Additions and Corrections

2007, Volume 26

Douglas B. Grotjahn,* Xi Zeng, Andrew L. Cooksy, W. Scott Kassel, Antonio G. DiPasquale, Lev N. Zakharov, and Arnold L. Rheingold: Experimental and Computational Study of the Transformation of Terminal Alkynes to Vinylidene Ligands on *trans*-(Chloro)bis(phosphine)Rh Fragments and Effects of Phosphine Substituents

Pages 3385–3402. The artwork given for the original Figure 1 was inadvertently included in the paper instead of the correct figure for **6b**, which appears below as the correct Figure 1. The CIF file listed as being for **8** was in fact the CIF for the complex inadvertently shown in the previous Figure 1; the correct CIF for **8** is now available in the Supporting Information. To the

single entry in Table 1 for the Rh–P bond distance for **6b** should be added the value 2.3431(14) Å, because in this particular structure, the two Rh–P bond distances are slightly different. In addition, Table 6 in the original paper had incorrect entries for compound **8**. The correct version of Table 6 appears below.

Supporting Information Available: A CIF file giving the crystal data for compound **8**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM8002569

10.1021/om8002569 Publication on Web 06/24/2008

Figure 1

Table 6.	Collection	Data fo	or (Crystal	Structures	of	the	Complexes
----------	------------	---------	------	---------	------------	----	-----	-----------

	6b	6c	6d	8
formula	C29H54ClN4OP2Rh	C25H38ClOP2Rh	C27H42ClOP2Rh	$C_{28}H_{54}ClN_4P_2Rh \cdot CH_2Cl_2$
mw	675.06	554.85	582.91	731.98
cryst syst	monoclinic	monoclinic	monoclinic	monoclinic
space group	$P2_1/n$	$P2_1/n$	$P2_1/c$	$P2_1/c$
color, habit	yellow, block	yellow, blade	yellow, blade	orange, plate
a (Å)	7.9000(4)	8.5410(8)	10.232(11)	14.1238(9)
b (Å)	24.4193(12)	7.7860(7)	15.409(17)	13.6555(9)
<i>c</i> (Å)	8.9974(4)	19.8080(17)	9.569(10)	18.8057(12)
β (deg)	96.793(1)	96.300(2)	113.509(15)	97.2960(10)
$V(Å^3)$	1723.53(14)	1309.3(2)	1383(3)	3597.6(4)
Ζ	2	2	2	4
D_{calcd} (g cm ⁻³)	1.301	1.407	1.399	1.351
<i>T</i> (K)	100	208	208	213
$2\theta_{\rm max}$ (deg)	55.0	50.0	52.0	56.2
no. of measd rflns	10 730	7073	8269	8413
no. of indep rflns	3928	2314	2714	7796
no. of params	195	146	151	386
$R(F)$ $(I > 2\sigma(I)), \%^a$	3.62	4.96	4.75	3.47
$R(wF^2) \ (I \ge 2\sigma(I)), \ \%^b$	8.72	5.31	11.19	9.37
GOF	1.137	1.210	1.089	1.045
resid electron density	0.488	0.928	0.712	0.963

$$R = \sum ||F_0| - |F_c| / \sum |F_0|. \ ^b R(wF^2) = \{ \sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}; \ w = 1 / [\sigma^2(F_0^2) + (aP)^2 + bP], \ P = [2F_c^2 + \max(F_0, 0)] / 3.$$