

Volume 27, Number 16, August 25, 2008

© Copyright 2008 American Chemical Society

Communications

Synthesis of Aryliron Complexes by Palladium-Catalyzed Transmetalation between [CpFe(CO)₂I] and Aryl Grignard Reagents and Their Chemistry Directed toward Organic Synthesis

Shigeo Yasuda, Hideki Yorimitsu,* and Koichiro Oshima*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Received June 17, 2008

Summary: Palladium-catalyzed transmetalation between $[CpFe-(CO)_2I]$ and aryl Grignard reagents emerges as a new method for the synthesis of $[CpFe(CO)_2Ar]$. The aryliron complexes thus formed are useful arylmetal reagents that become active upon oxidation or UV irradiation.

Thanks to the ubiquity of iron, organoiron compounds represent rare organic transition-metal compounds that we can use stoichiometrically in organic synthesis. However, the potential of organoiron compounds have not been fully developed.¹

Among organoiron compounds, the coordinatively saturated aryldicarbonylcyclopentadienyliron complexes [CpFe(CO)₂Ar] are easy to handle and hence can be useful as arylmetal reagents in organic synthesis. However, little is known about the concise

synthesis of $[CpFe(CO)_2Ar]$.² Here we report a new efficient method for the synthesis of $[CpFe(CO)_2Ar]$ under palladium catalysis. Several transformations of $[CpFe(CO)_2Ar]$ are also disclosed, which will be useful in organic synthesis.^{3,4} As reported previously,^{2a} our attempt at a substitution reaction

As reported previously,^{2a} our attempt at a substitution reaction of $[CpFe(CO)_2I]$ (1) with phenylmagnesium bromide in the absence of a catalyst resulted in failure, affording a poor yield of $[CpFe(CO)_2Ph]$ (2a), a significant amount of $[CpFe(CO)_2]_2$ (3), and recovered 1 (Table 1, entry 1). After extensive screening of the reaction conditions, we found that a combination of palladium acetate and diamine 4 efficiently catalyzes the phe-

^{*} To whom correspondence should be addressed. E-mail: yori@ orgrxn.mbox.media.kyoto-u.ac.jp (H.Y.); oshima@orgrxn.mbox.media.kyoto-u.ac.jp.(K.O.).

 ⁽a) Pearson, A. J. Iron Compounds in Organic Synthesis; Academic Press: London, 1994. (b) Pearson, A. J. Pure Appl. Chem. 1983, 55, 1767– 1779. (c) Knölker, H.-J. Curr. Org. Synth. 2004, 1, 309–331. (d) Knölker, H.-J. Chem. Rev. 2000, 100, 2941–2961. (e) Knölker, H.-J. Chem. Soc. Rev. 1999, 28, 151–157. (f) Rück-Braun, K.; Mikulás, M.; Amrhein, P. Synthesis 1999, 727–744. (g) Li, C.-L.; Liu, R.-S. Chem. Rev. 2000, 100, 3127–3161. (h) Abd-El-Aziz, A. S.; Bernardin, S. Coord. Chem. Rev. 2000, 203, 219–267. (i) Donaldson, W. A. Curr. Org. Chem. 2000, 4, 837–868.
 (j) Nakazawa, H.; Itazaki, M.; Kamata, K.; Ueda, K. Chem. Asian J. 2007, 2, 882–888. (k) Anson, C. E.; Malkov, A. V.; Roe, C.; Sandoe, E. J.; Stephenson, G. R. Eur. J. Org. Chem. 2008, 196–213, and references cited therein.

