Synthetic and Structural Studies of Butterfly Fe/S/P Cluster Complexes Related to the Active Site of [FeFe]-Hydrogenases. Proton Reduction to H₂ Catalyzed by $(\eta^1-Ph_2PS-\eta^1)_2Fe_2(CO)_6$

Li-Cheng Song,* Guang-Huai Zeng, Shao-Xia Lou, Hui-Ning Zan, Jiang-Bo Ming, and Qing-Mei Hu

Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Received January 29, 2008

The butterfly Fe/S cluster anions $(\mu$ -RS) $(\mu$ -S⁻)Fe₂(CO)₆ (A, R = Et, p-MeC₆H₄), $(\mu$ -S⁻)₂Fe₂(CO)₆ (C), $[(\mu-S^{-})Fe_2(CO)_6]_2(4-\mu-SC_6H_4C_6H_4S-\mu-4')$ (D), and $[(\mu-S^{-})Fe_2(CO)_6]_2[4-\mu-SC_6H_4OCH_2CH_2OC_6H_4S-\mu-4')$ μ -4'] (E) (generated in situ via reactions of (μ -S₂)Fe₂(CO)₆ with RMgBr, Et₃BHLi, 4-LiC₆H₄C₆H₄Li-4', and 4-LiC₆H₄OCH₂CH₂OC₆H₄Li-4') were found to react with Ph₂PCl to give a series of novel butterfly Fe/S/P cluster complexes. Treatment of monoanions A (R = Et, p-MeC₆H₄) with 1 equiv of Ph₂PCl in THF from -78 °C to room temperature gave the single-butterfly Fe₂S₂P complexes (μ -RS)(η^1 -Ph₂PS- η^{1})Fe₂(CO)₆ (7, R = Et; 9, R = p-MeC₆H₄) and (μ -RS)(η^{1} -Ph₂PS- η^{1})Fe₂(CO)₅(Ph₂PY) (8, R = Et, Y = Cl; 10, R = p-MeC₆H₄, Y = p-MeC₆H₄), whereas dianions C, D, and E reacted with 2 equiv of Ph₂PCl to give single-butterfly $Fe_2S_2P_2$ complex $(\eta^1-Ph_2PS-\eta^1)_2Fe_2(CO)_6$ (11) and double-butterfly $Fe_4S_4P_2$ complexes $[(\eta^1-Ph_2PS-\eta^1)Fe_2(CO)_6]_2(4-\mu-SC_6H_4C_6H_4S-\mu-4')$ (12) and $[(\eta^1-Ph_2PS-\eta^1)Fe_2(CO)_6]_2[4-\mu-4]_2[4-\mu-4]_2(CO)_6]_2[4$ $SC_6H_4OCH_2CH_2OC_6H_4S-\mu-4'$ (13), respectively. More interestingly, the novel μ_4 -S-containing doublebutterfly Fe₄S₂P complexes [(μ -RS)Fe₂(CO)₆](μ -Ph₂P)Fe₂(CO)₆] (**14**, R = Me; **15**, R = Ph; **16**, R = Et) could be prepared by reactions of single-butterfly complexes $(\mu - RS)(\eta^1 - Ph_2PS - \eta^1)Fe_2(CO)_6$ (1, R = Me; 3, R = Ph; 7 R = Et) with excess Fe₂(CO)₉ in THF at room temperature, whereas the quadruplebutterfly $Fe_8S_4P_2$ complexes $[(\mu-Ph_2P)Fe_2(CO)_6(\mu_4-S)Fe_2(CO)_6]_2(4-\mu-SC_6H_4C_6H_4S-\mu-4')$ (17) and $[(\mu-Ph_2P)Fe_2(CO)_6(\mu_4-S)Fe_2(CO)_6]_2(4-\mu-SC_6H_4C_6H_4S-\mu-4')$ (17) Ph_2P) $Fe_2(CO)_6(\mu_4-S)Fe_2(CO)_6]_2[4-\mu-SC_6H_4OCH_2CH_2OC_6H_4S-\mu-4']$ (18) were similarly prepared by reactions of the corresponding double-butterfly complexes 12 and 13 with excess Fe₂(CO)₉, respectively. All the new complexes 7-18 have been characterized by elemental analysis, by spectroscopy, and for 9, 11, and 14 by X-ray crystallography. In view of the structural similarity of these Fe/S/P complexes to the [FeFe]-hydrogenase active site, they might be regarded as H-cluster models. As a representative, model complex 11 was found to be able to catalyze proton reduction to hydrogen under CV conditions.

Introduction

Although Reihlen prepared the first dinuclear Fe/S cluster complex (μ -RS)₂Fe₂(CO)₆ (R = Et) as early as 1928,¹ the butterfly-shaped Fe₂S₂ structures of such complexes were confirmed only in 1963 by means of X-ray crystal diffraction techniques.² In view of their unique structures and the potentially novel reactivities, Seyferth and co-workers began in the 1970s to systematically study the chemistry of such butterfly Fe/S cluster complexes, which was then thought to be nearly mature at the end of the 1990s.^{3,4} However, just around this period of time research interest in butterfly Fe/S cluster complexes was extensively revived. This is due to the realization that the active site of [FeFe]-hydrogenases (so-called H-clusters) resembles the archetypal (μ -RS)₂Fe₂(CO)₆ derivatives, which consist of a butterfly Fe_2S_2 cluster core and four unusual ligands: CO, CN^- , $[Fe_4S_4(SCys)_4]$, and a dithiolate (Figure 1).⁵ So far, a great variety of butterfly Fe/S cluster complexes that act as structural and functional models of the H-cluster have been prepared and characterized, which has considerably promoted our understanding of the natural enzymes.^{6,7} Recently, we published a

^{*} To whom correspondence should be addressed. Fax: 0086-22-23504853. E-mail: lcsong@nankai.edu.cn.

⁽¹⁾ Reihlen, H.; von Friedolsheim, A.; Oswald, W. J. Liebigs Ann. Chem. 1928, 465, 72.

⁽²⁾ Dahl, L. F.; Wei, C. H. Inorg. Chem. 1963, 2, 328.

^{(3) (}a) For reviews, see for example: Markó, L.; Markó-Monostory, B. In *The Organic Chemistry of Iron*; von Gustorf, E. A. K., Grevels, F.-W., Fischer, I., Eds.; Academic Press: New York, 1981; pp 283–332. (b) Ogino, H.; Inomata, S.; Tobita, H. *Chem. Rev.* **1998**, *98*, 2093. (c) Song, L.-C. In *Advances in Organometallic Chemistry*; Huang, Y., QianY., Eds.; Chemical Industry Press: Beijing, 1987; pp 181–204. (d) Song, L.-C. *Trends Organomet. Chem.* **1999**, *3*, 1–20.

