Unsaturation in Binuclear Benzene Manganese Carbonyls: Comparison with Isoelectronic Cyclopentadienyliron and Cyclobutadienecobalt Derivatives

Hongyan Wang,* $,$ *, \ddagger Yaoming Xie, \ddagger R. Bruce King,*, \ddagger and Henry F. Schaefer III[‡]

High Pressure Physics Laboratory, Southwest Jiaotong University, Chengdu 610031, P. R. China, and Department of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602

*Recei*V*ed October 8, 2007*

The binuclear benzenemanganese carbonyls $(\eta^6$ -C₆H₆)₂Mn₂(CO)_{*n*} ($n = 4, 3, 2, 1$) have been studied density functional theory (DFT) using the B3LYP and BP86 methods. The singlet doubly bridged by density functional theory (DFT) using the B3LYP and BP86 methods. The singlet doubly bridged and unbridged isomers of the saturated $(\eta^6$ -C₆H₆)₂Mn₂(CO)₄ are nearly degenerate, suggesting a highly fluxional system. The global minimum of ($η$ ⁶-C₆H₆)₂Mn₂(CO)₃ is a triplet electronic state—a triply bridged isomer analogous to the known isoelectronic triplet $\text{Cp}_2\text{Fe}_2(\mu\text{-CO})_3$. The doubly bridged singlet structure ($η$ ⁶-C₆H₆)₂Mn₂(CO)($μ$ -CO)₂ lies 9 kcal/mol (B3LYP) or 7 kcal/mol (BP86) above this global minimum. The global minimum of $(\eta^6$ -C₆H₆)₂Mn₂(CO)₂ is a doubly bridged structure with a short manganese—manganese
distance suggestive of a Mn=Mn triple bond. Singlet and triplet structures are found for $(\eta^6$ distance suggestive of a Mn=Mn triple bond. Singlet and triplet structures are found for (η^6) - C_6H_6)₂Mn₂(CO) with a two-electron donor CO group and metal-metal distances suggesting a M-M quadruple bond for the singlet state and a $M \equiv M$ triple bond for the triplet state.

1. Introduction

Benzene manganese carbonyl chemistry dates back to 1961 when Winkhaus, Pratt, and Wilkinson¹ synthesized the cation $(\eta^6$ -C₆H₆)Mn(CO)₃⁺ by the reaction of Mn(CO)₅Br in boiling benzene with aluminum chloride as a strong Lewis acid catalyst. The scope of η^6 -arene manganese carbonyl chemistry was originally found to be limited by the tendency of the benzene ring in $(\eta^6$ -C₆H₆)Mn(CO)₃⁺ to undergo addition reactions with nucleophiles to give η^5 -cyclohexadienylmanganese derivatives.^{2,3} Thus, reaction of $(\eta^6$ -C₆H₆)Mn(CO)₃⁺ with LiAlH₄ was found to give $(\eta^5$ -C₆H₇)Mn(CO)₃ rather than a benzene manganese carbonyl derivative (Figure 1).

The scope of η^6 -arene manganese carbonyl chemistry was extended significantly approximately 30 years later when Eyman and co-workers $4-6$ found that use of hexamethylbenzene rather than unsubstituted benzene suppressed nucleophilic addition to give cyclohexadienylmanganese derivatives. Thus, a greater variety of manganese carbonyl derivatives with *η*⁶ -arene ligands could be prepared. Particularly important among these η^6 hexamethylbenzene manganese carbonyl derivatives is the dimer ($η$ ⁶-Me₆C₆)₂Mn₂(CO)₂(μ -CO)₂ (Figure 1), which is isoelectronic with η^5 -Cp₂Fe₂(CO)₂(μ -CO)₂, which has been known for more

Figure 1. Alternative reduction pathways of $(\eta^6$ -arene) $Mn(CO)_{3}^+$ cations to give *η*⁵-cyclohexadienyl derivatives (a: $\overline{R} = H$) or binuclear (*n*⁶-arene). Mn₂(CO), derivatives (b: $\overline{R} = M$ e) binuclear (η^6 -arene)₂Mn₂(CO)₄ derivatives (b: R = Me).

than 50 years⁷ and is a very important synthon in cyclopentadienyliron carbonyl chemistry.

An important aspect of the chemical reactivity of η^5 - $Cp_2Fe_2(CO)_4$ is its decarbonylation to give unsaturated derivatives. Thus, a major product from the photolysis of η^5 - $\text{Cp}_2\text{Fe}_2(\text{CO})_4$ is the triply bridged triplet $\hat{\eta}^5$ - $\text{Cp}_2\text{Fe}_2(\mu\text{-CO})_3$, which can be considered to have an Fe=Fe double bond of *σ* + 2/2 π -type analogous to the O=O double bond in O₂.⁸ In addition further decarbonylation of n^5 -Cp_cFe₂(CO)₄ in a low addition, further decarbonylation of η^5 -Cp₂Fe₂(CO)₄ in a low temperature matrix⁹ appears to give a dicarbonyl $Cp_2Fe_2(CO)_2$. A related dicarbonyl $Cp_2Fe_2(CO)_2$ is a probable intermediate in the pyrolysis¹⁰ of η^5 -Cp₂Fe₂(CO)₄ at around 100 °C to give the very stable tetramer η^5 -Cp₄Fe₄(μ ₃-CO)₄. Such unsaturated

10.1021/om701007h CCC: \$40.75 2008 American Chemical Society Publication on Web 08/20/2008

^{*} To whom correspondence should be addressed. E-mail: wanghyxx@ yahoo.com; rbking@chem.uga.edu. † Southwest Jiaotong University.

University of Georgia.

⁽¹⁾ Winkhaus, G.; Pratt, L.; Wilkinson, G. *J. Chem. Soc. (London)* **1961**, 3807.

⁽²⁾ Winkhaus, G. *Z. Anorg. Allgem. Chem.* **1963**, *319*, 404.

⁽³⁾ Kane-Maguire, L. A. P.; Honig, E. D.; Sweigart, D. A. *Chem. Re*V*.* **1984**, *84*, 525.

⁽⁴⁾ Morken, A. M.; Eyman, D. P.; Wolff, M. A.; Schauer, S. J. *Organometallics* **1993**, *12*, 725.

⁽⁵⁾ Schlom, P. J.; Morken, A. M.; Eyman, D. P.; Baenziger, N. C.; Schauer, S. J. *Organometallics* **1993**, *12*, 3461.

⁽⁶⁾ Schlom, P. J. Doctoral Dissertation, University of Iowa, 1990.

