Amine-Assisted C-Cl Bond Activation of Aryl Chlorides by a (Phebox)Rh-Chloro Complex

Jun-ichi Ito, Takeshi Miyakawa, and Hisao Nishiyama*

Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan

Received March 7, 2008

Summary: Oxidative addition of chlorobenzene and p-chlorotoluene by (Phebox) $RhCl_2(H_2O)$ (1) in the presence of diisopropylamine was examined and was shown to produce the corresponding aryl complexes (Phebox) $RhCl(Ar)(H_2O)$ in high yields via C-Cl bond cleavage. Reaction of 1 with chloropyridine in the presence of diisopropylamine provided a pyridinium rhodate complex.

Introduction

Oxidative addition of aryl halides to low-valent transition metal complexes is a common process to generate aryl complexes having a metal—carbon bond. Such a process is one of the most important steps in transition metal catalyzed reactions such as the Heck reaction and cross-coupling reaction.^{1,2} Utilization of an aryl chloride, which has the higher dissociation energy of a C–Cl bond compared with that of C–Br or C–I, has also been achieved in Pd-catalyzed arylation reactions.³ In comparison with the oxidative addition of an aryl halide to group 10 metals, examples for group 9 metal complexes such as Rh(I) and Ir(I) are still rare.^{4–9} Recent studies of the oxidative addition of Ar–Cl to Rh and Ir have been limited to RhCl₃(py)₃,⁵ (PCy₃)₂Rh(H)(Cl)₂,⁶ [(diiminate)Rh(cod)],⁷ [(PPh₃)₃RhF],⁸ and (PNP)MX₂.⁹

In this context, we have reported that $(Phebox)Rh(Cl)_2(H_2O)$ [1; Phebox = bis(oxazolinyl)phenyl]¹⁰ exhibits high reactivity toward double C-Cl bond activation of CH₂Cl₂ in the presence

(2) (a) Ishiyama, T.; Hartwig, J. J. Am. Chem. Soc. 2000, 122, 12043.
(b) Bedford, R. B.; Limmert, M. E. J. Org. Chem. 2003, 68, 8669. (c) Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2004, 6, 35. (d) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2005, 7, 2229.

(3) (a) Grushin, V. V.; Alper, H. Chem. Rev. **1994**, 94, 1047. (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. **2002**, 41, 4176. (c) Bedford, R. B.; Cazin, C. S.J.; Holder, D. Coord. Chem. Rev. **2004**, 248, 2283.

(4) (a) Semmelhack, M. F.; Ryono, L. *Tetrahedron Lett.* 1973, 2967.
(b) Mori, K.; Mizoroki, T.; Ozaki, A. *Bull. Chem. Soc. Jpn.* 1976, 49, 758.

(c) Mureinik, R. J.; Weitzberg, M.; Blum, J. Inorg. Chem. 1979, 18, 915.
(5) Love, C. J.; McQuillin, F. J. J. Chem. Soc., Perkin Trans. 1 1973, 2509.

(6) Grushin, V. V.; Alper, H. Organometallics 1991, 10, 1620.

(7) Willems, S. T. H.; Budzelaar, P. H. M.; Moonen, N. N. P.; de Gelder, R.; Smits, J. M. M.; Gal, A. W. *Chem.-Eur. J.* **2002**, *8*, 1310.

(8) (a) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2004, 126, 3068.
(b) Macgregor, S. A.; Christopher Roe, D.; Marshall, W. J.; Bloch, K. M.; Bakhmutov, V. I.; Grushin, V. V. J. Am. Chem. Soc. 2005, 127, 15304.

(9) (a) Fan, L.; Parkin, S.; Ozerov, O. V. J. Am. Chem. Soc. 2005, 127, 16772. (b) Gatard, S.; Çelenligil-Çetin, R.; Guo, C.; Foxman, B. M.; Ozerov, O. V. J. Am. Chem. Soc. 2006, 128, 2808. (c) Gatard, S.; Guo, C.; Foxman, B. M.; Ozerov, O. V. Organometallics 2007, 26, 6066.