^{(4) (}a) Seyferth, D.; Henderson, R. S. J. Am. Chem. Soc. 1979, 101, 508. (b) Nametkin, N. S.; Tyurin, V. D.; Kukina, M. A. J. Organomet. Chem. 1978, 149, 355. (c) Seyferth, D.; Song, L.-C.; Henderson, R. S. J. Am. Chem. Soc. 1981, 103, 5103. (d) Seyferth, D.; Henderson, R. S.; Song, L.-C. Organometallics 1982, 1, 125. (e) Winter, A.; Zsolnai, L.; Huttner, C. Z. Naturforsch. 1982, 37b, 1430. (f) Bose, K. S.; Sinn, E.; Averill, B. A. Organometallics 1984, 3, 1126. (g) Seyferth, D.; Ruschke, D. P.; Davis, W. M.; Cowie, M.; Hunter, A. D. Organometallics 1994, 13, 3834. (h) Song, L.-C.; Yan, C.-G.; Hu, Q.-M.; Wu, B.-M.; Mak, T. C. W. Organometallics 1997, 16, 632. (i) Seyferth, D.; Kiwan, A. M.; Sinn, E. J. Organometa. Chem. 1985, 281, 111. (j) Song, L.-C.; Lu, G.-L.; Hu, Q.-M.; Sun, J. Organometallics 1999, 18, 3258. (k) Song, L.-C.; Lu, G.-L.; Hu, Q.-M.; Sun, J. Organometallics 1999, 18, 5429.

^{(5) (}a) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C Science **1998**, 282, 1853. (b) Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Structure **1999**, 7, 13.

^{(6) (}a) For reviews, see for example: Darensbourg, M. Y.; Lyon, E. J.; Smee, J. J. *Coord. Chem. Rev.* **2000**, 206–207, 533. (b) Evans, D. J.; Pickett, C. J. *Chem. Soc. Rev.* **2003**, 32, 268. (c) Song, L.-C. *Acc. Chem. Res.* **2005**, 38, 21. (d) Vignais, P. M.; Billoud, B. *Chem. Rev.* **2007**, 107, 4206. (e) Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. *Chem. Rev.* **2007**, 107, 4273. (f) Siegbahn, P. E. M.; Tye, J. W.; Hall, M. B. *Chem. Rev.* **2007**, 107, 4414.

Figure 1. Basic structure of the H-cluster obtained from protein crystallography.

communication⁸ that describes the unexpected formation of the Fe/S/P cluster complexes 1-6 from reactions of the butterfly Fe/S cluster anions A (R = Me, Ph) and B (R = n-Bu, Ph) with Ph2PCl (Scheme 1). Since these Fe/S/P complexes contain a butterfly Fe₂S₂ or Fe₂S₂P cluster core that carries a given amount of CO ligands, they might be regarded as the structural analogues of the active site of [FeFe]-hydrogenases.⁵ In order to show the generality of such new reactions that produce the interesting Fe/S/P complexes, we further carried out the reactions of Ph₂PCl with other butterfly Fe/S cluster anions, such as (µ- $RS(\mu-S^{-})Fe_2(CO)_6$ (A, R = Et, p-MeC₆H₄), $(\mu-S^{-})_2Fe_2(CO)_6$ (C), $[(\mu-S^{-})Fe_2(CO)_6]_2(4-\mu-SC_6H_4C_6H_4S-\mu-4')$ (D), and $[(\mu-S^{-})Fe_2(CO)_6]_2(4-\mu-SC_6H_4C_6H_4S-\mu-4')$ S^{-})Fe₂(CO)₆]₂[4- μ -SC₆H₄OCH₂CH₂OC₆H₄S- μ -4'] (E). As a result, the reactions afforded a series of expected single- and double-butterfly Fe/S/P cluster complexes. Particularly, when such single- and double-butterfly complexes were further treated with Fe₂(CO)₉, another series of novel μ_4 -S-containing doubleand quadruple-butterfly Fe/S/P complexes were unexpectedly produced. In addition, the single-butterfly Fe/S/P complex (η^{1} - $Ph_2PS-\eta^1)_2Fe_2(CO)_6$ has been found to be a catalyst for proton reduction to H₂ under electrochemical conditions. Herein we report these interesting results.

Results and Discussion

Synthesis and Characterization of Single-Butterfly Fe₂S₂P/ Fe₂S₂P₂ Complexes 7–11 and Double-Butterfly Fe₄S₄P₂ Complexes 12 and 13. As mentioned above, the single- and double-butterfly complexes 1–6 can be prepared by reactions of the BrMg salts of monoanions **A** ($\mathbf{R} = \mathbf{Me}$, Ph) and the lithium salts of monoanions **B** ($\mathbf{R} = n$ -Bu, Ph) with Ph₂PCl, respectively (Scheme 1).⁸ Similarly, we could further prepare the single-butterfly Fe₂S₂P complexes 7–10 by treatment of the BrMg salts of monoanions **A** ($\mathbf{R} = \mathbf{Et}$, *p*-MeC₆H₄) (prepared in situ from 1 equiv of (μ -S₂)Fe₂(CO)₆ and 1 equiv of the Grignard reagents RMgBr)⁹ with 1 equiv of Ph₂PCl in THF from –78 °C to room temperature (Scheme 2).

Although the mechanism for formation of 7-10 is not clear to date, the previously suggested mechanism for formation of

 $1-4^8$ should apply to the formation of 7-10 since both cases involve the same type of highly nucleophilic S-centered monoanions **A** and give the same type of products. As shown in Scheme 2, the nucleophilic substitution between monoanions **A** and Ph₂PCl will first give the butterfly Fe/S cluster phosphines **M**₁. Then, major products **7** and **9** can be produced from **M**₁ by nucleophilic attack of its P atom at the neighboring iron atom accompanied by displacement of mercaptide from it.¹⁰ The minor products **8** and **10** can be produced by further CO substitution of **7** or **9** with unreacted Ph₂PCl or Ph₂PC₆H₄Me-*p* (formed in situ from Ph₂PCl and the Grignard reagent *p*-MeC₆H₄MgBr present in the reaction system), respectively.

The single-butterfly Fe₂S₂P₂ complex **11** and double-butterfly $Fe_4S_4P_2$ complexes 12 and 13 could also be prepared from Ph₂PCl and the corresponding dianions C, D, and E, respectively. Treatment of 1 equiv of the dilithium salt of dianion C (generated in situ from $(\mu$ -S₂)Fe₂(CO)₆ and 2 equiv of $Et_3BHLi)^{11}$ with 2 equiv of Ph₂PCl in THF from -78 °C to room temperature afforded the single-butterfly complex 11 (Scheme 3), whereas treatment of 2 equiv of Ph₂PCl with ca. 1 equiv of the dilithium salt of dianion D (formed by reaction of 1 equiv of 4,4'-dibromodiphenyl with 2 equiv of n-BuLi followed by treatment of the intermediate 4-LiC₆H₄C₆H₄Li-4'¹² with $(\mu$ -S₂)Fe₂(CO)₆)¹³ or treatment of 2 equiv of Ph₂PCl with ca. 1 equiv of the dilithium salts of dianions E (generated similarly by reaction of 1 equiv of the ether chain-bridged 4,4'dibromodiphenyls with 2 equiv of n-BuLi followed by treatment of the intermediate 4-LiC₆H₄OCH₂CH₂OC₆H₄Li-4'¹² with (µ- S_2)Fe₂(CO)₆)¹³ gave rise to the double-butterfly complexes 12 (Scheme 4) and 13 (Scheme 5), respectively.

Complexes 7-13 are air-stable solids, which have been characterized by elemental analysis and IR, ¹H NMR, and ³¹P NMR spectroscopies. For example, the IR spectra of 8 and 10 displayed four absorption bands in the range 2040-1934 cm⁻¹ for their terminal carbonyls, whereas those of 7, 9, and 11-13 exhibited four to six absorption bands in the region 2070-1958 cm⁻¹ for their terminal carbonyls. Compared to the highest $\nu_{C=0}$ frequencies of 7, 9, and 11-13, those of 8 and 10 are shifted by ca. 30 cm⁻¹ toward lower values due to the stronger electrondonating effects of Ph₂P(C₆H₄Me-*p*) and Ph₂PCl than CO.¹⁴ In addition, the ³¹P NMR spectra of 8 and 10 each showed two singlets at ca. 71 and 151 and ca. 58 and 70 ppm, respectively, for P atoms in their Ph₂PS, Ph₂PCl, and Ph₂P($C_6H_4Me_{-p}$) ligands, whereas those of 7, 9, and 11-13 all displayed one singlet in the range 44-67 ppm for P atoms in their Ph₂PS ligands.