⁽⁷⁾ Piper, T. S.; Cotton, F. A.; Wilkinson, G. *J. Inorg. Nucl. Chem.* **1955**, *1*, 165.

⁽⁸⁾ Blaha, J. P.; Bursten, B. E.; Dewan, J. C.; Frankel, R. B.; Randolph, C. L.; Wilson, B. A.; Wrighton, M. S. *J. Am. Chem. Soc.* **1985**, *107*, 4561.

⁽⁹⁾ Kvietok, F. A.; Bursten, B. E. *J. Am. Chem. Soc.* **1994**, *116*, 9807. (10) King, R. B. *Inorg. Chem.* **1966**, *5*, 2227.

binuclear cyclopentadienyliron carbonyls have also been investigated recently by density functional theory. 11

The availability of $(\eta^6\text{-Me}_6C_6)$ ₂Mn₂(CO)₂(μ -CO)₂ provides access to analogous unsaturated binuclear *η*⁶ -hexamethylbenzene manganese carbonyl derivatives through various types of decarbonylation reactions. In order to probe such possibilities, we have investigated such compounds by DFT methods using methods analogous to previous work 11 on unsaturated binuclear cyclopentadienyliron carbonyl derivatives. Benzene rather than hexamethylbenzene manganese carbonyl derivatives were chosen for these DFT studies. This paper presents our results on $(\eta^6$ -C₆H₆)₂Mn₂(CO)_{*n*} ($n = 4, 3, 2, 1$) derivatives. The availability of these results combined with previous research on not only of these results combined with previous research on not only the cyclopentadienyliron derivatives η^5 -Cp₂Fe₂(CO)_n but also isoelectronic cyclobutadienecobalt derivatives¹² $(\eta^4$ -C₄H₄)₂- $Co₂(CO)_n$ ($n = 4, 3, 2, 1$) provides an opportunity to examine the effect of ring size on the preferred types of unsaturated metal carbonyl derivatives in isoelectronic systems.

2. Theoretical Methods

Electron correlation effects were included by employing density functional theory (DFT) methods, which have evolved as a practical and effective computational tool, especially for organometallic compounds.13–20 Two DFT methods were used in this study. The first functional is the hybrid B3LYP method, which incorporates Becke's three-parameter exchange functional (B3) with the Lee, Yang, and Parr (LYP) correlation functional.^{21,22} The second approach is the BP86 method, which marries Becke's 1988 exchange functional (B) with Perdew's 1986 correlation functional.^{23,24} It has been noted that the BP86 method may be somewhat more reliable than the B3LYP method for the type of organometallic systems considered in this paper. $25,26$

The geometries of all of the structures were fully optimized using both the DZP B3LYP and DZP BP86 methods. The harmonic vibrational frequencies were determined at the same levels by evaluating analytically the second derivatives of the energy with respect to the nuclear coordinates. The corresponding infrared intensities were evaluated analytically as well. All of the computations were carried out with the Gaussian 94 program in which the fine grid (75, 302) is the default for evaluating integrals numerically and the tight $(10^{-8}$ hartree) designation is the default for the energy convergence. 27

- (14) Delly, B.; Wrinn, M.; Lüthi, H. P. *J. Chem. Phys.* **1994**, *100*, 5785.
- (15) Li, J.; Schreckenbach, G.; Ziegler, T. *J. Am. Chem. Soc.* **1995**, *117*, 486.
- (16) Jonas, V.; Thiel, W. *J. Phys. Chem.* **1995**, *102*, 8474.
- (17) Barckholtz, T. A.; Bursten, B. E *J. Am. Chem. Soc.* **1998**, *120*, 1926.
(18) Niu, S.; Hall, M. B. Chem. Rev. 2000, 100, 353.
- (18) Niu, S.; Hall, M. B. *Chem. Re*V*.* **²⁰⁰⁰**, *¹⁰⁰*, 353.
- (19) Macchi, P.; Sironi, A. *Coord. Chem. Re*V*.* **²⁰⁰³**, *²³⁸*, 383.
- (20) Carreon, J.-L.; Harvey, J. N. *Phys. Chem. Chem. Phys.* **2006**, *8*, 93.
- (21) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648.
- (22) Lee, C.; Yang, W.; Parr, R. G. *Phys. Re*V*. B* **¹⁹⁸⁸**, *³⁷*, 785.
- (23) Becke, A. D. *Phys. Re*V*. A* **¹⁹⁸⁸**, *³⁸*, 3098.
-
- (24) Perdew, J. P. *Phys. Re*V*. B* **¹⁹⁸⁶**, *³³*, 8822. (25) See especially Fourche, F.; Perdew, J. P. *J. Chem. Phys.* **2006**, *124*, 044103.
- (26) Wang, H.-Y.; Xie, Y.; King, R. B.; Schaefer, H. F. *J. Am. Chem. Soc.* **2006**, *128*, 11376.
- (27) Frisch, M. J. *Gaussian 94, Re*V*ision B.3*; Gaussian Inc.: Pittsburgh, PA, 1995.

For carbon and oxygen, the double- ζ plus polarization (DZP) basis set used here adds one set of pure spherical harmonic d functions with orbital exponents $\alpha_d(C) = 0.75$ and $\alpha_d(O) =$ 0.85 to the Huzinaga-Dunning standard contracted DZ sets and is designated (9s5p1d/4s2p1d).^{28,29} For H, a set of p polarization functions $\alpha_p(H) = 0.75$ is added to the Huzinaga-Dunning DZ sets. For Mn, in our loosely contracted DZP basis set, the Wachters' primitive set is used but augmented by two sets of p functions and one set of d functions. This basis is contracted following Hood et al. and designated (14s11p6d/10s8p3d).^{30,31}

In the search for minima, low magnitude imaginary vibrational frequencies are suspect because the numerical integration procedures used in existing DFT methods have significant limitations.32 Thus, an imaginary vibrational frequency of magnitude less than $100i$ cm⁻¹ should imply that there is a minimum with energy very similar to that of the stationary point in question. In most cases, we do not follow the eigenvectors corresponding to imaginary frequencies less than $100i$ cm⁻¹ in search of another minimum.³³

The optimized geometries from these computations are depicted in Figures 2–5 with all bond distances given in angstroms.

3. Results

3.1. Molecular Structures. 3.1.1. (C₆H₆)₂Mn₂(CO)₄. Four possible isomers of $(C_6H_6)_2Mn_2(CO)_4$, namely doubly CObridged *cis* and *trans* isomers as well as unbridged *cis* and *trans* isomers, were used as starting points for optimizations with the B3LYP and BP86 methods. The optimized structures are shown in Figure 2, and the optimized structural parameters are presented in Tables 1 and 2 for the singlet- and triplet-state isomers, respectively.