(10) Nishiyama, H. Chem. Soc. Rev. 2007, 36, 1133.

of NH(${}^{i}Pr$)₂ and successive C–C bond formation between CH₂Cl₂ and NH(${}^{i}Pr$)₂ to provide a azarhodacyclopentene complex (eq 1).^{11,12} In this reaction, the presence of the amine seems to be responsible for activation of an inactive Rh(III) complex to a (Phebox)Rh(I) species. We therefore envisioned that such a (Phebox)Rh(I) species may show a potential for C–Cl bond activation of aryl halides as well as CH₂Cl₂. Here we report a significant effect of amines to the reaction of **1** with aryl chlorides to provide aryl-Rh complexes.

Results and Discussion

Thermolysis of **1** in a neat solution of chlorobenzene with an excess amount of $NH(^{i}Pr)_{2}$ at 80 °C for 1 h resulted in the clean formation of a phenyl complex, (Phebox)Rh(Ph)Cl(H₂O) (**2**) (eq 2). Complex **2** was isolated in 90% yield after purification by column chromatography on silica gel. Similarly, reaction of **1** with *p*-chlorotoluene provided the *p*-tolyl complex (Phebox)Rh(*p*-CH₃C₆H₄)Cl(H₂O) (**3**) in 80% yield.

Complexes 2 and 3 were characterized on the basis of ¹H and ¹³C NMR and IR spectra. In the ¹³C NMR spectra of 2 and 3, the signals of the *ipso*-phenyl carbons were observed at δ 140.3 (J_{RhC} = 35.4 Hz) and 134.5 (J_{RhC} = 35.3 Hz), respectively. The molecular structure of 3 was confirmed by X-ray diffraction, which revealed the pseudo-octahedral geometry on the Rh atom (Figure 1). The tolyl ligand was coordinated to the Rh at the perpendicular position to the Phebox plane. The Rh–C_{tolyl} bond length of 2.028(5) Å was comparable to that of the related Phebox acetate complex

^{*} To whom correspondence should be addressed. E-mail: hnishi@ apchem.nagoya-u.ac.jp.

⁽¹⁾ Examples of reviews: (a) Suzuki, A. Chem. Commun. 2005, 4759.
(b) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. (c) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.

⁽¹¹⁾ Ito, J.; Miyakawa, T.; Nishiyama, H. Organometallics 2006, 25, 5216.

Figure 1. ORTEP diagram of **3** at the 50% probability level. Selected bond lengths (Å): Rh1–C1 1.909(4), Rh1–C21 2.028(5), Rh1–N1 2.078(4), Rh1–N2 2.067(4), Rh1–C11 2.5144(14), Rh1–O3 2.292(3).

(Phebox)Rh(Ph)(OAc) (2.005(2) Å).¹³ The Rh–Cl bond length of 2.5144(14) was significantly longer than those of (Phebox)-RhCl₂(H₂O) (Rh–Cl = 2.325(3), 2.331(3) Å)¹⁴ due to a *trans* influence of the tolyl group.

As we reported earlier, the Rh(III) dichloro complex (Phebox)Rh(Cl)₂(H₂O) did not react with chlorobenzene even at 120 °C for 40 h.¹³ Therefore, the presence of $NH(^{i}Pr)_{2}$ is essential to the C–Cl bond activation. In general, an electronrich Rh(I) complex is active to the oxidative addition of a C–Cl bond.⁷ In the case of a Rh(III) complex, it is known that reductive elimination provides an active Rh(I) intermediate.^{9a,15}

To gain insight into the C–Cl bond activation by 1 with the amine, we checked the crude products on the reaction of 1 with chlorobenzene by ¹H NMR spectroscopy. Although other Rh complexes besides 2 were not detected, the formation of $N(=CMe_2)(^{i}Pr)$ (4) as well as 2 was observed with the 2:4 ratio of 1:1.1 (eq 3).¹⁶ The formation of 4 is formally derived from dehydrogenation of NH(ⁱPr)₂, involving deprotonation of the N–H bond and successive β -elimination.¹⁷ Such a dehydrogenation of an amine might afford a hydride intermediate, (Phebox)Rh(Cl)(H), that finally undergoes dehydrochlorination

to generate (Phebox)Rh(I).¹⁸ Although we could not detect those intermediates, Ozerov and co-workers recently reported dehydrochlorination of (PNP)Rh(Cl)(H) with a base to provide the (PNP)Rh(I) complex.^{9c}

$$1 \xrightarrow{\text{PhCI}} 1 \xrightarrow{\text{NH}(\text{Pr})} 2 + \sqrt{N/Pr} (3)$$

$$2 \cdot 4 = 1:1.1$$

In contrast to $NH({}^{i}Pr)_{2}$, NEt_{3} is not a suitable reagent for C-Cl bond activation. Addition of NEt_{3} instead of $NH({}^{i}Pr)_{2}$ to a chlorobenzene solution of **1** at 80 °C for 1 h led to a decrease in the yield of **2** (35%).