In order to unequivocally confirm the butterfly Fe_2S_2P cluster cores present in complexes 7–10, 12, and 13, as well as the butterfly $Fe_2S_2P_2$ cluster core present in complex 11, we determined the crystal structures of complexes 9 and 11 by X-ray diffraction techniques. ORTEP plots of 9 and 11 are presented in Figures 2 and 3, whereas Table 1 shows selected bond lengths and angles. As can be seen in Figure 2, complex 9 is actually isostructural with the previously reported complex 1,⁸ which contains a butterfly Fe(1)Fe(2)S(1)P(1)S(2) cluster

^{(7) (}a) Gloaguen, F.; Lawrence, J. D.; Schmidt, M.; Wilson, S. R.; Rauchfuss, T. B. J. Am. Chem. Soc. 2001, 123, 12518. (b) Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc. 2001, 123, 3268. (c) Razavet, M.; Davies, S. C.; Hughes, D. L.; Barclay, J. E.; Evans, D. J.; Fairhurst, S. A.; Liu, X.; Pickett, C. J. Dalton Trans. 2003, 586. (d) Lawrence, J. D.; Li, H.; Rauchfuss, T. B. Chem. Commun. 2001, 1482. (e) Song, L.-C.; Ge, J.-H.; Zhang, X.-G.; Liu, Y.; Hu, Q.-M. Eur. J. Inorg. Chem. 2006, 3204. (f) Song, L.-C.; Yang, Z.-Y.; Hua, Y.-J.; Wang, H.-T.; Liu, Y.; Hu, Q.-M. Organometallics 2007, 26, 2106. (g) Morvan, D.; Capon, J.-F.; Gloaguen, F.; Le Goff, A.; Marchivie, M.; Michaud, F.; Schollhammer, P.; Talarmin, J.; Yaouanc, J.-J. Organometallics 2007, 26, 2042.

⁽⁸⁾ Song, L.-C.; Zeng, G.-H.; Hu, Q.-M.; Ge, J.-H.; Lou, S.-X. Organometallics 2005, 24, 16.

⁽⁹⁾ Seyferth, D.; Henderson, R. S.; Song, L.-C.; Womack, G. B. J. Organomet. Chem. 1985, 292, C9.

⁽¹⁰⁾ Seyferth, D.; Womack, G. B.; Song, L.-C.; Cowie, M.; Hames,B. W. Organometallics 1983, 2, 928.

⁽¹¹⁾ Seyferth, D.; Henderson, R. S.; Song, L.-C. J. Organomet. Chem. 1980, 192, C1.

⁽¹²⁾ Baldwin, R. A.; Cheng, M. T. J. Org. Chem. 1967, 32, 1572.

 ^{(13) (}a) Seyferth, D.; Song, L.-C.; Henderson, R. S. J. Am. Chem. Soc.
 1981, 103, 5103. (b) Seyferth, D.; Henderson, R. S. J. Am. Chem. Soc.
 1979, 101, 508.

⁽¹⁴⁾ Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry*, 2nd ed.; California University Science Books: Mill Valley, 1987.

SLi

(OC)₃Fe Fe(CO)₃

(OC)₃Fé.

Ph₂

– Fé(CO)₃

Ph₂

SLi

(OC)₃Fe - Fe(CO)₃

(OC)₃Fe_Fe(CO)₃

(OC)₃Fe_Fe(CO)₃

OCH₂CH₂O

core that carries two phenyl groups, one p-MeC₆H₄ group, and six terminal carbonyls. The X-ray crystallographic study revealed that the dihedral angle of 9 between its triangular wing Fe(1)Fe(2)S(2) and tetragonal wing Fe(1)Fe(2)P(1)S(1) is 90.3°, which is almost the same as the corresponding one of 1 (89.1°). In addition, the S(2) atom of **9** is attached to the substituent p-MeC₆H₄ group by an equatorial bond in order to avoid the strong steric repulsion with one of the two phenyl groups attached to P(1).¹⁵ The X-ray crystallographic study of complex 11 (Figure 3) indicated that it consists of a butterfly Fe(1)Fe(2)-P(1)S(1)P(2)S(2) cluster core in which the P(1)/P(2) atoms each carry two phenyl groups and the Fe(1)/Fe(2) atoms are each attached to three terminal carbonyls. The dihedral angle of 11 between its two tetragonal wings Fe(1)Fe(2)P(1)S(1) and Fe(1)Fe(2)P(2)S(2) is 87.4°. The Fe-Fe bond length of 11 (2.7790 Å) is much longer than the corresponding bond lengths of 1 (2.6431 Å)⁸ and particularly (μ -EtS)₂Fe₂(CO)₆ (2.537 Å).²

⁽¹⁵⁾ Shaver, A.; Fitzpatrick, P. J.; Steliou, K.; Butler, I. S. J. Am. Chem. Soc. 1979, 101, 1313.

сн∠сн

2 Ph₂PCI

r. t

78 °C

Figure 2. Molecular structure of 9 with 30% probability level ellipsoids.

Figure 3. Molecular structure of 11 with 30% probability level ellipsoids.

as $(\mu$ -Ph₂P)(μ -RS)Fe₂(CO)₆ (R = Ph,¹⁶ Et,¹⁷ C₆H₁₁¹⁸), (μ -PhPCl)(μ -t-BuS)Fe₂(CO)₆,¹⁹ and (μ -Me₂P)(μ -t-BuS)Fe₂(CO)₆.²⁰

Synthesis and Characterization of Double-Butterfly Fe_4S_2P Complexes 14–16 and Quadruple-Butterfly $Fe_8S_4P_2$ Complexes 17 and 18. In order to examine the chemical reactivities of the above-prepared Fe/S/P cluster complexes, we chose some of the prepared complexes such as 1, 3, 7, 12, and 13 to react with $Fe_2(CO)_9$ to see if the higher nuclearity Fe/S/P cluster complexes could be obtained. The higher nuclearity double-butterfly Fe_4S_2P complexes 14-16 were prepared upon treatment of single-butterfly Fe_2S_2P complexes 1, 3, and 7 with excess $Fe_2(CO)_9$ in THF at room temperature (Scheme 6), whereas the higher nuclearity quadruple-butterfly $Fe_8S_4P_2$ complexes 17 and 18 could be obtained by reactions of double-butterfly $Fe_4S_4P_2$ complexes 12 and 13 with excess $Fe_2(CO)_9$ under similar conditions (Scheme 7).

