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Summary: Base-free [2-PRy-4-Me-benzenesulfonate) INi(n*-ben-
zyl) complexes (R = 2-OMe-Ph (4a), Cy (4b)) were prepared
and tested for ethylene polymerization. 4a produces low-
molecular-weight polyethylene (M, = 1300) that contains 10
Me branches/10° C and terminal and internal olefin units. The
polymer yield and structure are unaffected by the ethylene
pressure (60—300 psi). 4b is less active than 4a and produces
a polymer with higher M,,, fewer branches, and a higher fraction
of terminal olefin units.

Palladium alkyl complexes that contain o-phosphinoarene-
sulfonate ligands ([PO]") catalyze the copolymerization of
ethylene and polar monomers to linear functionalized polyeth-
ylenes. In-situ-generated and discrete [PO]PdR species copo-
lymerize ethylene with carbon monoxide,' alkyl acrylates,>
a(:rylonitrile,3 vinyl ethers,* vinyl fluoride,” functionalized
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norborenes,® N-vinylpyrrolidinone and N-isopropylacrylamide,’
and copolymerize vinyl acetate with carbon monoxide.® Analo-
gous [PO]NIR species are of interest because nickel catalysts
are often more reactive and are less expensive than palladium
catalysts and thus are more attractive for practical applications.”'°

In-situ-generated [PO]NiR species were reported to oligo-
merize ethylene to C4;—Cyy a-olefins'' and to polymerize
ethylene.”® Rieger showed that discrete (2-PAr,-benzene-
sulfonate)Ni(Ph)(PPhs) complexes (Ar = Ph, 2-Me-Ph, 2-OMe-
Ph) polymerize ethylene to low-molecular-weight (M,, =
1000—4000), moderately branched (15—25 branches/10° C)
polymers in the presence of phosphine scavengers (B(CgFs)3
or Ni(COD),, where COD = 1,5-cyclooctadiene).'> Low activi-
ties were observed in the absence of a scavenger. [PO]NiR
catalysts are inhibited by methyl methacrylate and poisoned by
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methyl acrylate.”'? Similar SHOP-type nickel catalysts that
contain phosphine—enolate, phosphine—phenolate, or related
ligands have been studied extensively.'*"'*

We are interested in base-free [PO]NiR complexes to simplify
mechanistic studies and avoid the use of scavengers, which, in
addition to sequestering L ligands of [POJM(R)(L) species,
might also react with the [PO]~ ligand.'” Here we report the
syntheses of base-free [PO]Ni(;7*-CH,Ph) complexes and their
behavior in ethylene polymerization.

We first prepared [PO-OMe]Ni(Ph)(PPhs) (3; [PO-OMe] ™ =
2-P(2-OMe-Ph),;-4-Me-benzenesulfonate) for use as a bench-
mark PPhs-stabilized catalyst. Following Rieger’s synthesis of
the parent benzenesulfonate analogue,'” the zwitterion [PO-
OMelH (1)'® was deprotonated with NaH to afford Na[PO-
OMe] (2), which was reacted with frans-Ni(PPh3)»(Ph)CI'7 to
afford 3 in 87% yield (Scheme 1). The SIp{'H} NMR spectrum
of 3 contains doublets for the PPhs (6 17.1) ligand and the P(2-
OMe-Ph), unit (6 —4.1) with a large *J,, value (283 Hz)
characteristic of a trans arrangement of the phosphines.