Three stable singlet isomers of $(C_6H_6)_2Mn_2(CO)_4$ were obtained (Table 1), namely the *C*2*^h trans*-dibridged isomer **Ia-s**, the C_2 *cis*-dibridged isomer **Ib-s**, and the C_{2h} *trans*-unbridged isomer **Ic-s.** The relative energies of these three singlet isomers were within 5 kcal/mol, suggesting a highly fluxional system. In addition, two triplet isomers of $(C_6H_6)_2Mn_2(CO)_4$ were found, namely the C_s *trans*-dibridged isomer **Ia-t** and the C_1 *cis* doubly bridged isomer **Ib-t** (Table 2). These triplet isomers were significantly higher in energy than any of the singlet isomers of $(C_6H_6)_2Mn_2(CO)_4$. Thus, the lowest energy triplet isomer **Ia-t** was 18.0 kcal/mol (B3LYP) or 30.2 kcal/mol (BP86) above the global minimum singlet isomer **Ia-s**. The *trans* unbridged triplet isomer of $(C_6H_6)_2Mn_2(CO)_4$ **Ic-t** essentially dissociates to $(C_6H_6)Mn(CO)_2$ units upon optimization. The *cis* unbridged isomers of $(C_6H_6)_2Mn_2(CO)_4$ are not stationary points but collapse to the *cis*-dibridged stable isomers **Ib** upon optimization for both the singlet and triplet.

The *cis* doubly bridged isomer **Ib-s** and *trans*-unbridged isomer **Ic-s** have real vibrational frequencies, confirming that they are genuine minima on the respective potential energy surfaces. However, the *trans* doubly bridged isomer **Ia-s** is found to have two very small imaginary vibrational frequencies of $26i$ and $15i$ cm⁻¹ (B3LYP) or $17i$ cm⁻¹ (BP86), which may arise from integration error.

- (31) Hood, D. M.; Pitzer, R. M.; Schaefer, H. F. *J. Chem. Phys.* **1979**, *71*, 705.
	- (32) Papas, B. N.; Schaefer, H. F. *J. Mol. Struct.* **2006**, *768*, 175.
- (33) Xie, Y.; Schaefer, H. F.; King, R. B. *J. Am. Chem. Soc.* **2000**, *122*, 8746.

⁽¹¹⁾ Wang, H. Y.; Xie, Y.; King, R. B.; Schaefer, H. F. *Inorg. Chem.* **2006**, *45*, 3384.

⁽¹²⁾ Wang, H. Y.; Xie, Y.; King, R. B.; Schaefer, H. F. *Organometallics* **2007**, *26*, 1393.

⁽¹³⁾ Ehlers, A. W.; Frenking, G. *J. Am. Chem. Soc.* **1994**, *116*, 1514.

⁽²⁸⁾ Dunning, T. H. *J. Chem. Phys.* **1970**, *53*, 2823.

⁽²⁹⁾ Huzinaga, S. *J. Chem. Phys.* **1965**, *42*, 1293.

⁽³⁰⁾ Wachters, A. J. H. *J. Chem. Phys.* **1970**, *52*, 1033.

 $\frac{4.01}{2.94}$ $lc-S$ Ic-t

Figure 2. Optimized geometries for the $(C_6H_6)_2Mn_2(CO)_4$ stationary points (bond distances are in Å).

Table 1. Bond Distances (in Å), Total Energies (*E* **in Hartree), and Relative Energies (∆***E* **in kcal/mol) for the Singlet (C6H6)2Mn2(CO)4 Structures**

	<i>trans</i> - $(C_6H_6)_2Mn_2(CO)_2(\mu$ -CO) ₂			cis - $(C_6H_6)_2Mn_2(CO)_2(\mu$ -CO) ₂		<i>trans</i> - (C_6H_6) ₂ Mn ₂ (CO) ₄	
	$Ia-s(C_{2h})$			Ib-s (C_2)		Ic-s (C_{2h})	
	B3LYP	BP86	exp ⁶	B3LYP	BP86	B3LYP	BP86
$Mn-Mn$	2.685	2.654	2.669	2.685	2.658	2.974	2.920
$Mn-C$ (bridge)	1.974	1.972	1.963	1.972	1.971		
				1.987	1.982		
$Mn-C$ (terminal)	1.788	1.770	1.770	1.802	1.782	1.791	1.777
$C-O$ (bridge)	1.195	1.208	1.191	1.194	1.206		
$C-O$ (terminal)	1.171	1.187	1.159	1.165	1.181	1.172	1.187
energy	3220.06140	3220.51044		3220.05884	3220.50629	3220.06182	3220.50260
ΔE	0.3	0.0		1.9	2.6	0.0	4.9
imag freq	26i, 15i	17i		none	none	none	none

The Mn-Mn distances predicted for the singlet doubly bridged isomers $(\eta^4$ -C₆H₆)₂Mn₂(CO)₂(μ -CO)₂, namely **Ia-s** and **Ib-s**, fall in the range 2.685-2.654 Å and are shorter than the 2.974 Å (B3LYP) and 2.920 Å(BP86) distance for the unbridged Mn-Mn single bond in **Ic-s**. The Mn-Mn distances in the *cis* doubly bridged triplet isomers **Ib-t** is 2.774 Å (B3LYP) and 2.909 Å(BP86), which is about 0.1 Å (B3LYP) or 0.2 Å (BP86) longer than the Mn-Mn distance in the corresponding dibridged singlet isomers **Ib-s**. However, the Mn-Mn distance in the trans-dibridged triplet isomer **Ia-t** is shorter than in the corresponding dibridged singlet isomers **Ia-s** by 0.06 Å.

X-ray diffraction⁶ indicates the known hexamethylbenzene derivative (*η*⁶ -Me6C6)2Mn2(CO)4 to have a *trans* doubly bridged

structure very similar to structure **Ia-s** (Figure 2), predicted by DFT to be the global minimum for the benzene analogue $(\eta^6$ -C₆H₆)₂- $Mn_2(CO)_4$. The experimental Mn-Mn distance⁶ of 2.669 Å found for $(\eta^6\text{-Me}_6C_6)_{2}\text{Mn}_2(CO)_4$ is close to the Mn-Mn distance of 2.685 Å (B₃I VP) or 2.654 Å (BP86) predicted for **J**₂₅ (Table 1) 2.685 Å (B3LYP) or 2.654 Å (BP86) predicted for **Ia-s** (Table 1). In addition, the experimental Mn-C and C-O distances found in the X-ray structure of $(\eta^6\text{-Me}_6C_6)$ ₂Mn₂(CO)₄ are close to those predicted by DFT for **Ia-s**.