⁽²⁾ The reaction of [CpFe(CO)₂I] with phenylmagnesium bromide was reported to result in a less than 12% yield of [CpFe(CO)₂Ph]: (a) Li, H.-J.; Turnbull, M. M. J. Organomet. Chem. **1991**, 419, 245–249. The reaction with highly reactive aryllithium: (b) Butler, I. R.; Lindsell, W. E.; Preston, P. N. J. Chem. Res., Synop. **1981**, 185. The palladium-catalyzed reactions of aryl iodides with [CpFe(CO)₂]ZnCl, the preparation of which requires NAS_{2.8}: (c) Artamkina, G. A.; Mil'chenko, A. Y.; Bumagin, N. A.; Beletskaya, I. P.; Reutov, O. A. Organomet. Chem., USSR **1988**, 1, 17–20. The reactions of diaryliodonium and triarylsulfonium salts with [CpFe(CO)₂]-Na: (d) Nesmeyanov, A. N.; Chapovsky, Y. A.; Polovyanyuk, I. V.; Makarova, L. G. J. Organomet. Chem. **1967**, 7, 329–337. Decarbonylation of [CpFe(CO)₂]Au and ArCOCI: (e) Hunter, A. D.; Szigety, A. B. Organometallics **1989**, 8, 2670–2679, and references cited therein.

⁽³⁾ Butler, I. R.; Cullen, W. R.; Lindsell, W. E.; Preston, P. N.; Rettig, S. J. J. Chem. Soc., Chem. Commun. 1987, 439–441.

⁽⁴⁾ The coordination chemistry of [CpFe(CO)₂Ar] has been summarized: Kerber, R. C. In *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Elsevier: Oxford, U.K., 1995; Vol. 7, Chapter 2.

Table 1. Ligand Effect on Palladium-Catalyzed Arylation of 1

^{*a*} In the absence of Pd(OAc)₂. PhMgBr (2.0 equiv) was used. ^{*b*} 1,2-Bis(diphenylphosphino)ethane (10 mol %). ^{*c*} N,N,N',N'-Tetramethylethylenediamine. ^{*d*} PhMgBr (1.6 equiv) was used. ^{*e*} 12 mol %. ^{*f*} 5 mol % of Pd(OAc)₂, 6 mol % of **4**, 0 °C, 15 min.

nylation reaction (entry 7).⁵ The phenylation is regarded as palladium-catalyzed transmetalation between [CpFe(CO)₂I] and phenylmagnesium bromide.

The choice of the ligand is important. The use of phosphine ligands favored the formation of **3** (entries 3-5). The N-heterocyclic carbene ligand IPr \cdot HCl⁶ did not work well (entry 9). Palladium acetate by itself had high catalytic activity (entry 2). TMEDA and 2,2'-bipyridyl showed slightly lower activity than diamine **4** (entries 6-8). Diamine **4** was so efficient that the reaction went to completion at 0 °C within 15 min with 5 mol % of the palladium catalyst (entry 10).

The reaction would proceed via a mechanism similar to the conventional cross-coupling reaction,^{5c} which consists of oxidative addition of **1** to palladium that generates $[Cp(CO)_2Fe-Pd-I]$, transmetalation with phenylmagnesium bromide, and reductive elimination that forms the phenyl–iron bond.

[CpFe(CO)₂I] is the best starting material for the preparation of **2a**. The corresponding bromide and chloride were arylated with lower efficiency. The palladium-catalyzed reactions of [CpFe(CO)₂Br] and [CpFe(CO)₂Cl] afforded **2a** in 53% and 66% yields along with **3** in 24% and 12% yields, respectively. Advantageously, [CpFe(CO)₂I] was more stable in air than [CpFe(CO)₂Br] and [CpFe(CO)₂Cl].