It is interesting to note that an acetate analogue, (Phebox)Rh(OAc)₂(H₂O), did not undergo C–Cl bond activation but did undergo C–H bond activation to produce the corresponding chlorophenyl complex (Phebox)Rh(OAc)(C₆H₄Cl).¹³ Our results indicate that selectivity between C–Cl and C–H bonds of chloroarene can be controlled by the choice of ligand on the Rh center and a proper base.

Complex 1 also reacts with chloropyridine in the presence of NH(ⁱPr)₂ in toluene at 70 °C to provide the rhodium complex 5 in 94% yield (eq 4). The ¹H NMR spectrum of 5 showed the low-field signal of the N–H proton at δ 15.8 (1H), which disappeared on treatment with D₂O. The IR spectrum of 5 also exhibited the $\nu_{\rm NH}$ band at 3447 cm⁻¹. In the ¹³C NMR spectrum, two low-field singals were observed at δ 184.3 ($J_{\rm RhC}$ = 38.3 Hz) and 185.5 ($J_{\rm RhC}$ = 25.7 Hz). In comparison with the Rh–C coupling constants of 2 and 3, the signal at δ 184.3 is assigned to the pyridium carbon and the signal at δ 185.5 is assigned to the phenyl carbon in the Phebox ligand.

The molecular structure of **5** was confirmed by X-ray diffraction (Figure 2). The Phebox ligand and two chlorides are coordinated to the Rh atom. The C_5NH_5 ligand of **5** as observed in the tolyl ligand of **3** is bonded perpendicularly to the Phebox plane. The Rh–C bond lengths of 1.998(6) and 2.015(6) Å were comparable with those of **3**. The Rh–Cl bond length was also ca. 0.08 Å shorter than that of **3** probably due to weaker *trans* influence of the C_6H_5N ligand. The C_5NH_5 moiety of **5** is described to be a pyridinium rhodate (I).¹⁹ Alternatively such

⁽¹²⁾ Examples of C-Cl bond activation of CH₂Cl₂ by Rh complexes: (a) Werner, H.; Hofmann, L.; FeserR.; Paul, W. J. Organomet. Chem. 1985, 281, 317. (b) Fennis, P. J.; Budzelaar, P. H. M.; Frijns, J. H. G.; Orpen, A. G. J. Organomet. Chem. 1990, 393, 287. (c) Burns, E. G.; Chu, S. S. C.; Meester, P.; Lattman, M. Organometallics 1986, 5, 2383. (d) Nishiyama, H.; Horihata, M.; Hirai, T.; Wakamatsu, S.; Itoh, K. Organometallics 1991, 10, 2706. (e) de Pater, B, C.; Zijp, E. J.; Fruhauf, H.; Ernsting, J. M.; Elsevier, C. J.; Vrieze, K.; Budzelaar, P. H. M.; Gal, A. W. Organometallics 2004, 23, 269. (f) Haarman, H. F.; Ernsting, J. M.; Kranenburg, M.; Kooijman, H.; Veldman, N.; Spek, A. L.; van Leeuwen, P. W. N. M.; Vrieze, K. Organometallics 1997, 16, 887. (g) Ball, G. E.; Cullen, W. R.; Fryzuk, M. D.; James, B. R.; Rettig, S. J. Organometallics 1991, 10, 3767. (h) Chan, K. T. K.; Spencer, L. P.; Masuda, J. D.; McCahill, J. S. J.; Wei, P.; Stephan, D. W. Organometallics 2004, 23, 381.

⁽¹³⁾ Ito, J.; Nishiyama, H. Eur. J. Inorg. Chem. 2007, 1114.

⁽¹⁴⁾ Motoyama, Y.; Okano, M.; Narusawa, H.; Makihara, N.; Aoki, H.; Nishiyama, H. Organometallics **2001**, *20*, 1580.