3.1.2. $(C_6H_6)_{2}Mn_2(CO)_{3}$. Isomers of $(C_6H_6)_{2}Mn_2(CO)_{3}$ having three, two, or one bridging CO groups have been studied (Figure 3 and Tables 3 and 4). The singly bridged isomer (C_6H_6) ₂Mn₂(CO)₂(μ -CO) was found to collapse to the triply

Table 2. Bond Distances (in Å), Total Energies (*E* **in Hartree), and Relative Energies (** ΔE **in kcal/mol) for the Triplet (** C_6H_6 **)₂Mn₂(CO)₄ Structures**

		trans- $(C_6H_6)_2Mn_2(CO)_2(\mu$ -CO) ₂		cis - (C_6H_6) ₂ Mn ₂ (CO) ₂ $(\mu$ -CO) ₂	trans- (C_6H_6) ₂ Mn ₂ (CO) ₄	
	$Ia-t(C_s)$			Ib-t (C_1)	Ic-t (C_{2h})	
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
$Mn-Mn$	2.627	2.597	2.774	2.909	4.012	3.948
$Mn-C$ (bridge)	2.036	1.985	2.025	2.069		
	1.973	1.919	1.958	1.961		
			2.308	2.052		
			1.809	1.898		
$Mn-C$ (terminal)	1.796	1.788	1.810	1.815	1.799	1.787
	1.944	1.879	1.828	1.788		
$C-O$ (bridge)	1.192	1.210	1.193	1.208		
			1.185	1.211		
$C-O$ (terminal)	1.170	1.185	1.165	1.182	1.173	1.187
	1.166	1.180	1.166	1.180		
energy	3220.03267	3220.46239	3220.02197	3220.45689	3220.05213	3220.46900
ΔE	18.0	30.2	24.7	33.6		
imag freq	86i, 21i	60i, 8i	none	none	4i	22i, 10i

Table 3. Bond Distances (in Å), Total Energies (*E* **in Hartree), and Relative Energies (∆***E* **in kcal/mol) for the Singlet State (C6H6)2Mn2(CO)3 Stationary Point Structures**

bridged isomer $(C_6H_6)_2Mn_2(\mu\text{-CO})_3$ for both the singlet and triplet electronic states (**IIb** in Figure 3).

The lowest energy structure for (C_6H_6) ₂Mn₂(CO)₃ found by BP86 (Tables 2 and 3) is the triplet-state triply bridged isomer (C_6H_6) ₂Mn₂(μ -CO)₃ (**IIb-t** in Figure 3), which has the D_{3h} symmetry for the central $Mn(\mu$ -CO)₃Mn core. This isomer is found to be a ground-state triplet and to have only very small imaginary vibrational frequencies, namely 34*i* and 22*i* cm⁻¹. For the singlet state, the energy of the triply bridged isomer (C_6H_6) ₂Mn₂ $(\mu$ -CO)₃ (**IIb-s**) is very close to the energy of the doubly bridged isomer $(C_6H_6)_2Mn_2(CO)(\mu-CO)_2$ (IIa-s) by BP86. The triply bridged singlet isomer of (C_6H_6) ₂Mn₂ $(\mu$ -CO)₃ (**IIb-s**) lies 7.7 kcal/mol (BP86) above the triply bridged triplet **IIb-t**, which appears to be the global minimum.

The Mn-Mn bond distance for the doubly bridged singlet state structure **IIa-s** is 2.533 Å (B3LYP) or 2.477 Å (BP86), which is significantly longer than that in the triply bridged singlet structure **IIb-s** (2.387 Å by B3LYP or 2.366 Å by BP86). These Mn=Mn bond distances are all consistent with the double bond required to give both metal atoms the favored 18-electron configuration. The predicted $Mn=Mn$ distance in the triply bridged triplet **IIb-t** of 2.349 Å is also consistent with a double bond giving both metal atoms 18-electron configurations. In this case the Mn=Mn double bond is a $\sigma + 2/2\pi$ bond analogous to the Fe $=$ Fe double bond in the known⁸ triplet state $(\eta^5\text{-Me}_5C_5)_2\text{Fe}_2(\mu\text{-CO})_3$ and the O=O bond in O₂. However, in the doubly bridged triplet **Ha-t** the Mn–Mn distance of 2.606 the doubly bridged triplet **IIa-t** the Mn-Mn distance of 2.606 Å (B3LYP) or 2.570 Å (BP86) is consistent with the single bond, thereby giving each manganese atom a 17-electron configuration. Thus the triplets **IIa-t** and **IIb-t** are fundamentally different since in **IIa-t** the two unpaired electrons are in the 17-electron configurations of the two manganese atoms whereas in **IIb-t** the two unpaired electrons are in the $\sigma + 2/2\pi$ Mn=Mn double bond.

3.1.3. $(C_6H_6)_2Mn_2(CO)_2$. Six structures were optimized for (C_6H_6) ₂Mn₂(CO)₂, namely singlet and triplet doubly bridged structures as well as *trans*-unbridged and *cis*-unbridged structures. However, there are only two types of stationary points for $(C_6H_6)_2Mn_2(CO)_2$ (Figure 4) for both the singlet and triplet structures, since the unbridged structures collapse to the singly bridged isomers $(C_6H_6)_2Mn_2(CO)(\mu\text{-}CO)$ (IIIb-s and IIIb-t).

The probable global minimum for $(C_6H_6)_2Mn_2(CO)_2$ is the singlet C_{2v} structure **IIIa-s** with two symmetrical bridging CO ligands and with insignificant imaginary vibrational frequencies of $26i$ and $23i$ cm⁻¹ (B3LYP) or $26i$ cm⁻¹ (BP86) almost certainly arising from integration errors. The theoretical manganese-manganese distance in **IIIa-s** is only 2.197 Å (B3LYP) or 2.156 Å (B3LYP) consistent with the Mn \equiv Mn triple bond required to give each manganese atom in **IIIa-s** the favored 18-electron rare gas configuration.