The scope of aryl Grignard reagents is summarized in Table 2. Substituents at the 4-positions of aryl Grignard reagents had little effect on the arylation reaction. An electron-rich $[CpFe(CO)_2(4-MeOC_6H_4)]$ (2d) was somewhat sensitive to oxygen, which led to a moderate yield of 2d after silica gel

Table 2. Palladium-Catalyzed Arylation of 1 with ArMgBr

	- BrMa-Ar	5 mol% Pd(OAc) ₂ 6 mol% 4		
OC 1	(1.5 eq.)	THF, 0	°C, 15–30 min	
entry	Ar		2	yield/%
1	4-MeC ₆ H ₄		2b	80
2	4-PhC ₆ H ₄		2c	87
3 ^{<i>a</i>}	4-MeOC ₆ H ₄		2d	$62 (90^b)$
4	4-ClC ₆ H ₄		2e	74
5	$4-FC_6H_4$		2f	87
6	$2-MeC_6H_4$		2g	21

 a Performed at -20 °C for 2 h. b Yield determined by $^1\mathrm{H}$ NMR analysis of the crude product.

Scheme 1. Synthesis of Aryliron Complex from ArMgCl·LiCl

column purification under air. Unfortunately, the reaction of **1** with (2-methylphenyl)magnesium bromide failed to afford **2g** in reasonable yield, probably for steric reasons.

(4-Bromophenyl)magnesium reagent, prepared from 4-bromoiodobenzene according to the procedure of Knochel,⁷ also underwent the arylation reaction at -20 °C, albeit in modest yield and with a higher catalyst loading (Scheme 1).

Although rich coordination chemistry has been reported for [CpFe(CO)₂Ar],⁴ the application of [CpFe(CO)₂Ar] to organic synthesis has been almost unknown.³ Hence, we examined several transformations of [CpFe(CO)₂Ar] which will be useful in organic synthesis.

Many oxidative alkoxycarbonylations of $[CpFe(CO)_2R]$ with ceric ammonium nitrate to form RCOOR' were reported,⁸ although there have been no reports on the reaction of $[CpFe(CO)_2Ar]$. We thus optimized conditions for the reaction of $[CpFe(CO)_2Ar]$ to find the conditions in eq 1. Treatment of **2c** with ceric ammonium nitrate in a methanol-toluene mixed solvent at -78 °C for 30 min provided methyl 4-biphenylcarboxylate (**5**) in 89% yield.

The carbon-iron bond of 2 was robust enough to be compatible under transition-metal-catalyzed conditions. For

⁽⁵⁾ Palladium-catalyzed alkynylation reactions of [CpFe(CO)₂I] with 1-alkynylstannanes are known: (a) Lo Sterzo, C. J. Chem. Soc., Dalton Trans. **1992**, 1989–1990. (b) Crescenzi, R.; Lo Sterzo, C. Organometallics **1992**, 11, 4301–4305. (c) Ricci, A.; Angelucci, F.; Bassetti, M.; Lo Sterzo, C. J. Am. Chem. Soc. **2002**, 124, 1060–1071, and references cited therein. (d) Long, N. J.; Williams, C. K. Angew. Chem., Int. Ed. **2003**, 42, 2586– 2617.

^{(6) (}a) Arduengo, A. J., III; Krafczyk, R.; Schmutzler, R.; Craig, H. A.; Goerlich, J. R.; Marshall, W. J.; Unverzagt, M. *Tetrahedron* **1999**, *55*, 14523–14534. (b) Jafarpour, L.; Stevens, E. D.; Nolan, S. P. J. Organomet. Chem. **2000**, *606*, 49–54.

⁽⁷⁾ Krasovskiy, A.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 3333–3336.

^{(8) (}a) Bucheister, A.; Klemarczyk, P.; Rosenblum, M. Organometallics **1982**, *1*, 1679–1684. (b) Stokes, H. L.; Ni, L. M.; Belot, J. A.; Welker, M. E. J. Organomet. Chem. **1995**, 487, 95–104. (c) Jiang, S.; Turos, E. Organometallics **1993**, *12*, 4280–4282.

instance, the palladium-catalyzed borylation⁹ of **2h** proceeded smoothly to afford the (borylphenyl)iron complex **2i** (eq 2).

