

Volume 27, Number 20, October 27, 2008

© Copyright 2008 American Chemical Society

## *Communications*

## Palladium-Catalyzed Arylation and Alkylation of 3,5-Diphenylisoxazole with Boronic Acids via C–H Activation

Jean-Ho Chu,<sup>†</sup> Chin-Chau Chen,<sup>‡</sup> and Ming-Jung Wu<sup>\*,†</sup>

Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, and Graduate Institute of Pharmaceutical Sciences, Kaohsiung Medicinal University, Kaohsiung, Taiwan

Received June 30, 2008

Summary: A method for stoichiometric C-H activation of 3,5diphenylisoxazole (1) using  $Pd(OAc)_2$  as a reagent in acetic acid leading to the isoxazole palladacycle I was described. Ortho aryl- and alkyl-substituted 3,5-diphenylisoxazoles 3a-fand 5a-i were synthesized by the reaction of I with various boronic acids 2a-f and 4a-i, respectively. p-Benzoquinone was found to be the best oxidant and 1,4-dioxane the best solvent for the transmetalation-reductive-elimination step of I with boronic acids.

Isoxazole-containing molecules have received considerable attention, because they are excellent precursors in transforming to a variety of bifunctional compounds<sup>1</sup> and show diverse biological activities.<sup>2</sup> Recently, functionalizations of aryl C–H bonds using organometallic reagents,<sup>3</sup> olefins,<sup>4</sup> peroxides,<sup>5</sup> or diethyl azodicarboxylate<sup>6</sup> catalyzed by transition metals have been investigated intensively.<sup>7</sup> In order to achieve the orthoselective C–H bond functionalization, a functional-group-containing heteroatom, such as a pyridyl, imine, acetyl, or acetoamino group, is required to form a stable metal complex. According to these observations, we anticipate that isoxazole could provide a good anchor for ortho metalation of aromatic rings and would allow us to prepare a variety of multiply substituted isoxazoles. We herein report the ortho arylation and

(5) Zhang, Y.; Feng, J.; Li, C. J. J. Am. Chem. Soc. 2008, 130, 2900–2901.

<sup>\*</sup> To whom correspondence should be addressed. Fax: 886-7-5253909. E-mail: mijuwu@faculty.nsysu.edu.tw.

<sup>&</sup>lt;sup>†</sup> National Sun Yat-sen University.

<sup>\*</sup> Kaohsiung Medicinal University.

<sup>(1) (</sup>a) Nitta, M.; Kobayashi, T. J. Chem. Soc., Perkin Trans. 1 1985, 1401–1406. (b) Bode, J. W.; Carreira, E. M. Org. Lett. 2001, 3, 1587–1590. (c) Tranmer, G. K.; Tam, W. Org. Lett. 2002, 4, 4101–4104. (d) Donati, D.; Ferrini, S.; Fusi, S.; Ponticelli, F. J. Heterocycl. Chem. 2004, 41, 761–766.

<sup>(2) (</sup>a) Talley, J. J.; Brown, D. L.; Carter, J. S.; Craneto, M. J.; Koboldt, C. M.; Masferrer, J. L.; Perkins, W. E.; Rogers, R. S.; Shaffer, A. F.; Zhang, Y. Y.; Zweifel, B. S.; Seibert, K. J. Med. Chem. 2000, 43, 775–777. (b) Giovannoni, M. P.; Vergelli, C.; Ghelardini, C.; Galeotti, N.; Bartolini, A.; Piaz, V. D. J. Med. Chem. 2003, 46, 1055–1059. (c) Li, W. T.; Hwang, D. R.; Chen, C. P.; Shen, C. W.; Huang, C. L.; Chen, T. W.; Lin, C. H.; Chang, Y. L.; Chang, Y. Y.; Lo, Y. K.; Tseng, H. Y.; Lin, C. C.; Song, J. S.; Chen, H. C.; Chen, S. J.; Wu, S. H.; Chen, C. T. J. Med. Chem. 2003, 46, 1706–1715. (d) Malamas, M. S.; Manas, E. S.; McDevitt, R. E.; Gunawan, I.; Xu, Z. B.; Collini, M. D.; Miller, C. P.; Dinh, T.; Henderson, R. A.; Keith, J. C.; Harris, H. A., Jr. J. Med. Chem. 2004, 47, 5021–5040. (e) Soellner, M. B.; Rawls, K. A.; Grunder, C.; Alber, T.; Ellman, J. A. J. Am. Chem. Soc. 2007, 129, 9613–9615.