Bazan showed that the reaction of Na[2-PPh,-benzoate],
benzyl chloride, and Ni(COD), produces [x%-P,0-2-PPh,-
CsH4CO,]Ni(CH,Ph) in high yield.'® We used this method to
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Figure 1. Molecular structure of 4a. Hydrogen atoms are omitted.
Selected bond distances (A) and angles (deg): Ni(1)—P(1) 2.163(1),
Ni(1)—0(1) 1.938(3), Ni(1)—C(22) 1.949(4), Ni(1)—C(23) 2.066(4),
Ni(1)—C(24) 2.191(4), S(1)—0(1) 1.499(3), S(1)—0(2) 1.443(3),
S(1)—0(3) 1.446(3); O(1)—Ni(1)—P(1) 99.34(8), P(1)—Ni(1)—C(22)
96.8(1), O(1)—Ni(1)—C(24) 91.7(1), C(22)—Ni(1)—C(24) 71.8(2).

synthesize [PO]Ni(33-CH,Ph) complexes (Scheme 2). The
reaction of 2 with benzyl chloride and Ni(COD), gives [PO-
OMe]Ni(;°>-CH,Ph) (4a) in 29% yield as a deep-red powder.
The analogous reaction of in-situ-generated [PO-Cy]Li ([PO-
Cy]™ = 2-PCy,-4-Me-benzenesulfonate) gives the deep-red
product [PO-Cy]Ni(nS-CHzPh) (4b) in 11% yield after multiple
recrystallizations.

The molecular structures of 4a and 4b were determined by
X-ray diffraction (Figures 1 and 2).'"> Complex 4a features an
approximately square-planar Ni center. The [PO]Ni chelate ring
adopts a boat conformation, with an angle of 129.7° between
the S(1)—O(1)—Ni(1)—P(1) and S(1)—C(1)—C(7)—P(1) planes.

(19) (a) Crystal data for 4a: C28H27N105PS M = 565.24, triclinic, P1,
a=9.566(2) A, b =9.877(2) A c=15.129(4) A, a. = 104.407(4)°, p=
95.245(4)°, y = 112.580(4)°, V = 1250.2(5) A3 Z=2,T=100K, Mo
Ka radiation (0.71073 A), abqorptlon coefficient 0.962 mm™!, 12010
reflections collected, 4416 independent reflections, Riy = 0.0313; R indices
[ > 20()] R1 = 0.0488, wR2 = 0.1136; R indices (all data) R1 = 0.0687,
wR2 = 0.1204. (b) 4b crystallizes with two independent molecules in the
unit cell, which have similar structures; one molecule is shown in Figure
2. Crystal data for 4b 2C26H35N103PS + C;Hg, M = 1126.69, triclinic,
P1,a=10.5243) A, b =14.9414) A, c = 17. 791(5) A, o= 87.493(5)°,
B = 85.024(5)°, y = 81.311(5)°, V = 2753(1) A3, Z=2,T=100K, Mo
Ka radiation (0.71073 A), absorption coefficient 0.868 mm ™', 26 770
reflections collected, 9780 independent reflections, Rin: = 0.0370; R indices
[1 > 20(D] R1 =0.0514, wR2 = 0.0973; R indices (all data) R1 = 0.0877,
wR2 = 0.1075.
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Figure 2. Molecular structure of 4b. Hydrogen atoms are omitted.
Selected bond distances (A) and angles (deg): Ni(1)—P(1) 2.149(1),
Ni(1)—0(1) 1.922(3), Ni(1)—C(1) 1.919(4), Ni(1)—C(2) 2.023(4),
Ni(1)—C(3) 2.260(4), S(1)—0(1) 1.477(3), S(1)—0(2) 1.442(3),
S(1)—0(3) 1.442(3); O(1)—Ni(1)—P(1) 98.10 (8), P(1)—Ni(1)—C(1)
98.9 (1), O(1)—Ni(1)—C(3) 96.1(1), C(1)—Ni(1)—C(3) 69.8(2).