Iron complexes **2** reacted with allylic electrophiles under irradiation with a high-pressure mercury lamp to afford allylarenes **6** (eqs 3 and 4). The reaction would proceed as follows (Scheme 2): (1) photoinduced dissociation of a carbonyl ligand,^{10–12} (2) coordination of an allylic electrophile followed by migratory insertion,¹³ and (3) β -halide elimination.¹⁴ It is worth noting that the reaction of **2i** with methallyl tosylate occurred selectively at the iron–carbon bond without affecting the boron–carbon bond. This photoinduced additive-free metalselective carbon–carbon bond formation opens up a new possibility of organoiron-based organic synthesis that takes advantage of the most ubiquitous transition metal.

In summary, we have devised an efficient method for the synthesis of the series of iron complexes $[CpFe(CO)_2Ar]$: that

(10) (a) Alt, H. G. Angew. Chem., Int. Ed. Engl. 1984, 23, 766–782.
(b) Olson, A. S.; Seitz, W. J.; Hossain, M. M. Tetrahedron Lett. 1991, 32, 5299–5302. (c) Kündig, E. P.; Bourdin, B.; Bernardinelli, G. Angew. Chem., Int. Ed. Engl. 1994, 33, 1856–1858.

(11) It was reported that UV irradiation of [CpFe(CO)₂(alkyl)] leads to homolytic cleavage of the iron-alkyl bond: (a) Giese, B.; Thoma, G. *Helv. Chim. Acta* **1991**, *74*, 1143–1155. (b) Tawarah, K. M.; Jibril, I.; Bani-Fwaz, M. Z. Transition Met. Chem. **2000**, *25*, 659–663.

(12) Boryliron complexes are reagents for the borylation of hydrocarbon upon irradiation: (a) Waltz, K. M.; He, X.; Muhoro, C.; Hartwig, J. F. *J. Am. Chem. Soc.* **1995**, *117*, 11357–11358. (b) Waltz, K. M.; Hartwig, J. F. *Science* **1997**, *277*, 211–213. (c) Waltz, K. M.; Muhoro, C. N.; Hartwig, J. F. *Organometallics* **1999**, *18*, 3383–3393.

is, palladium-catalyzed transmetalation between $[CpFe(CO)_2I]$ and aryl Grignard reagents. The iron complexes thus synthesized are a useful class of arylmetals of significant stability and become reactive upon oxidation or irradiation. As notably demonstrated in the reaction of **2i** and methallyl tosylate, the organoiron complexes $[CpFe(CO)_2Ar]$ play unique roles as reagents in organic synthesis.

Acknowledgment. This work was supported by Grantsin-Aid for Scientific Research from the MEXT and JSPS. We thank Professor Koichi Ohe and Dr. Koji Miki at Kyoto University for allowing us to use a high-pressure mercury lamp for photochemical reactions.

Supporting Information Available: Text giving experimental details and characterization data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OM800560M

^{(9) (}a) Ishiyama, T.; Itoh, Y.; Kitano, T.; Miyaura, N. *Tetrahedron Lett.* **1997**, *38*, 3447–3450. (b) Ishiyama, T.; Ishida, K.; Miyaura, N. *Tetrahedron* **2001**, *57*, 9813–9816. The use of X-Phos, dicyclohexyl[2-(2,4,6-triisopropylphenyl]phosphine, in the palladium-catalyzed borylation: (c) Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. *Angew. Chem., Int. Ed.* **2007**, *46*, 5359–5363.

^{(13) (}a) Cavell, K. J. Coord. Chem. Rev. 1996, 155, 209–243. (b) Zhang,
Z.; Lu, X.; Xu, Z.; Zhang, Q.; Han, X. Organometallics 2001, 20, 3724–3728. (c) Hill, R. H.; Becalska, A.; Chiem, N. Organometallics 1991, 10, 2104–2109.

⁽¹⁴⁾ Oxidative addition followed by reductive elimination via an unusual Fe(IV) oxidation state is an alternative process for the allylation (Scheme 3).