^{(15) (}a) Jones, W. D.; Feher, F. J. Acc. Chem. Res. **1989**, 22, 91. (b) Peterson, T. H.; Golden, J. T.; Bergman, R. G. J. Am. Chem. Soc. **2001**, 123, 455.

^{(16) (}a) **4** was confirmed by comparison with the ¹H NMR spectrum reported in ref 18b. (b) Kowalski, C.; Creary, X.; Rollin, A. J.; Burke, M. C. *J. Org. Chem.* **1978**, *43*, 2601.

⁽¹⁷⁾ Barrera, J.; Orth, S. D.; Harman, W. D. J. Am. Chem. Soc. 1992, 114, 7316.

⁽¹⁸⁾ Grushin, V. V. Acc. Chem. Res. 1993, 26, 279.

^{(19) (}a) Cordone, R.; Taube, H. J. Am. Chem. Soc. 1987, 109, 8101.
(b) Lavorate, D.; Terlouw, J. K.; Dargel, T. K.; Koch, W.; McGlbbon, G. A.; Schwarz, H. J. Am. Chem. Soc. 1996, 118, 11898.

Figure 2. ORTEP diagram of **5** with 50% probability level ellipsoids. Selected bond lengths (Å): Rh1–C1 1.928(6), Rh1–C21 1.998(6), Rh1–N1 2.064(5), Rh1–N2 2.089(5), Rh1–Cl1 2.434317, Rh1–Cl2 2.4856(17); Rh2–C26 1.921(6), Rh2–C46 2.015(6), Rh2–N4 2.071(6), Rh2–N5 2.086(5), Rh2–Cl3 2.4384(17), Rh2–Cl4 2.4859(18).

a pyridiunium rhodate can be described as an N-heterocyclic carbene complex (II) or unstable pyridine tautomers.²⁰

In summary, we found a significant effect of amines on C-Cl bond activation of aryl chorides by the Rh(III) complex to provide the corresponding aryl complexes. Formation of an equivalent amount of the imine 4 suggests that oxidation of amine promotes reduction of the inactive Rh(III) complex 1 to Rh(I) species. We envision that this method provides an alternative method for activation of an inactive Rh(III) complex.

Experimental Section

General Procedures. ¹H and ¹³C NMR spectra were obtained at 25 °C on a Varian Mercury 300 spectrometer. ¹H NMR chemical shifts are reported in δ units, in ppm relative to the singlet at 7.26 ppm for CDCl₃. ¹³C NMR spectra are reported in terms of chemical shift (δ , ppm) relative to the triplet at δ = 77.0 ppm for CDCl₃. Infrared spectra were recorded on a JASCO FT/IR-230 spectrometer. Mass spectra were recorded on a JEOL JMS-700. Elemental analyses were recorded on a Perkin-Elmer 2400II and a Yanoco MT-6. Column chromatography was performed with a silica gel column (Kanto Kagaku silica gel 60N). Complex **1** was prepared according to the literature.¹¹

Synthesis of 2. To a chlorobenzene solution (0.5 mL) of **1** (10.4 mg, 0.020 mmol) and 4 Å molecular sieves (100 mg) was added NH(ⁱPr)₂ (56 μ L, 0.40 mmol) under an argon atmosphere. After being stirred at 80 °C for 1 h, the mixture was filtered. The concentrated filtrate was purified by column chromatography on silica gel (hexane/ethyl acetate = 1:1) and then crystallized by slow vaporization from a solution of ethyl acetate/dichlorometane/hexane to give **2** (10.1 mg, 0.018 mmol, 90%). ¹H NMR (300 MHz, CDCl₃, rt): 1.25 (s, 6H, CH₃), 1.41 (s, 9H, C(CH₃)₃), 1.66 (s, 6H, CH₃), 1.71 (s, 2H, H₂O), 4.28 (d, J_{HH} = 8.4 Hz, 2H, CH₂), 4.45 (d, J_{HH} = 8.4 Hz, 2H, CH₂), 6.67–6.70 (m, 3H, C₆H₅), 6.86–6.92 (m, 2H, C₆H₅), 7.60 (s, 2H). ¹³C NMR (75 MHz, CDCl₃, rt): 27.0, 28.7, 31.7, 35.1, 66.6, 82.6, 122.1, 124.5, 125.5, 130.4, 136.6, 140.3 (d, J_{RhC} = 35.4 Hz), 145.8, 171.1 (d, J_{RhC} = 5.1 Hz), 186.4 (d,