It is apparent that the formation of **14–18** is actually the consequence of the transformation of each Ph₂-substituted tetragonal Fe₂SP wing in the starting butterfly Fe/S/P complexes to the $(\mu$ -Ph₂P)Fe₂(CO)₆-substituted Fe₂S triangular wing. Although the mechanism regarding this type of transformation

Table 1. Selected Bond Lengths (Å) and Angles (deg) for 9, 11, and 14

9				
Fe(1) - S(2)	2.2424(14)	Fe(2) - S(2)	2.2767(13)	
Fe (1)-S(1)	2.3655(14)	P(1) - S(1)	2.0336(15)	
Fe(2) - P(1)	2.2772(13)	S(2) - C(7)	1.789 (4)	
P(1)-C(14)	1.824(4)	Fe(1)-Fe(2)	2.6327(9)	
S(2) - Fe(1) - S(1)	83.22(4)	P(1)-Fe(2)-Fe(1)	77.35(4)	
S(2)-Fe(1)-Fe(2)	54.98(3)	S(1) - P(1) - Fe(2)	104.77(6)	
S(1)-Fe(1)-Fe(2)	86.12(4)	Fe(1)-S(2)-Fe(2)	71.26(4)	
S(2) - Fe(2) - P(1)	87.47(5)	S(2)-Fe(2)-Fe(1)	53.77(4)	
11				
Fe(1) - P(1)	2.2576(16)	P(1) - C(7)	1.830(5)	
Fe(1) - S(2)	2.3487(17)	P(1) - S(1)	2.027(2)	
Fe(2) - P(2)	2.2602(16)	S(2)-P(2)	2.032(2)	
Fe(2) - S(1)	2.3469(17)	Fe(1)-Fe(2)	2.7790(13)	
G(2) E (1) D(1)	06.10(6)		00 70(5)	
S(2) - Fe(1) - P(1)	86.12(6)	S(2) - Fe(1) - Fe(2)	83.78(5)	
S(2) = P(2) = Fe(2) P(1) = S(1) = Fe(2)	100.30(8)	S(1) - Fe(2) - Fe(1)	83.30(5)	
P(1)=S(1)=Fe(2) P(2)=S(2)=Fe(1)	90.55(7)	P(2) = Fe(2) = S(1) P(2) = Fe(2) = Fe(1)	87.20(0)	
P(2) = S(2) = Fe(1)	89.70(7)	P(2) = Fe(2) = Fe(1)	/5.13(5)	
14				
Fe(1) - P(1)	2.223(2)	Fe(3)-Fe(4)	2.5118(17)	
Fe(1) - S(1)	2.263(2)	Fe(1)-Fe(2)	2.5889(17)	
Fe(2) - P(1)	2.223(2)	Fe(3) - S(1)	2.260(2)	
Fe(2)-S(1)	2.229(2)	Fe(4)-S(1)	2.275(2)	
P(1) - Fe(1) - S(1)	80.79(8)	Fe(1) - P(1) - Fe(2)	71.22(8)	
S(1) - Fe(1) - Fe(2)	54.20(6)	Fe(2) - S(1) - Fe(3)	139.25(10)	
P(1) - Fe(2) - Fe(1)	54 40(7)	Fe(3) - S(1) - Fe(4)	67.27(7)	
S(1) - Fe(2) - Fe(1)	55.42(6)	Fe(4) - S(2) - Fe(3)	67.49(7)	
-(-)(=) - + + + + + + + + + + + + + + + + + +	(0)			

is not completely understood, a possible transformation pathway (Scheme 8) might be proposed according to the following facts: (i) Fe₂(CO)₉ in THF solution at room temperature is known to give the intermediate Fe(CO)₄(THF), from which the heteroatom nitrogen donors can displace the THF,²¹ and (ii) the coordination unsaturated species, such as Cr(CO)5, can readily add to a metalattached S atom to give the nuclearity increased metal cluster.²² The pathway includes the following steps: (i) the heteroatom S in the tetragonal Fe_2SP wing of the single-butterfly Fe_2S_2P cluster m_1 attacks the Fe atom of one molecule of Fe(CO)₄(THF) (generated in situ from Fe₂(CO)₉ and THF) to give intermediate m_2 ; (ii) further intramolecular attack of the same S atom at its neighboring Fe atom with displacement of Ph₂P from it affords intermediate \mathbf{m}_3 (the favored isomerization from tetragonal Fe₂SP wing to triangular Fe₂S wing is presumably due to coordination of the S atom with Fe(CO)₄); (iii) the pendant Ph₂P group of \mathbf{m}_3 displaces THF of another molecule of $Fe(CO)_4(THF)$ to produce intermediate m_4 ; and finally (iv) the double-butterfly Fe_4S_2P cluster m_5 is formed by steps such as loss of two CO ligands from the two Fe(CO)₄ units and formation of the new Fe-Fe, Fe-S, and Fe-P bonds followed by cleavage of the old P-S bond. It should be noted that this butterfly cluster transformation mechanism for formation of

⁽¹⁶⁾ Job, B. E.; Mclean, R. A. N.; Thompson, D. T. J. Chem. Soc., Chem. Commun. 1966, 895.

⁽¹⁷⁾ Seyferth, D.; Womack, G. B.; Dewan, J. C. *Organometallics* **1985**, 4, 398.

⁽¹⁸⁾ Winter, A.; Zsolnai, L.; Huttner, G. J. Organomet. Chem. **1983**, 250, 409.

⁽¹⁹⁾ Song, L.-C.; Wang, R.-J.; Li, Y.; Wang, H.-G.; Wang, J.-T. *Chin. J. Org. Chem* **1989**, *9*, 512.

⁽²⁰⁾ Song, L.-C.; Hu, Q.-M.; Zhou, Z.-Y.; Hu, G.-Z. Chin. J. Org. Chem 1991, 11, 533.

 ⁽²¹⁾ Cotton, F. A.; Troup, J. M. J. Am. Chem. Soc. 1974, 96, 3438.
 (22) Richter, F.; Vahrenkamp, H. Angew. Chem., Int. Ed. Engl. 1978, 17, 444.

Scheme 8

14–18 seems to be reasonable, but it is mainly speculative. So, more work needs to be done in the future.

Complexes **14–18** are also air-stable solids, which were characterized by elemental analysis and various spectroscopies. For example, the IR spectra of **14–18** showed four to six absorption bands in the region 2079–1943 cm⁻¹ for their terminal carbonyls. The ¹H NMR spectra of **14** and **16** each displayed a singlet at 2.07 and 1.33 ppm for CH₃ protons in their MeS and EtS groups, whereas the spectrum of **18** exhibited an AB quartet in the range 6.7–7.2 ppm for its two phenylene groups. In addition, the ³¹P NMR spectra of **14–18** displayed a singlet at ca. 145 ppm for P atoms in their Ph₂P groups, very close to those displayed by P atoms in complexes (μ -Ph₂P)(μ -RS)Fe₂(CO)₆ (R = C₆H₁₁,¹⁸ R = *n*-Pr, *i*-Pr, *t*-Bu²³) and [(μ -Ph₂P)Fe₂(CO)₆]₂[μ -SCH₂(CH₂OCH₂)₂CH₂S- μ].²⁴

To further confirm the μ_4 -S-containing double-butterfly Fe₄S₂P cluster cores present in complexes **14–18**, X-ray diffraction analysis for the representative complex **14** was undertaken. The molecular structure of **14** is depicted in Figure 4, whereas selected bond lengths and angles are listed in Table 1. Complex **14** is composed of two butterfly subclusters, Fe(1)Fe(2)S(1)P(1) and Fe(3)Fe(4)S(1)S(2), joined to a pyran type of μ_4 -S(1) atom. While the S(2) atom is attached to C(13) of the methyl group by an equatorial bond, the P(1) atom is

Figure 4. Molecular structure of 14 with 30% probability level ellipsoids.