The energy of the triplet doubly bridged structure **IIIa-t** is higher than that of the corresponding singlet **IIIa-s** by 5.3 kcal/ mol (B3LYP) or 1.5 kcal/mol (BP86). The Mn=Mn distance

Table 4. Bond Distances (in Å), Total Energies (*E* in Hartree), and Relative Energies (ΔE in kcal/mol) for the Triplet State (C_6H_6)₂Mn₂(CO)₃ **Stationary Structures**

		$(C_6H_6)_2Mn_2(CO)(\mu$ -CO $)_2$	$(C_6H_6)_2Mn_2(\mu$ -CO) ₃				
		IIa-t (C_s)		IIb-t (D_{3h})			
	B3LYP	BP86	B3LYP	BP86			
$Mn-Mn$	2.606	2.570	2.349	2.349			
$Mn-C$ (bridge)	1.992	1.982	1.964	1.960			
$Mn-C$ (terminal)	1.799	1.789					
$C-O$ (bridge)	1.197	1.211	1.192	1.206			
$C-O$ (terminal)	1.168	1.183					
energy	3106.68566	3107.10949	3106.68413	3107.12131			
ΔE	-9.8	0.5	-8.9	-6.9			
imag freq	24i	25i	25i, 7i	34i, 22i			

lla-s

Figure 3. Optimized geometries for $(C_6H_6)_2Mn_2(CO)_3$ (bond distances are in Å).

in **IIIa-t** at 2.300 Å (B3LYP) or 2.305 Å (BP86) is ∼0.1 Å (B3LYP) or \sim 0.15 Å (BP86) longer than the Mn≡Mn distance in **IIIa-s**, consistent with the double bond required to give the manganese atoms in **IIIa-t** the 17-electron configurations expected for a triplet.

The triplet $(C_6H_6)_2Mn_2(CO)_2$ isomer **IIIb-t** with only a single bridging CO group has a significant imaginary vibrational frequency at 100*i* (B3LYP). Following the corresponding normal mode converts the singly bridged triplet **IIIb-t** into the doubly bridged structure **IIIa-t**.

One of the benzene rings in the singlet $(C_6H_6)_2Mn_2(CO)_2$ isomer **IIIb-s** with only a single bridging CO group has an unusual η^6 , η^2 bridging configuration between the two manganese atoms (Figure 4). The six η^6 Mn–C distances to one of the manganese atoms (the "lower" Mn atom in Figure 4) fall in the range 2.07-2.25 Å, whereas the two equivalent η^2 Mn-C distances to the other manganese atom (the "upper" Mn atom in Figure 4) are significantly longer (2.416 Å by B3LYP or 2.359 Å by BP86). This benzene ring may be regarded as semibridging. This isomer **(IIIb-s)** of $(C_6H_6)_2Mn_2(CO)_2$ lies ∼15 kcal/mol above the global minimum **IIIa-s**.

3.1.4. $(C_6H_6)_2Mn_2(CO)$. Optimizations have been carried out on triplet and singlet state $(C_6H_6)_2Mn_2(CO)$ structures in which the single CO group is either bridging or terminal. The triplet unbridged structure of $(C_6H_6)_2Mn_2(CO)$ collapses to the C_s triplet structure **IVa-t**, which has a bridging CO group that is symmetrical (BP86 with Mn-C at 1.962 Å) or nearly symmetrical (B3LYP with Mn-C at 1.926 Å and 2.053 Å). However, the singlet state bridged structure of $(C_6H_6)_2Mn_2(CO)$ collapses to the C_s singlet structure **IVa-s** with a highly

Illa-s

Illa-t

Figure 4. Optimized geometries for (C_6H_6) ₂Mn₂(CO)₂ (bond distances are in Å).

Figure 5. Optimized geometries for (C_6H_6) ₂Mn₂(CO) (bond distances are in Å).

unsymmetrical bridging CO group at 1.822 and 2.483 Å (B3LYP) or 1.839 and 2.407 Å (BP86).

For $(C_6H_6)_2Mn_2(CO)$ the B3LYP and BP86 methods disagree on the relative energies of the triplet structure **IVa-t** and the singlet structure **IVa-s**, with **IVa-t** being lower than **IVa-s** by 16.2 kcal/mol using B3LYP but higher by 2.4 kcal/mol using BP86 (Table 7). The very short Mn-Mn distance of 1.944 Å (B3LYP) or 1.915 Å (BP86) in the singlet isomer **IVa-s** of (C_6H_6) ₂Mn₂(CO) is consistent with the quadruple bond required to give both metal atoms the favored 18-electron configuration. However, this Mn-Mn quadruple bond in **IVa-s** is obviously polarized because of the nonequivalence of the two manganese atoms arising from the highly unsymmetrical bridging carbonyl. The Mn=Mn distance in the triplet state structure **IVa-t** is longer

Table 5. Bond Distances (in Å), Total Energies (*E* **in Hartree), and Relative Energies (∆***E* **in kcal/mol) for the Singlet State (C6H6)2Mn2(CO)2 Structures**

	$(C_6H_6)_2Mn_2(\mu\text{-CO})_2$		$(C_6H_6)(\mu$ -C ₆ H ₆)Mn ₂ (CO) $(\mu$ -CO)		
	IIIa-s (C_{2n})		IIIb-s (C_s)		
	B _{3L} YP	BP86	B3LYP	BP86	
$Mn-Mn$	2.197	2.156	2.384	2.352	
$Mn-C$ (bridge)	1.955	1.949	1.885	1.911	
			2.017	1.968	
$Mn-C$ (terminal)			1.788	1.766	
$C-O$ (bridge)	1.186	1.202	1.189	1.207	
$C-O$ (terminal)			1.168	1.184	
energy	2993.30120	2993.73166	2993.27644	2993.70791	
ΛE	0.0	0.0	15.5	15.0	
imag freq	26i, 23i	26i	28i	31i	

Table 6. Bond Distances (in Å), Total Energies (*E* **in Hartree), and Relative Energies (∆***E* **in kcal/mol) for the Triplet State (C6H6)2Mn2(CO)2 Structures**

		$(C_6H_6)_2Mn_2(CO)(\mu$ -CO)		
IIIa-t (C_2)		IIIb-t (C_s)		
B3LYP	BP86	B3LYP	BP86	
2.300	2.305	2.596	2.485	
1.925	1.930	2.172 2.016	1.906 1.911	
		1.817	1.786	
1.194	1.207			
		1.166	1.183	
2993.29270	2993.72946	2993.29140	2993.68795	
5.3	1.5	6.1	27.4	
none	none	32i, 26i	100i, 33i	
		$(C_6H_6)_2Mn_2(\mu$ -CO) ₂		

Table 7. Bond Distances (in Å), Total Energies (*E* **in Hartree), and Relative Energies (** ΔE **in kcal/mol) for the (** C_6H_6 **)₂Mn₂(CO) Structures**

	(C_6H_6) ₂ Mn ₂ (CO) IVa-s (C_s)		$(C_6H_6)_2Mn_2(\mu$ -CO) IVa-t (C_s)		
	B3LYP	BP86	B3LYP	BP86	
$Mn-Mn$	1.944	1.915	2.345	2.062	
$Mn-C$ (bridge)			1.926	1.962	
			2.053	1.962	
$Mn-C$ (terminal)	1.822	1.839			
$C-O$ (bridge)			1.190	1.200	
$C-O$ (terminal)	1.173	1.187			
energy	2879.87314	2880.30975	2879.89895	2880.30587	
ΛE	0.0	0.0	-16.2	2.4	
imag freq	17i	18i	24i, 16i	28i, 17i	

Table 8. Energies (kcal/mol) for Carbonyl Dissociation and Disproportionation of $(C_6H_6)_2Mn_2(CO)_n$ Derivatives

than that in the singlet **IVa-s** and consistent with the $Mn \equiv Mn$ triple bond required to give each manganese a 17-electron configuration with spin $S = 1$.