The methoxy group of the axial 2-OMe-Ph ring [O(5)] sits above
an axial coordination site, but the Ni—O distance (Ni(1)—O(5),
3.25 A) is too long for a significant Ni—O interaction.?® The
benzyl group is coordinated in a %* fashion with the methylene
group cis to the phosphine. The Ni—Cemylene distance is ca.
0.24 A shorter than the Ni—Cyno distance, as expected based
on the greater trans influence of the phosphine compared to the
sulfonate ligand and the greater negative charge on the meth-
ylene carbon compared to the o-carbon of the benzyl anion.?’
Similar features were observed for other #°-benzyl nickel
complexes.'®>*? The structure of 4b is similar to that of 4a
except that the [PO]Ni chelate ring in 4b adopts an envelope
conformation, with O(1) lying 0.81 A out of the Ni(1)—P(1)—
C(13)—C(8)—S(1) plane.

The NMR spectra of 4a and 4b show that the 7°-benzyl
structures are retained in solution. The '*C NMR —CH,Ph
resonances (4a, 6 25.8, Jcp = 8 Hz; 4b, 0 18.1, Jcp = 9 Hz)
are typical for 77°-benzyl nickel complexes (0 15—35) and are
downfield from the position expected for 7'-benzyl nickel
complexes (ca. & 10).'®**?* Additionally, the 'Jey value (157
Hz) for the —CH,Ph groups of 4a and 4b is indicative of 7’
coordination. The ambient temperature '*C NMR spectra contain
one set of 2-OMe-Ph resonances for 4a and one set of Cy
resonances for 4b, indicative of fast inversion of the [PO]Ni
rings. Also, the ambient temperature 'H NMR spectra of both
complexes contain one doublet for the —CH,Ph hydrogens (4a,
Jup = 5.0 Hz; 4b, Jyp = 3.5 Hz) and one set of —CH,Ph
resonances, which shows that in both cases the edges of the
benzyl ligand are equivalent on the NMR time scale. These
observations can be accounted for by fast 7°/5'-benzyl isomer-
ization or fast suprafacial shifting of the [PO]Ni unit across the
n’-benzyl ligand.?*<>*
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Ethylene polymerization results for 3, 4a, and 4b at 25 °C
and 60—300 psi of ethylene pressure are summarized in Table
1. Comparison of entry 1 versus 2 and entry 4 versus 5 shows
that 4a is ca. 4 times more active and produces polymers with
slightly higher M, compared to 3. Both 3 and 4a produce
polyethylenes with ca. 10 methyl branches per 1000 carbon
atoms, which corresponds to 0.5—1 Me branch/chain. Longer
branches were not observed by '*C NMR.*® The polymers
produced by 3 and 4a contain terminal and internal olefin units,
with the terminal/internal ratio being higher for 3 than 4a. 'H
and '*C NMR analysis of polymers produced by 3 shows that
the internal olefins are mainly 2-olefins (85%), with small
amounts of 2" -olefins (15%), and that the E/Z ratio is ca. 1/1."%
For the polymers produced by 4a, 67% of the internal olefins
are 2-olefins (E/Z = 1/1). Increasing the ethylene pressure from
60 to 300 psi results in a higher yield and M, for 3 but has
little influence on the performance of 4a (entries 7 and 8). The
polymer microstructures are not influenced by the pressure in
either case. The ethylene polymerization behavior of 4a is very
similar to that of (2-PAr;-benzenesulfonate)Ni(Ph)(PPhs) com-
plexes in the presence of phosphine scavengers.

Comparison of entry 2 versus 3 and entry 5 versus 6 shows
that 4b is ca. 10 times less active but produces polymer with
higher M,, compared to 4a. The polymer produced by 4b is
highly linear (1 Me branch/1000 C) with a high level (91%) of
terminal unsaturation. The small fraction of internal olefins
contains only 2-olefins.

NMR monitoring of the reaction of 4a with ethylene (30
equiv) at 25 °C shows that ethylene is immediately and rapidly
polymerized but that a minimal amount of 4a is consumed,
showing that the initial insertion is slower than subsequent
insertions. For all three catalysts, polymer yields increase by
only a factor of 2—3 when the polymerization time is extended
from 2 to 18 h (entries 1—3 vs 4—6), indicating that significant
catalyst deactivation occurs under these conditions.