attached to C(14) and C(20) of the two phenyl groups by an equatorial and an axial bond,¹³ respectively. In addition, each of the three carbonyls attached to Fe(1), Fe(2), Fe(3), and Fe(4)are terminal. In butterfly subcluster Fe(1)Fe(2)S(1)P(1) the dihedral angle between its two triangular wings is 105.9°, which is obviously larger than the corresponding dihedral angle (96.81°) in subcluster Fe(3)Fe(4)S(1)S(2). In addition, the Fe(1)-Fe(2) bond length (2.5889 Å) is slightly longer than the Fe(3)-Fe(4) bond length (2.5118 Å). It should be noted that complexes 14-18 are the first butterfly Fe/S/P complexes with two different subclusters, Fe_2S_2 and Fe_2SP , joined together through a common μ_4 -S atom, although numerous μ_4 -E (E = S, Se)-containing butterfly cluster complexes are known, such as $[(\mu - RS)Fe_2(CO)_6]_2(\mu_4 - S)(R = Me, {}^{25}Et^{26}), [(\mu - EtS)Fe_2(CO)_6][(\mu - EtS)Fe_2(CO)_6]](\mu - EtS)Fe_2(CO)_6]$ PhC=CS)Fe₂(CO)₆](μ_4 -S),²⁷ [(μ -EtS)Fe₂(CO)₆]₂(μ_4 -Se),²⁸ and $[(\mu-\text{EtTe})\text{Fe}_2(\text{CO})_6]_2(\mu_4-\text{S}).^{29}$

Electrochemistry of Complex 11. The electrochemical properties of 11 were studied by cyclic voltammetry (CV) in MeCN solution under an atmosphere of N2. As shown in Figure 5, the cyclic voltammogram of 11 shows two irreversible oneelectron reductions at E_{pc} = -1.32 and - 2.09 V and one irreversible one-electron oxidation at $E_{pa} = +$ 0.74 V, which could be ascribed to the Fe^IFe¹/Fe¹Fe⁰, Fe^IFe⁰/Fe⁰Fe⁰, and $Fe^{I}Fe^{I}\!/Fe^{I}Fe^{II}$ couples, respectively. The one-electron assignments for these redox processes were supported by the calculated value of 0.95 faraday/equiv (obtained through study of bulk electrolysis of a MeCN solution of 11) and the calculated value of $(i_p/\nu^{1/2})/(it^{1/2}) = 3.3$ (obtained through study of CV and chronoamperometry (CA) of 11).³⁰ The cyclic voltammograms of 11 with HOAc and without HOAc (for comparative purposes) are presented in Figure 6. Interestingly, as shown in Figure 6, when the first 2 mM HOAc was added to the MeCN solution of 11, the original first reduction peak at -1.32 V did not change, but the second reduction peak at -2.09 V considerably increased and continued to grow up with sequential addition of the acid. Apparently, these observations are characteristic of an electrocatalytic proton reduction process.31-33 More interest-

- (23) Song, L.-C.; Li, Y.; Hu, Q.-M.; Wang, J.-T.; Zhao, W.-J.; Fan, Y.-Q.; Zhang, S.-J.; Li, X.-Q.; Li, G.-W. *Chem. J. Chin. Univ.* **1990**, *11*, 154.
- (24) Song, L.-C.; Fan, H.-T.; Hu, Q.-M.; Yang, Z.-Y.; Sun, Y.; Gong, F.-H. *Chem.-Eur. J.* **2003**, *9*, 170.
- (25) Coleman, J. M.; Wojcicki, A.; Pollick, P. J.; Dahl, L. F. Inorg. Chem. 1967, 6, 1236.
- (26) Seyferth, D.; Kiwan, A. M. J. Organomet. Chem. 1985, 286, 219.
 (27) Song, L.-C.; Qin, X.-D.; Hu, Q.-M.; Huang, X.-Y. Organometallics 1998, 17, 5437.
- (28) Song, L.-C.; Yan, C.-G.; Hu, Q.-M.; Wang, R.-J.; Mak, T. C. W.; Huang, X.-Y. Organometallics **1996**, *15*, 1535.
- (29) Song, L.-C.; Hu, Q.-M.; Sun, B.-W.; Tang, M.-Y.; Yang, J; Hua, Y.-J. Organometallics 2002, 21, 1627.
- (30) Zanello, P. Inorganic Electrochemistry. Theory, Practice and Application; Thomas Graham House: Cambridge, UK, 2003.
- (31) Bhugun, I.; Lexa, D.; Saveant, J.-M. J. Am. Chem. Soc. **1996**, 118, 3982.

Figure 5. Cyclic voltammogram of **11** (1.0 mM) in 0.1 M n-Bu₄NPF₆/MeCN at a scan rate of 100 mV s⁻¹.

Figure 6. Cyclic voltammogram of 11 (1.0 mM) with HOAc (0–10 mM) in 0.1 M n-Bu₄NPF₆/MeCN at a scan rate of 100 mV s⁻¹.

ingly, this process was further proved by bulk electrolysis of a MeCN solution of **11** (0.5 mM) with HOAc (25 mM) at -2.20 V. During 0.5 h of the bulk electrolysis, 10.2 F per mol of **11** was passed, which corresponds to 5.1 turnovers. H₂ bubbles could be seen during the large-scale electrolytic experiment. GC analysis showed that the hydrogen yield was nearly 100%.

Conclusion

We have synthesized and characterized a series of new butterfly Fe/S/P cluster complexes, which include (i) complexes **7–10**, having one butterfly Fe₂S₂P cluster core, (ii) complexes **11**, having one butterfly Fe₂S₂P₂ cluster core, (iii) complexes **12** and **13**, having two butterfly Fe₂S₂P cluster cores, (iv) complexes **14–16**, containing one double-butterfly Fe₄S₂P core with a common μ_4 -S atom, and (v) complexes **17** and **18**, containing two double-butterfly Fe₄S₂P cluster cores each with a common μ_4 -S atom. Interestingly, while **7–13** were synthesized via a novel type of reactions of the S-centered butterfly anions **A** (R = Et, *p*-MeC₆H₄), **C**, **D**, and **E** with Ph₂PCl,

complexes 14–18 could be prepared by another novel type of reactions of complexes 1, 3, 7, 12, and 13 with Fe₂(CO)₉, respectively. That is, the first type of reactions can accomplish the conversion from the S-centered triangular Fe₂S wings in anions A, C, D, and E to the tetragonal Fe₂SP wings in complexes 7-13, whereas the second type of reactions can achieve the conversion from the Ph2-substituted tetragonal Fe2SP wings in complexes 1, 3, 7, 12, and 13 to the $(\mu$ -Ph₂P)Fe₂(CO)₆substituted Fe₂S triangular wings in complexes 14-18, respectively. Considering the structural similarity of complexes 7-18 to the active site of [FeFe]-hydrogenases, as well as the H₂ production catalyzed by complex 11, these butterfly Fe/S/P complexes might be regarded as H-cluster models. Further studies regarding the formation mechanism for such butterfly Fe/S/P complexes and the electrocatalytic mechanism for proton reduction catalyzed by such complexes are underway.