3.2. Dissociation Energies. Table 8 reports the energies of the single carbonyl dissociation steps

$$
(C_6H_6)_2Mn_2(CO)_n \to (C_6H_6)_2Mn_2(CO)_{n-1} + CO \quad (1)
$$

In determining these dissociation energies, the fragments were allowed to relax.

The predicted dissociation energy of one CO group from (C_6H_6) ₂Mn₂ $(CO)_4$ (Table 8) is 26.6 kcal/mol (B3LYP) or 35.2 kcal/mol (BP86). Further dissociation of a CO group from $(C_6H_6)_2Mn_2(CO)_3$ to give $(C_6H_6)_2Mn_2(CO)_2$ requires a similar energy of 30.2 kcal/mol (B3LYP) or 35.6 kcal/mol (BP86). These CO dissociation energies are typical for metal carbonyls as indicated by the reported 34 CO dissociation energies of 37 \pm 2, 41 \pm 2, and 25 \pm 2 kcal/mol for Cr(CO)₆, Fe(CO)₅, and Ni(CO)4, respectively.

The next CO dissociation process, namely the $(C_6H_6)_2Mn_2(CO)_2$ dissociation process to $(C_6H_6)_2Mn_2(CO)$ + CO, requires the much higher energy of 58.5 kcal/mol (B3LYP) or 55.8 kcal/mol (BP86). Thus $(C_6H_6)_2Mn_2(CO)_2$ appears to be very stable with respect to extrusion of a carbonyl ligand. This suggests an energy barrier for a pair of manganese atoms to form a bond of formal order higher than three.

The energies of the disproportionation reaction $2(C_6H_6)_2$ - $Mn_2(CO)_n \rightarrow (C_6H_6)_2Mn_2(CO)_{n+1} + (C_6H_6)_2Mn_2(CO)_{n-1}$ (Table 8) indicate that $(C_6H_6)_2Mn_2(CO)_2$ is energetically stable with respect to such disproportionation. However, the analogous disproportionation energy of (C_6H_6) ₂Mn₂(CO)₃ into (C_6H_6) ₂- $Mn_2(CO)_4$ and $(C_6H_6)_2Mn_2(CO)_2$ is small (only 0.3 kcal/mol by the BP86 method) even if the triplet state global minimum for (C6H6)2Mn2(CO)3, namely **IIb-t**, is considered. Nevertheless, dissociation of a triplet state into two singlets is spin forbidden, so triplet $(C_6H_6)_2Mn_2(\mu\text{-CO})_3$ (**IIb-t**) has some chance of being stable under ambient conditions. The disproportionation of the lowest energy singlet structure **IIa-s** of $(C_6H_6)_2Mn_2(CO)_3$ into the global minima of (C_6H_6) ₂Mn₂(CO)₄ and (C_6H_6) ₂Mn₂(CO)₂ is significantly exothermic at -14.2 kcal/mol (B3LYP) or -13.6 kcal/mol (BP86), suggesting that singlet isomers of $(C_6H_6)_2Mn_2(CO)_3$ is not stable thermodynamically.

3.3. Vibrational Frequencies. The harmonic vibrational frequencies and their infrared intensities for all of the (C_6H_6) ₂Mn₂(CO)_n structures have been evaluated by the B3LYP and BP86 methods. Complete reports of the vibrational frequencies and infrared intensities are given in the Supporting Information. These results have been used to determine if a structure is a genuine minimum. In general the vibrational frequencies determined by the BP86 functional have been found to be closer to experiment than those determined by the B3LYP functional.^{35,36}

The predicted ν (CO) frequencies for the $(C_6H_6)_2Mn_2(CO)_n$ $(n = 4, 3, 2,$ and 1) structures are of particular interest, since any future experimental work to detect such species is likely to rely on the relatively strong *ν*(CO) frequencies for initial product characterization. The predicted *ν*(CO) stretching frequencies are listed in Table 9 for all of the $(C_6H_6)_{2}Mn_2(CO)_n$ (*n* = 4, 3, 2, and 1) species investigated in this work. In general, the *ν*(CO) frequencies predicted by the BP86 functional are $60-100 \text{ cm}^{-1}$ lower than those predicted by the B3LYP functional and significantly closer to the anticipated experimental values. For the known $(\eta^6\text{-Me}_6C_6)_{2}Mn_2(CO)_4$ isomer with a *trans* doubly bridged structure similar to **Ia-s** (Figure 2), the experimental $v(CO)$ frequencies are 1854 and 1692 cm⁻¹ in tetrahydrofuran solution as compared with the 1900 and 1747 cm^{-1} values (BP86) or 1976 and 1795 cm^{-1} values (B3LYP) predicted for $(\eta^6$ -C₆H₆)₂Mn₂(CO)₂(μ -CO)₂ (Ia-s: Figure 2). The discrepancy of ~+50 cm⁻¹ between the *ν*(CO) frequencies for (*η*⁶-
C-H-bMn₂(CO) (*μ*-CO) predicted by BP86 and those found C_6H_6)₂Mn₂(CO)₂(μ -CO)₂ predicted by BP86 and those found

⁽³⁴⁾ Ehlers, A. W.; Frenking, G. *Organometallics* **1995**, *14*, 423.

⁽³⁵⁾ Jonas, V.; Thiel, W. J. *Phys. Chem.* **1995**, *102*, 8474.

⁽³⁶⁾ Silaghi-Dumitrescu, I.; Bitterwolf, T. E.; King, R. B. *J. Am. Chem. Soc.* **2006**, *128*, 5342.