 $J_{\text{RhC}} = 28.5 \text{ Hz}$). IR (KBr, cm⁻¹): 3311, 2965, 1624, 1563. Anal. Calcd for C₂₆H₃₄ClN₂O₃Rh: C, 55.67; H, 6.11; N, 4.99. Found: C, 55.60; H, 5.98; N, 4.80. HRMS (FAB): calcd for C₂₆H₃₂ClN₂O₂Rh [M - OH₂]⁺ 542.1207, found: 542.1199.

Synthesis of 3. To a p-chlorotoluene solution (0.5 mL) of 1 (26.0 mg, 0.050 mmol) and 4 Å molecular sieves (100 mg) was added $NH(Pr)_2$ (140 μ L, 1.0 mmol). After being stirred at 80 °C for 3 h, the mixture was filtered. The concentrated filtrate was purified by column chromatography on silica gel (hexane/ethyl acetate = 1:4) to give **3** (23.2 mg, 0.040 mmol, 80%). ¹H NMR (300 MHz, CDCl₃, rt): 1.27 (s, 6H, CH₃), 1.40 (s, 9H, C(CH₃)₃), 1.65 (s, 6H, CH₃), 2.15 (s, 3H, CH₃), 2.18 (s, 2H, H_2 O), 4.28 (d, $J_{HH} = 8.4$ Hz, 2H, CH_2), 4.45 (d, $J_{\text{HH}} = 8.4$ Hz, 2H, CH_2), 6.52 (d, $J_{\text{HH}} = 8.0$ Hz, 2H, C_6H_4), 6.73 (d, $J_{\rm HH} = 8.0$ Hz, 2H, C_6H_4), 7.59 (s, 2H). ¹³C NMR (75 MHz, CDCl₃, rt): 20.4, 27.0, 28.8, 31.8, 35.2, 66.7, 82.7, 124.6, 126.6, 130.6, 131.4, 134.5 (d, $J_{RhC} = 35.3 \text{ Hz}$), 136.2, 145.9, 171.3 (d, $J_{RhC} = 5.7$ Hz), 186.4 (d, $J_{RhC} = 28.5$ Hz). IR (KBr, cm⁻¹): 3324, 2961, 1622, 1586. Anal. Calcd for C27H36CIN2O3Rh: C, 56.40; H, 6.31; N, 4.87. Found: C, 56.27; H, 6.11; N, 4.56. HRMS (FAB): calcd for $C_{27}H_{34}CIN_2O_2Rh [M - H_2O]^+$ 556.1364, found 556.1384.

Synthesis of 5. To a toluene solution (2 mL) of 1 (26.0 mg, 0.0500 mmol), 2-chloropyridine (24 μ L, 0.25 mmol), and 4 Å molecular sieves (200 mg) was added NH(ⁱPr)₂ (140 µL, 1.0 mmol). After being stirred at 70 °C for 1 h, the mixture was filtered. The concentrated filtrate was purified by column chromatography on silica gel (CH₃Cl/MeOH = 8:1) to give 5 (27.4 mg, 0.047 mmol, 94%). ¹H NMR (300 MHz, CDCl₃, rt): 1.05 (s, 6H, CH_3), 1.41 (s, 9H, $C(CH_3)_3$), 1.77 (s, 6H, CH_3), 4.28 (d, $J_{\rm HH} = 8.1$ Hz, 2H, CH₂), 4.46 (d, $J_{\rm HH} = 8.1$ Hz, 2H, CH_2), 6.39 (d, $J_{\rm HH} = 8.4$ Hz, 1H, C_5NH_5), 7.04 (t, $J_{\rm HH} = 6.0$ Hz, 1H, C₅NH₅), 7.29 (d, $J_{\text{HH}} = 8.1$ Hz, 1H, C₅NH₅), 7.66 (s, 2H), 8.16 (d, $J_{\text{HH}} = 8.1$ Hz, 1H, C₅NH₅), 15.8 (brs, $w_{1/2} = 27.1$ Hz, 1H, NH). ¹³C NMR (75 MHz, CDCl₃, rt): 27.6, 27.9, 31.8, 35.1, 66.5, 82.5, 118.5, 125.0, 129.4, 136.2, 137.8, 138.0, 146.0, 169.6 (d, $J_{RhC} = 5.1$ Hz), 184.3 (d, $J_{RhC} = 38.3$ Hz), 185.5 (d, $J_{\text{RhC}} = 25.7 \text{ Hz}$). IR (KBr, cm⁻¹): 3447 (_{NH}), 2964, 1623, 1571. Anal. Calcd for $C_{25}H_{32}Cl_2N_3O_2Rh$: C, 51.74; H, 5.56; N, 7.24. Found: C, 51.35; H, 5.53; N, 6.83. HRMS (FAB): calcd for C₂₅H₃₂ClN₃O₂Rh [M]⁺: 544.1238, found 544.1254.

