a**, δ_P 33.3 and 33.1 (*J*(RhP) = 130 and 128 Hz); **5b**, δ_P 15.1 and 14.6 (*J*(RhP) = 128 and 129 Hz); **5c**, δ_P 27.3 (*J*(RhP) = 134 Hz); **5e** (at -80 °C), δ_P 97.7 and 99.0 (*J*(RhP) = 145 and 145 Hz).

X-ray Experiments. X-ray diffraction experiments on 3b and 4c were carried out at 100 K on a Bruker SMART APEX diffractometer, experiments on [CgP(CH₂Ph)₂]Br, CgPH, and CgPCl were carried out at 173 K on a Bruker SMART diffractometer, using Mo K α X-radiation ($\lambda = 0.71073$ Å), the experiment on 1 was carried out at 100 K on an Oxford Diffraction Gemini R Ultra diffractometer, using Mo K α X-radiation ($\lambda = 0.71073$ Å), and the experiment on CgP(n-C₂₀H₄₁) was carried out at 100 K on a Bruker PROTEUM diffractometer using Cu K α X-radiation (λ = 1.541 78 Å); all data collections were performed using a single crystal coated in paraffin oil mounted on a glass fiber. Intensities were integrated from several series of θ scan exposures. Absorption corrections were based on equivalent reflections,^{21,22} and structures were refined against all F_0^2 data with hydrogen atoms riding in calculated positions using SHELXTL.²³ Crystal and refinement data are given in Table 1. For 4c, the residual electron density different maps showed some extra electron density in regions between the complex molecules which could not be identified. The data were refined using SQUEEZE,²⁴ which resulted in an improvement in the R factor of approximately 0.03. The SQUEEZE algorithm calculated an extra 154 electrons in a volume of 383 Å³. This approximates to between three and four solvent molecules of CH₂Cl₂ per molecule of complex.

Acknowledgment. We thank Shell for studentships to J.F. and R.I.P. and the EPSRC for studentships to J.H.D., K.H., M.F.H., and J.H. We thank Oxford Diffraction for the loan of a diffractometer and Johnson-Matthey for a loan of precious metal compounds.

Supporting Information Available: CIF files giving X-ray crystal data, atomic coordinates, bond lengths and angles, and thermal displacement parameters for the compounds CgPH, CgPCl, $CgP(C_{20}H_{41})$, [CgPBz₂]Br, **1**, **3b**, and **4c**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM800141Y

^{(21) (}a) SAINT Integration Software; Siemens Analytical X-ray Insruments Inc., Madison, WI, 1994. (b) CrysAlis RED; Oxford Diffraction Ltd., Oxford, U.K., 2007.

⁽²²⁾ Sheldrick, G. M. SADABS V2.10; University of Göttingen, Göttingen, Germany, 2003.

⁽²³⁾ SHELXTL Program System Version 5.1; Bruker Analytical X-ray Instruments, Inc., Madison, WI, 1998.

⁽²⁴⁾ Spek, A. L. PLATON, A Multipurpose Crystallographic Tool; Utrecht University, Utrecht, The Netherlands., 2007.