Experimental Section

General Comments. All reactions were carried out under an atmosphere of prepurified nitrogen using standard Schlenk and vacuum-line techniques. Tetrahydrofuran (THF) was purified by distillation under nitrogen from Na/benzophenone ketyl. (µ- S_2)Fe₂(CO)₆,³⁴ Fe₂(CO)₉,³⁵ RMgBr (R = Et, *p*-MeC₆H₄),³⁶ Ph2PCl, 37 4-BrC6H4C6H4Br-4', 38 4-BrC6H4OCH2CH2OC6H4Br-4', 39 and $(\mu$ -RS) $(\eta^1$ -Ph₂PS- η^1)Fe₂(CO)₆ (R = Me, Ph)⁸ were prepared according to the published procedures. n-BuLi (1 M in hexane) and Et₃BHLi (1 M in THF) were available commercially. While products were separated by preparative TLC ($25 \times 15 \times 0.25$ cm) on glass plates coated with silica gel 60 H, samples for analysis were further purified by recrystallization from common organic solvents. IR spectra were recorded on a Nicolet Magna 500 FTIR or a Bruker Vector 22 infrared spectrophotometer. ¹H NMR and ³¹P NMR spectra were taken on a Bruker AC-P200 NMR spectrometer. C/H analyses were performed with an Elementar Vario EL analyzer. Melting points were determined on a Yanaco MP-500 apparatus and are uncorrected.

Preparation of $(\mu$ -EtS) $(\eta^1$ -Ph₂PS- η^1)Fe₂(CO)₆ (7) and $(\mu$ -EtS)(η^1 -Ph₂PS- η^1)Fe₂(CO)₅(Ph₂PCl) (8). A red solution of (μ - S_2)Fe₂(CO)₆ (0.344 g, 1.0 mmol) in THF (20 mL) was cooled to -78 °C under stirring by a dry ice/acetone bath. To this solution was added a diethyl ether solution of EtMgBr (ca. 1 mmol) by syringe until the mixture turned emerald green. The green mixture was stirred at this temperature for 15 min, and then Ph₂PCl (0.2 mL, 1.0 mmol) was added to cause an immediate color change to red. The new mixture was allowed to warm to room temperature and stirred at this temperature for 1 h. Volatiles were removed under reduced pressure, and the residue was subjected to TLC separation using CH₂Cl₂/petroleum ether (1:4 v/v) as eluent. From the first, orange-red band 7 was obtained as a red solid (0.346 g, 62%). Mp: 120-121 °C. Anal. Calcd for C₂₀H₁₅Fe₂O₆PS₂: C, 43.04; H, 2.71. Found: C, 42.83; H, 2.69. IR (KBr disk): $\nu_{C=0}$ 2066 (vs), 2020 (vs), 2007 (vs), 1992 (vs), 1972 (s), 1958 (s) cm⁻¹. ¹H NMR (200 MHz, CDCl₃): 1.66 (t, *J* = 7.2 Hz, 3H, CH₃), 2.82 (q, *J* = 7.2 Hz, 2H, CH₂), 7.24-7.78 (m, 10H, 2C₆H₅) ppm. ³¹P NMR (81.0 MHz, CDCl₃, 85% H₃PO₄): 66.99 (s) ppm. From the second, brown-red band 8 was obtained as a red solid (0.061 g, 8%). Mp: 151-152 °C. Anal. Calcd for C₃₁H₂₅ClFe₂O₅P₂S₂: C, 49.57; H, 3.33. Found:

- (36) Gilman, H.; Zoellner, E. A.; Dickey, J. B. J. Am. Chem. Soc. **1929**, *51*, 1576.
 - (37) Horner, L. Chem. Ber. 1961, 94, 21.
 - (38) Buckles, R. E.; Wheeler, N. G. Org. Synth. 1951, 31, 29.
 - (39) Tashiro, M.; Sumida, T.; Fukata, G. J. Org. Chem. 1980, 45, 1156.

⁽³²⁾ Chong, D.; Georgakaki, I. P.; Mejia-Rodriguez, R.; Sanabria-Chinchilla, J.; Soriaga, M. P.; Darensbourg, M. Y. *Dalton Trans.* **2003**, *3*, 4158.

⁽³³⁾ Capon, J.-F.; Gloaguen, F.; Schollhammer, P.; Talarmin, J. Coord. Chem. Rev. 2005, 249, 1664.

⁽³⁴⁾ Seyferth, D.; Henderson, R. S.; Song, L.-C. Organometallics **1982**, *1*, 125.

⁽³⁵⁾ King, R. B. Organometallic Syntheses, Transition-Metal Compounds; Academic Press; New York, 1965; Vol. I, p 95.

Table 2. Crystal Data and Structure Refinement Details for 9, 11, and 14

	9	11	14
mol formula	C ₂₅ H ₁₇ Fe ₂ O ₆ PS ₂	$C_{30}H_{20}Fe_2O_6P_2S_2$	C ₂₅ H ₁₃ Fe ₄ O ₁₂ PS ₂
mol wt	620.18	714.22	823.84
cryst syst	monoclinic	triclinic	monoclinic
space group	P2(1)/c	$P\overline{1}$	Cc
a/Å	15.333(5)	9.991(4)	10.268(4)
b/Å	10.876(3)	11.558(5)	15.146(7)
c/Å	17.090(5)	14.893(6)	20.165(9)
α/deg	90	71.732(7)	90
β/deg	112.554(5)	88.952(7)	98.215(7)
γ/deg	90	70.292(7)	90
V/Å ³	2632.2(13)	1530.1(11)	3104(2)
Ζ	4	2	4
$D_{\rm c}/{\rm g}~{\rm cm}^{-3}$	1.565	1.550	1.736
abs coeff/mm ⁻¹	1.360	1.231	2.077
<i>F</i> (000)	1256	724	1640
index ranges	$-19 \le h \le 15$	$-12 \le h \le 12$	$-11 \le h \le 12$
c	$-13 \leq k \leq 11$	$-5 \le k \le 13$	$-9 \le k \le 18$
	$-9 \le l \le 21$	$-17 \le l \le 17$	$-23 \leq l \leq 23$
no. of rflns	12 136	6543	5417
no. of indep rflns	5374	5530	4895
$2\theta_{\rm max}/{\rm deg}$	52.82	50.70	50.04
R	0.0552	0.0494	0.0490
$R_{ m w}$	0.0734	0.0945	0.0710
goodness of fit	0.961	0.992	1.043
largest diff peak and hole/e $Å^{-3}$	0.411/-0.377	0.469/-0.464	0.376/-0.349

C, 49.70; H, 3.48. IR (KBr disk): $\nu_{C=0}$ 2039 (vs), 1985 (vs), 1953 (vs), 1941 (s) cm⁻¹. ¹H NMR (200 MHz, CDCl₃): 1.42 (t, J = 7.2 Hz, 3H, CH₃), 2.35–2.50 (m, 2H, CH₂), 7.27–7.97 (m, 20H, 4C₆H₅) ppm. ³¹P NMR (81.0 MHz, CDCl₃, 85% H₃PO₄): 70.99 (s), 151.04 (s) ppm.