Table 9. Metal Carbonyl *ν***(CO) Frequencies (in cm**-**¹) Predicted for** the $(C_6H_6)_{2}Mn_2(CO)_n$ ($n = 4, 3, 2,$ and 1) Isomers^{*a*}

		B3LYP	BP86
$(C_6H_6)_2Mn_2(CO)_4$	Ia-s (C_{2h})	$1795b$ (a _u , 1123)	$1747b$ (a _u , 852)
		1833^b (ag, 0)	1768^b (ag, 0)
		1976 (bu, 1565)	1900 (bu, 1252)
		1983 $(a_g, 0)$	1906 $(a_g, 0)$
	Ib-s (C_2)	1803^b (b, 123)	$1756b$ (b, 853)
		1841^b (a, 2)	1777^b (a, 2)
		1995 (b, 101)	1918 (b, 96)
		2037 (a, 1640)	1958 (a, 1345)
	Ic-s (C_{2h})	1947 $(b_g, 0)$	1879 $(b_g, 0)$
		1961 (bu, 1419)	1910 (bu, 1078)
		1963 $(a_u, 1419)$	1891 (au, 1136)
		1994 $(a_g, 0)$	1923 $(a_g, 0)$
	$Ia-t(Cs)$	1812^b (a'', 1080)	$1735b$ (a'', 819)
		1799^b (a', 47)	1752^b (a', 6)
		1979 (a', 1796)	1905 (a', 1399)
		1995 (a', 154)	1918 $(a', 0)$
	Ib-t (C_1)	$1800b$ (412)	$1725^{\rm b}$ (654)
		1873^b (642)	1745^b (62)
		1990 (191)	1911 (208)
		2027 (1818)	1950 (1347)
$(C_6H_6)_2Mn_2(CO)_3$	$\textbf{IIa-s}$ (C_s)	$1791b$ (a", 1113)	1743^b (a'', 857)
		1822^b (a', 20)	1762^b (a', 11)
		1999 (a', 827)	1929 (a', 664)
	IIb-s (C_2)	1789b (a, 1033)	$1741b$ (a, 782)
		1806^b (b, 713)	$1762^{\rm b}$ (b, 529)
		1866^b (a, 213)	$1796b$ (a, 117)
	$\textbf{IIa-t}$ (C_s)	1793^b (a", 1093)	$1736b$ (a'', 843)
		1803^b (a', 7)	1757^b (a', 3)
		1999 (a', 958)	1928 (a', 789)
	IIb-t (D_{3h})	1828^b (e', 1024)	1768^b (e', 791)
		1855^b (a ₁ ', 0)	1796^b (a ₁ ', 0)
$(C_6H_6)_2Mn_2(CO)_2$	IIIa-s (C_{2v})	$1881b$ (a ₁ ,257)	1812^b (a ₁ ,257)
		1871^b (b ₁ ,1192)	1793^b (b ₁ ,876)
	$IIIb-s(Cs)$	1847 ^b (a', 429)	1766^b (a', 301)
		2011 (a', 1382)	1933 (a', 1077)
	IIIa-t (C_2)	$1840b$ (a, 59)	$1773b$ (a, 40)
		$1811b$ (b, 1283)	$1757^{\rm b}$ (b, 920)
	IIIb-t (C_s)	1835^b (a', 376)	1742^b (a', 304)
		2003 (a', 1652)	1929 (a', 1232)
$(C_6H_6)_2Mn_2(CO)$	IVa-s (C_s)	1964 (a', 922)	1889 (a', 723)
	IVa-t (C_s)	$1839b$ (a', 767)	$1814b$ (a', 642)

^a Infrared intensities are given in parentheses and are in km/mol; infrared *active* CO frequencies are given in bold type. The superscript "b" implies a bridging *ν*(CO) frequency.

experimentally for $(\eta^6\text{-Me}_6C_6)_2Mn_2(CO)_2(\mu\text{-}CO)_2$ may arise from the inductive effect of the six methyl substituents on each benzene ring, which would be expected to lower the *ν*(CO) frequencies significantly.

In transition-metal carbonyl chemistry the *ν*(CO) frequencies of typical symmetrical two-electron donor bridging CO groups are well-known³⁷ to occur 150-200 cm⁻¹ below the ν (CO) frequencies of terminal CO groups in a given type of metal carbonyl derivative. This same trend is found for the $(C_6H_6)_2Mn_2(CO)_n$ ($n = 4, 3, 2,$ and 1) derivatives studied in this work where the bridging *ν*(CO) frequencies fall in the range 1725-1812 cm⁻¹ and the terminal $v(CO)$ frequencies fall in the range $1900-1950$ cm⁻¹ (BP86). Similar observations concerning bridging and terminal *ν*(CO) frequencies were made in previous work with $Cp_2Fe_2(CO)_n$ ($n = 4, 3, 2,$ and 1)¹¹ and $(C_4H_4)_2Co_2(CO)_n$ ($n = 3$, 2, and 1)¹² derivatives.

4. Discussion

Table 10 compares the global minimum structures for $(C_4H_4)_2Co_2(CO)_n$, $Cp_2Fe_2(CO)_n$, and $(C_6H_6)_2Mn_2(CO)_n$ (*n* = 4, 3, 2, and 1) using the BP86 method. Table 10 also includes the formal metal-metal bond orders assuming that the favored 18 electron metal configurations are approached as closely as possible.

Similarly to $(C_4H_4)_2Co_2(CO)_n$ and $Cp_2Fe_2(CO)_n$, each additional bridging CO group for a $(C_6H_6)_2Mn_2(CO)_n$ (*n* = 4, 3, 2, and 1) derivative shortens the Mn-Mn bond distances by roughly 0.1 Å for a given bond order. Furthermore, each unit increase in the formal Mn-Mn bond order is predicted to shorten the Mn-Mn bond distances (BP86) by roughly 0.2 Å , in accord with the known crystal structures of $Cp_2Fe_2(CO)_n$ (*n*) $=$ 4 and 3). The Mn-Mn distances in the structures of (C_6H_6) ₂Mn₂(CO)_n ($n = 4, 3, 2$, and 1) are seen to correlate with the number of bridging CO groups and the formal Mn-Mn bond order required to give both manganese atoms the favored 18 electron configuration (Table 10).

It is instructive to compare the global minimum structures for analogous $(C_4H_4)_2Co_2(CO)_n$, $Cp_2Fe_2(CO)_n$, and $(C_6H_6)_2Mn_2$ - $(CO)_n$ ($n = 4, 3, 2,$ and 1) derivatives as follows:

1. $(\eta^n$ -C_nH_n)₂M₂(CO)₄: The singlet state *trans* doubly bridged derivatives $(\eta^n - C_n H_n)_2 M_2 (CO)_2 (\mu - CO)_2$ analogous to structure **Ia-s** (Figure 2) for $(\eta^6$ -C₆H₆)₂Mn₂(CO)₂(μ -CO)₂ are predicted to be the global minima for all three metals. The corresponding permethylated derivatives $(\eta^n$ -Me_nC_n)₂M₂(CO)₂(μ -CO)₂ have been synthesized for all three metals.