These results are consistent with the mechanism in Scheme
3, which is analogous to that established for related (phosphi-
nosulfonamide)nickel catalysts.”® The lack of a pressure de-
pendence of the polymer yield, M,, and microstructure for 4a
suggests that the catalyst resting state is the alkyl olefin adduct
IT and that chain transfer occurs by (-H transfer to metal
followed by associative olefin exchange of III or 5-H transfer
to monomer and olefin exchange of IV. 2,1-Insertion of III
would generate secondary alkyl species V, which can insert
ethylene to form Me branches, undergo chain transfer to form
internal olefins, or undergo further chain walking, leading to
2% olefins.
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situation arises in other unsymmetrical catalysts. It has been proposed that
in such systems chain growth proceeds by isomerization of the more stable
(LL")M(R)(olefin) isomer to the less stable isomer, followed by migratory
insertion. Thus, chain growth in Scheme 3 may occur by isomerization of
cis-P,R-1I to trans-P,R-1II followed by insertion to form I; however, further
studies are required to fully understand the chain growth mechanism in
this system. For discussions of this issue, see refs 13 and 14d and (a) Jenkins,
J. C.; Brookhart, M. J. Am. Chem. Soc. 2004, 126, 5827. (b) Haras, A.;
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Table 1. Ethylene Polymerization Results

entry catalyst P(CyHy) (psi) time (h) yield (g) activity? M,< Me branches Ter./Int.
1¢ 3 60 2 1.2 30 760 9 68/32

2¢ 4a 60 2 5.6 140 1300 11 35/65

34 4b 60 2 0.4 11 2100 1 91/9

4¢ 3 60 18 2.4 6.5 920 7 78/22

5¢ 4a 60 18 9.5 26.3 1200 10 32/68

6 4b 60 18 1.3 3.6 2100 1 91/9

7f_ 3 300 2 2.2 55 1300 12 69/31

8 4a 300 2 6.5 163 1500 11 36/64

“ Polymerization conditions for entries 1—6: Fisher-Porter glass pressure bottle, 20 umol catalyst, 60 psi of ethylene pressure, T = 25 °C, solvent =

25 mL of toluene and 5 mL of CH,Cl, (added to dissolve compound 4a). ” (g of PE)(mmol of Ni)~'

h™'. “ Determined by 'H NMR assuming that each

chain contains one C=C unit. “Number of Me branches per 10° C, determined by '*C NMR. “Ratio of terminal olefins to internal olefins.
/Polymerization conditions for entries 7 and 8: 300 mL glass-lined stainless steel Parr autoclave equipped with a water cooling loop, a thermocouple,
and a magnetically coupled stirrer and controlled by a Parr 4842 controller. Other conditions were the same as entries 1—6.

Scheme 3“

3

Me branches
H & inernal olefins

«R = polymer chain.

The lower polymer yield and M, observed for PPh; complex
3 compared to base-free 4a reflect competitive binding of PPhs

to the active nickel species.'?”'* PPh; may also displace olefin
from III, resulting in the observed lower M), and higher terminal/
internal olefin ratio for 3 versus 4a.>” The lower activity and
higher M, observed for 4b compared to 4a probably reflect the
difference in the trans influence of the diaryl- and dialkylphos-
phino units in these catalysts. The strong trans influence of the
PCy; unit of 4b should disfavor structures in which an alkyl or
hydride ligand is trans to the PCy; unit, raising the barriers for
insertion and chain transfer.'*™® The differences in the overall
electron-donating ability and steric bulk of —PCy, and —PAr,
may also be important.

This work shows that base-free [PO]Ni(n3-benzyl) complexes
are readily accessible and function as single-component ethylene
polymerization catalysts. Studies of the reactions of these and
related [PO]Ni(;7°-benzyl) species with polar monomers are in
progress.
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