X-ray Analyses. Single crystals of 3 and 5 suitable for X-ray diffraction study were obtained from slow vaporization of a hexane/ ethyl acetate/dichloromethane solution and hexane/ethyl acetate at room temperature, respectively. The diffraction data were collected on a Bruker SMART APEX CCD diffractometer with graphitemonochromated Mo K α radiation ($\lambda = 0.71073$ Å). An empirical absorption correction was applied by using SADABS. The structure was solved by direct methods and refined by full-matrix leastsquares on F^2 using SHELXTL. All non-hydrogen atoms were refined with anisotropic displacement parameters. Crystallographic data for 3: $C_{27}H_{36}ClN_2O_3Rh$; $M_r = 574.94$; temperature 153 K; monoclinic, $P2_1/c$; a = 15.962(2) Å, b = 10.6524(14) Å, c =17.215(2) Å, $\beta = 114.013(2)^\circ$; V = 2673.9(6) Å³; Z = 4; $\rho_{calcd} =$ 1.428 Mg/m³; $\mu = 0.769 \text{ mm}^{-1}$; reflections collected 18 678, independent reflections 6137 [R(int) = 0.0399]; data/restraints/ parameters 6137/0/323; goodness-of-fit on F²: 1.081; final R indices $[I > 2\sigma(I)]$ R1 = 0.0320, wR2 = 0.0803; *R* indices (all data) R1 = 0.0364, wR2 = 0.0834; largest diff peak/hole 1.223 and -0.314e Å⁻³. Crystallographic data for 5: $C_{25}H_{32}Cl_2N_3O_2Rh \cdot 1.5(CH_2Cl_2)$; $M_{\rm r} = 706.22$; temperature 153 K; triclinic, $P\bar{1}$; a = 13.364(4) Å, b = 15.834(5) Å, c = 16.154(5) Å, $\alpha = 105.268(7)^{\circ}$, $\beta =$ 97.952(6)°, $\gamma = 90.103(7)$ °; V = 3263.2(18) Å³; Z = 4; $\rho_{calcd} =$ 1.438 Mg/m³; $\mu = 0.960 \text{ mm}^{-1}$; reflections collected 22 966, independent reflections 14 967 [R(int) = 0.0478]; data/restraints/ parameters 14 967/1/682; goodness-of-fit on F^2 1.022; final R indices $[I > 2\sigma(I)] R1 = 0.0697$, wR2 = 0.1737; R indices (all

^{(20) (}a) Esteruelas, M. A.; Fernández-Alvarez, F. J.; Oñate, E. J. Am. Chem. Soc. **2006**, *128*, 13044. (b) Alvarez, E.; Conejero, S.; Paneque, M.; Petronilho, A.; Poveda, M. L.; Serrano, O.; Carmona, E. J. Am. Chem. Soc. **2006**, *128*, 13060.

data) R1 = 0.1251, wR2 = 0.2041; largest diff peak/hole 2.471 and -1.618 e ${\rm \AA}^{-3}.$

Acknowledgment. This research was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (460:18065011, Concerto Catalyst), the Japan Society for the Promotion of Science (18350049), G-COE in chemistry (Nagoya), and The Mitsubishi Foundation.

Supporting Information Available: Spectral data for **2**, **3**, and **5** and CIFs of **3** and **5**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM8002174