Preparation of $(\mu$ -p-MeC₆H₄S) $(\eta^1$ -Ph₂PS- η^1)Fe₂(CO)₆ (9) and $(\mu-p-MeC_6H_4S)(\eta^1-Ph_2PS-\eta^1)Fe_2(CO)_5(Ph_2PC_6H_4Me-p)$ (10). The same procedure was followed as for 7 and 8, except that p-MeC₆H₄MgBr was used instead of EtMgBr. Elution with CH₂Cl₂/ petroleum ether (1:6 v/v) afforded 9 as a red solid (0.397 g, 64%). Mp: 146-147 °C. Anal. Calcd for C₂₅H₁₇Fe₂O₆PS₂: C, 48.84; H, 2.76. Found: C, 48.69; H, 2.75. IR (KBr disk): v_{C=0} 2066 (vs), 2028 (vs), 1992 (vs), 1968 (vs) cm⁻¹. ¹H NMR (200 MHz, CDCl₃): 2.32 (s, 3H, CH₃), 7.07–7.80 (m, 14H, 2C₆H₅, C₆H₄) ppm. ^{31}P NMR (81.0 MHz, CDCl₃, 85% H₃PO₄): 44.50 (s) ppm. From the second, bwown-red band 10 was obtained as a red solid (0.208 g, 24%). Mp: 127-128 °C. Anal. Calcd for $C_{43}H_{34}Fe_2O_5P_2S_2$: C, 59.45; H, 3.92. Found: C, 59.48; H, 4.06. IR (KBr disk): *v*_{C≡0} 2040 (vs), 1974 (vs), 1947 (s), 1934 (s) cm⁻¹. ¹H NMR (200 MHz, CDCl₃): 2.20 (s, 3H, CH₃C₆H₄P), 2.39 (s, 3H, CH₃C₆H₄S), 6.73–7.72 (m, 28H, 4C₆H₅, 2C₆H₄) ppm. ^{31}P NMR (81.0 MHz, CDCl₃, 85% H₃PO₄): 57.99 (s), 70.41 (s) ppm.

Preparation of (η¹-**Ph**₂**PS**-η¹)₂**Fe**₂(**CO**)₆(**11**). To a stirred solution of (μ-S₂)Fe₂(CO)₆ (0.344 g, 1.0 mmol) in THF (20 mL) (cooled to -78 °C) was added a solution of Et₃BHLi (2 mL, 2 mmol) by syringe. At the midpoint of the addition, the solution turned from red to emerald green; for the rest of the addition it remained green. The green mixture was stirred at -78 °C for 15 min, and then Ph₂PCl (0.4 mL, 2.0 mmol) was added, causing an immediate color change back to red. The new mixture was allowed to warm to room temperature and stirred at this temperature for 1 h. The same workup as that for **7** and **8** gave **11** as a red solid (0.302 g, 42%). Mp: 132 °C (dec). Anal. Calcd for C₃₀H₂₀Fe₂O₆P₂S₂: C, 50.45; H, 2.82. Found: C, 50.72; H, 3.08. IR (KBr disk): $\nu_{C=0}$ 2066 (vs), 2029 (vs), 2001 (vs), 1967 (s) cm⁻¹. ¹H NMR (200 MHz, CDCl₃): 7.25–8.07 (m, 20H, 4C₆H₅) ppm. ³¹P NMR (81.0 MHz, CDCl₃, 85% H₃PO₄): 49.71 (s) ppm.

Preparation of $[(\eta^1 - Ph_2PS - \eta^1)Fe_2(CO)_6]_2(4-\mu - SC_6H_4C_6H_4S-\mu - 4')$ (12). While stirring, a solution of 4-BrC₆H₄C₆H₄Br-4' (0.312 g, 1.0 mmol) in THF (20 mL) was cooled to ca. -65 °C, and then a hexane solution of *n*-BuLi (ca. 2 mmol) was dropwise added to give an off-white mixture. The mixture was stirred for an additional

0.5 h from -65 to 0 °C and then recooled to -78 °C. To this mixture was added $(\mu$ -S₂)Fe₂(CO)₆ (0.688 g, 2.0 mmol), and after stirring for 15 min, Ph₂PCl (0.4 mL, 2.0 mmol) was added. The new mixture was stirred at -78 °C for 15 min and then allowed to warm to room temperature. After the mixture continued stirring at room temperature for 2 h, volatiles were removed and the residue was subjected to TLC separation using CH₂Cl₂/petroleum ether (1:2 v/v) as eluent. From the first, orange-red band **12** was obtained as a red solid (0.278 g, 23%). Mp: 145 °C (dec). Anal. Calcd for C₄₈H₂₈Fe₄O₁₂P₂S₄: C, 47.65; H, 2.33. Found: C, 47.64; H, 2.78. IR (KBr disk): $\nu_{C\equiv0}$ 2070 (vs), 2032 (vs), 2004 (vs), 1970 (s) cm⁻¹. ¹H NMR (200 MHz, CDCl₃): 7.33-7.85 (m, 28H, 4C₆H₅, 2C₆H₄) ppm. ³¹P NMR (81.0 MHz, CDCl₃, 85% H₃PO₄): 44.69 (s) ppm.

Preparationof[(η¹-**Ph**₂**PS**-η¹)**Fe**₂(**CO**)₆]₂(4-μ-SC₆**H**₄**OCH**₂**CH**₂-**OC**₆**H**₄**S**-μ-4') (13). The same procedure was followed as for 12, except that 4-BrC₆H₄OCH₂CH₂OC₆H₄Br-4' (0.372 g, 1.0 mmol) and excess *n*-BuLi (ca. 3 mmol) were used. From the first, orange-red band 13 was obtained as a red solid (0.523 g, 41%). Mp: 154 °C (dec). Anal. Calcd for C₅₀H₃₂Fe₄O₁₄P₂S₄: C, 47.24; H, 2.52. Found: C, 47.21; H, 2.55. IR (KBr disk): $\nu_{C=0}$ 2069 (vs), 2031 (vs), 2003 (vs), 1985 (s), 1970 (s) cm⁻¹. ¹H NMR (200 MHz, CDCl₃): 4.28 (s, 4H, 2CH₂), 6.84–7.83 (m, 28H, 4C₆H₅, 2C₆H₄) ppm. ³¹P NMR (81.0 MHz, CDCl₃, 85% H₃PO₄): 67.02 (s) ppm.

Preparation of [(μ-MeS)Fe₂(CO)₆](μ₄-S)[(μ-Ph₂P)Fe₂(CO)₆] (14). A mixture of (μ-MeS)(η¹-Ph₂PS-η¹)Fe₂(CO)₆ (1, 0.181 g, 0.33 mmol) and Fe₂(CO)₉ (0.728 g, 2.0 mmol) in THF (20 mL) was stirred for 6 h at room temperature. After the solvent was removed under reduced pressure, the residue was subjected to TLC separation using CH₂Cl₂/petroleum ether (1:4 v/v) as eluent. From the major, orange-red band 14 was obtained as a red solid (0.069 g, 25%). Mp: 182 °C (dec). Anal. Calcd for C₂₅H₁₃Fe₄O₁₂PS₂: C, 36.41; H, 1.58. Found: C, 36.04; H, 1.70. IR (KBr disk): $ν_{C=0}$ 2078 (s), 2054 (vs), 2031 (vs), 1990 (vs), 1943 (s) cm⁻¹. ¹H NMR (200 MHz, CDCl₃): 2.07 (s, 3H, CH₃), 7.24–7.65 (m, 10H, 2C₆H₅) ppm. ³¹P NMR (81.0 MHz, CDCl₃, H₃PO₄): 145.63 (s) ppm.

Preparation of $[(μ-PhS)Fe_2(CO)_6](μ_4-S)[(μ-Ph_2P)Fe_2(CO)_6]$ (15). The same procedure was followed as for 14, except that (μ-PhS)(η¹-Ph₂PS-η¹)Fe₂(CO)₆ (3, 0.202 g, 0.33 mmol) was used instead of 1. From the major band 15 was obtained as a red solid (0.032 g, 11%). Mp: 190–191 °C. Anal. Calcd for C₃₀H₁₅Fe₄O₁₂PS₂: C, 40.63; H, 1.69. Found: C, 40.42; H, 1.85. IR (KBr disk): $ν_{C=0}$ 2079 (s), 2052 (vs), 2030 (vs), 1994 (vs) cm⁻¹.