2. $(\eta^n - C_n H_n)_2 M_2 (CO)_3$: In the case of the $(\eta^n - C_n H_n)_2 M_2 (CO)_3$ derivatives there is a major difference between the three metals. For Mn $(n = 6)$ and Fe $(n = 5)$, the global minimum is the triplet-state triply bridged structure $(\eta^n - C_n H_n)_2 M_2(\mu$ -CO)₃ analogous to structure **IIb-t** for $(\eta^6$ -C₆H₆)₂Mn(μ -CO)₃ (Figure 3). The permethylated iron derivative $(\eta^5\text{-Me}_5C_5)_2\text{Fe}_2(\mu\text{-CO})_3$ has been characterized structurally.⁸ However, for the cyclobutadienecobalt carbonyls the corresponding structure ($η$ ⁴-C₄H₄)₂Co₂(μ-

Table 10. Bond Distances (in Å) and Formal Metal–metal Bond Orders for the Global Minima of $(C_4H_4)_2Co_2(CO)_n$ **, Cp₂Fe₂(CO)_{***n***}, and** $(C_6H_6)_2Mn_2(CO)_n$ ($n = 4, 3, 2,$ and 1) Using the BP86 Method

isomer	state	no. of bridging COs	$M-M$	$M-C$	$C-O$	formal M-M bond order
Ib-s			2.499	1.929/1.766	1.195/1.175	
Ia	A'		2.540	1.922/1.745	1.201/1.180	
Ia-s	A_{g}		2.654	1.972/1.770	1.208/1.187	
IIa-s	A_1		2.387	1.946/1.767	1.199/1.174	
Пa			2.264	1.920/1.922	1.198	
$IIb-t$	$\rm{^3A'}$		2.349	1.960	1.206	
IIIa-s	$^{\text{I}}\text{A}_1$		2.188	1.897	1.193	
Шa	A_1		2.120	1.906	1.198	
IIIa-s	'A ₁		2.156	1.949	1.202	
IW b-t			2.220	1.872/1.946	1.198	3 ^a
IVa	A_1		1.998	1.827/2.076	1.196	
IVa-s	A'		1.915	1.839/2.407	1.187	4
		A_{g} 3B_1 $\rm{^3A'}$				

a Since the CO group in this isomer of $(C_4H_4)_2Co_2(CO)$ is a four-electron donor (see text), only a $Co=Co$ triple bond is required to give each metal atom the favored 18-electron configuration.

 CO ₃ lies 5.3 kcal/mol (BP86) above a singlet doubly bridged global minimum $(\eta^4$ -C₄H₄)₂Co₂(CO)(μ -CO)₂.

3. $(\eta^n$ -C_nH_n)₂M₂(CO)₂: The singlet doubly bridged derivatives $(\eta^n - C_n H_n)_2 M_2(\mu - CO)_2$ analogous to structure **IIIa-s** (Figure 3) for $(\eta^6$ -C₆H₆)₂Mn₂(μ -CO)₂ are predicted to be the global minima for all three metals. The iron derivative $(\eta^5$ -C₅H₅)₂Fe₂(μ -CO)₂ is a probable intermediate in the pyrolysis¹⁰ of ($η$ ⁵-C₅H₅)₂Fe₂(CO)₂(μ-CO)₂ to give $(\eta^5$ -C₅H₅)₄Fe₄(μ_3 -CO)₄.

4. $(\eta^n C_n H_n)_2 M_2(CO)$: For Mn $(n = 6)$ and Fe $(n = 5)$ the botal minimum has a two-electron bridging or semibridging global minimum has a two-electron bridging or semibridging carbonyl group and a very short M \equiv M distance (1.9 to 2.0 Å) consistent with a quadruple bond. However, for Co $(n = 4)$ the global minimum has a four-electron bridging carbonyl group and a longer Co \equiv Co distance (2.22 Å by BP86) consistent with a triple bond.

In summary the $(\eta^n - C_n H_n)_2 M_2(CO)_n$ systems of all three metals ($M = Mn$, Fe, Co; $n = 6, 5, 4$, respectively) are analogous for $(\eta^n - C_n H_n) \ge M_2(CO)_4$ with formal $M-M$ single
bonds and $(\eta^n - C_H) \ge M_2(CO)_2$ with formal $M \equiv M$ triple bonds bonds and $(\eta^n - C_n H_n)_2 M_2 (CO)_2$ with formal M=M triple bonds. The significant differences arise for $(\eta^n - C_n H_n)_2 M_2(CO)_3$ where the 18-electron rule predicts a formal $M=M$ double bond. In this case, the iron and manganese systems prefer the triplet structures $(\eta^n - C_n H_n)_2 M_2(\mu - CO)_3$ with an M=M double bond similar to the $O=O$ bond in dioxygen and all three carbonyl groups bridging the pair of metal atoms. However, the cobalt

system prefers a singlet $(\eta^4$ -C₄H₄)₂Co₂(CO)(μ -CO)₂ structure with only two bridging carbonyl groups. This relative destabilization of triplet $(\eta^4$ -C₄H₄)₂Co₂(μ -CO)₃ may relate to a greater mismatch between the local C_3 symmetry of the triply CO bridging system and the local C_4 symmetry of the η^4 -C₄H₄ ring as compared with the local C_n symmetries of the η^5 -C₅H₅ and η^6 -C₆H₆ rings in the iron and manganese complexes, respectively.

Acknowledgment. We are grateful to the China National Science Foundation (Grant No. 10774104) and the U.S. National Science Foundation (Grant Nos. CHE-0451445 and CHE-0716718) for support of this work. We are indebted to Prof. D. Eyman of the University of Iowa for providing us with a copy of the relevant portions of ref 6.

Supporting Information Available: Complete tables of harmonic vibrational frequencies for $(C_6H_6)_2Mn_2(CO)_n$ (*n* = 4, 3, 2, 1) isomers (Tables S1-S15); complete Gaussian reference (ref 27). This material is available free of charge via the Internet at http://pubs.acs.org.

OM701007H

⁽³⁷⁾ Cotton, F. A.; Wilkinson, G. *Ad*V*anced Inorganic Chemistry*, 5th ed.; Wiley: New York, 1988; Chapter 22.