Butterfly Fe/S/P Cluster Complexes

 1H NMR (200 MHz, CDCl₃): 7.19–7.74 (m, 15H, 3C₆H₅) ppm. ^{31}P NMR (81.0 MHz, CDCl₃, 85% H₃PO₄): 145.53 (s) ppm.

Preparation of $[(\mu$ -EtS)Fe₂(CO)₆](μ ₄-S)[(μ -Ph₂P)Fe₂(CO)₆] (16). The same procedure was followed as for 14, except that (μ -EtS)(η^1 -Ph₂PS- η^1)Fe₂(CO)₆ (7, 0.186 g, 0.33 mmol) was employed in place of 1. From the major band 16 was obtained as a red solid (0.053 g, 19%). Mp: 173–174 °C. Anal. Calcd for C₂₆H₁₅Fe₄O₁₂PS₂: C, 37.23; H, 1.79. Found: C, 37.05; H, 2.24. IR (KBr disk): $\nu_{C=0}$ 2078 (s), 2051 (vs), 2026 (vs), 1993 (vs), 1976 (vs), 1950 (m) cm⁻¹. ¹H NMR (200 MHz, CDCl₃): 1.33 (t, J = 7.2 Hz, 3H, CH₃), 2.41 (q, J = 7.2 Hz, 2H, CH₂), 7.31–7.70 (m, 10H, 2C₆H₅) ppm. ³¹P NMR (81.0 MHz, CDCl₃, 85% H₃PO₄): 145.78 (s) ppm.

Preparation of [(*μ*-**Ph**₂**P**)**Fe**₂(**CO**)₆(*μ*₄-**S**)**Fe**₂(**CO**)₆]₂(4-*μ*-**SC**₆**H**₄**S**-*μ*-4') (17). A solution of $[(\eta^1-\text{Ph}_2\text{PS}-\eta^1)\text{Fe}_2(\text{CO})_6]_2[4-\mu-\text{SC}_6\text{H}_4\text{C}_6\text{H}_4\text{S}-\mu-4']$ (12, 0.204 g, 0.20 mmol) and Fe₂(CO)₉ (1.092 g, 3.0 mmol) in THF (20 mL) was stirred for 48 h at room temperature. After the solvent was removed under reduced pressure, the residue was subjected to TLC separation using THF/petroleum ether (1:5 v/v) as eluent. From the major, orange-red band 17 was obtained as a red solid (0.072 g, 20%). Mp: 90 °C (dec). Anal. Calcd for C₆₀H₂₈Fe₈O₂₄P₂S₄: C, 40.68; H, 1.58. Found: C, 40.81; H, 1.75. IR (KBr disk): $\nu_{C=0}$ 2079 (s), 2053 (vs), 2031 (vs), 1994 (vs) cm⁻¹. ¹H NMR (200 MHz, CDCl₃): 7.32-7.80 (m, 28H, 4C₆H₅, 2C₆H₄) ppm. ³¹P NMR (81.0 MHz, CDCl₃, 85% H₃PO₄): 145.51 (s) ppm.

Preparation of [(*μ*-Ph₂P)Fe₂(CO)₆(*μ*₄-S)Fe₂(CO)₆]₂(4-*μ*-SC₆H₄-OCH₂ CH₂OC₆H₄S-*μ*-4') (18). The same procedure was followed as for 17, but [(η^1 -Ph₂PS- η^1)Fe₂(CO)₆]₂(4-*μ*-SC₆H₄OCH₂CH₂OC₆H₄S-*μ*-4') (13, 0.254 g, 0.20 mmol) was used in place of 12. Elution of the major, orange-red band with CH₂Cl₂/petroleum ether (5:1 v/v) produced 18 as a red solid (0.092 g, 25%). Mp: 85–87 °C. Anal. Calcd for C₆₂H₃₂Fe₈O₂₆P₂S₄: C, 40.66; H, 1.75. Found: C, 40.48; H, 1.88. IR (KBr disk): $\nu_{C=0}$ 2079 (s), 2052 (vs), 2030 (vs), 1994 (vs) cm⁻¹. ¹H NMR (200 MHz, CDCl₃): 4.20 (s, 4H, 2CH₂), 6.70, 6.74, 7.13, 7.17 (AB quartet, 8H, 2C₆H₄), 7.30–7.67 (m, 20H, 4C₆H₅) ppm. ³¹P NMR (81.0 MHz, CDCl₃, 85% H₃PO₄): 145.60 (s) ppm.

X-ray Structure Determinations of 9, 11, and 14. Single crystals of 9, 11, and 14 suitable for X-ray diffraction analyses were grown by slow evaporation of a hexane solution of 9 and a hexane/CH₂Cl₂ solution of 14 at about 4 $^{\circ}$ C, and by slow diffusion of hexane into a diethyl ether solution of 11 at about 4 $^{\circ}$ C, respectively. A single crystal of 9, 11, or 14 was mounted on a

Bruker SMART 1000 automated diffractometer. Data were collected at room temperature, using a graphite monochromator with Mo K α radiation ($\lambda = 0.71073$ Å) in the $\omega - \phi$ scanning mode. Absorption correction was performed by the SADABS program.⁴⁰ The structures were solved by direct methods using the SHELXS-97 program⁴¹ and refined by full-matrix least-squares techniques (SHELXL-97)⁴² on F^2 . Hydrogen atoms were located by using the geometric method. Details of crystal data, data collections, and structure refinements are summarized in Table 2.

Electrochemistry. Acetonitrile (Fisher Chemicals, HPLC grade) was used for electrochemistry assays. A solution of 0.1 M *n*-Bu₄NPF₆ in MeCN was used as electrolyte in all cyclic voltammetric experiments. Electrochemical measurements were made using a BAS Epsilon potentiostat. All voltammograms were obtained in a three-electrode cell with a 3 mm diameter glassy carbon working electrode, a platinum counter electrode, and an Ag/ Ag⁺ (0.01 M AgNO₃/0.1 M *n*-Bu₄NPF₆ in MeCN) reference electrode under N2 atmosphere. The working electrode was polished with 0.05 μ m alumina paste and sonicated in water for at least 10 min prior to use. Bulk electrolysis was run on a vitreous carbon rod (ca. 3 cm²) in a two-compartment, gastight, H-type electrolysis cell containing ca. 20 mL of MeCN. All potentials are quoted against the ferrocene/ferrocenium (Fc/Fc⁺) potential. Gas chromatography was performed with a Shimadzu GC-9A gas chromatograph under isothermal conditions with nitrogen as a carrier gas and a thermal conductivity detector.

Acknowledgment. We are grateful to the National Natural Science Foundation of China and the Research Fund for the Doctoral Program of Higher Education of China for financial support.

Supporting Information Available: Full tables of crystal data, atomic coordinates and thermal parameters, and bond lengths and angles for **9**, **11**, and **14** as CIF files. This material is available free of charge via the Internet at http://pubs. acs.org.

OM800077C

⁽⁴⁰⁾ Sheldrick, G. M. SADABS, A Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen: Germany, 1996.
(41) Sheldrick, G. M. SHELXS97, A Program for Crystal Structure Solution; University of Göttingen: Germany, 1997.

⁽⁴²⁾ Sheldrick, G. M. SHELXL97, A Program for Crystal Structure Refinement; University of Göttingen: Germany, 1997.