<sup>(3) (</sup>a) Vogler, T.; Studer, A. Org. Lett. **2008**, 10, 129–131. (b) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. **2008**, 47, 4882–4886. (c) Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. **2008**, 130, 7190–7191. (d) Shi, Z.; Li, B.; Wan, X.; Cheng, J.; Fang, Z.; Cao, B.; Qin, C.; Wang, Y. Angew. Chem., Int. Ed. **2007**, 46, 5554– 5558. (e) Yang, S.; Li, B.; Wan, X.; Shi, Z. J. Am. Chem. Soc. **2007**, 129, 6066–6067. (f) Giri, R.; Maugel, N.; Li, J. J.; Wang, D. H.; Breazzano, S. P.; Saunders, L. B.; Yu, J. Q. J. Am. Chem. Soc. **2007**, 129, 3510–3511. (g) Chen, X.; Li, J. J.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. **2006**, 128, 78–79. (h) Chen, X.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. **2006**, 128, 12634–12635.

<sup>(4) (</sup>a) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc. **2007**, *129*, 9879–9884. (b) Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. **2007**, *129*, 12072–12073. (c) Cai, G.; Fu, Y.; Li, Y.; Wan, X.; Shi, Z. J. Am. Chem. Soc. **2007**, *129*, 7666–7673. (d) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. **2007**, *129*, 11904–11905. (e) Dwight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. **2007**, *9*, 3137–3139. (f) Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. **2006**, *128*, 14047–14049. (g) Xia, J.-B.; You, S.-L. Organometallics **2007**, *26*, 4869–4871.

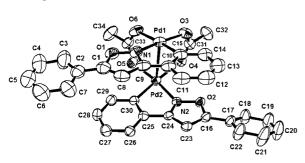



Figure 1. ORTEP drawing of the isoxazole palladacycle I. Selected bond lengths (Å): Pd1-Pd2 = 2.8370(7); Pd1-N1 = 1.990(5); Pd1-C15 = 1.995(6); Pd1-O3 = 2.042(4); Pd1-O6 = 2.176(4); Pd2-N2 = 1.978(7); Pd2-C30 = 2.004(8); Pd2-O4 = 2.137(6); Pd2-O5 = 2.034(5).

 Table 1. Reaction of the Isoxazole Palladacycle I with

 Phenylboronic Acid (2a) in the Presence of Various Oxidants<sup>a</sup>

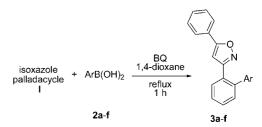
| entry | oxidant <sup>b</sup>            | product | yield (%) <sup>c</sup> |
|-------|---------------------------------|---------|------------------------|
| 1     | none                            | 3a      | 0                      |
| 2     | <i>p</i> -benzoquinone          | 3a      | 66                     |
| 3     | Ag <sub>2</sub> CO <sub>3</sub> | 3a      | 22                     |
| 4     | Ag <sub>2</sub> O               | 3a      | 19                     |
| 5     | AgOAc                           | 3a      | 11                     |
| 6     | $Cu(OAc)_2$                     | 3a      | 11                     |
| 7     | $Cu(OTf)_2$                     | 3a      | 0                      |
| 8     | $Hg(OAc)_2$                     | 3a      | 0                      |
|       |                                 |         |                        |

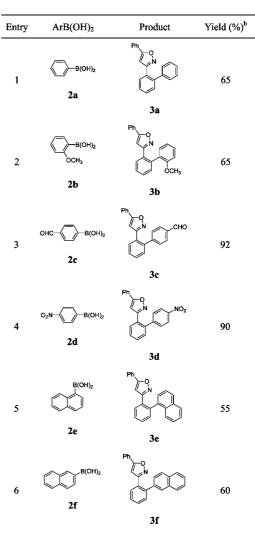
<sup>*a*</sup> Conditions: isoxazole palladacycle I (15.0 mg, 0.02 mmol), phenylboronic acid (**2a**; 5.90 mg, 0.05 mmol), and 1,4-dioxane (2 mL) at reflux temperature for 1 h. <sup>*b*</sup> Two equivalents was used. <sup>*c*</sup> All yields were determined by <sup>1</sup>H NMR using dichloromethane (5  $\mu$ L) as the internal standard.

 Table 2. Reaction of the Isoxazole Palladacycle I with

 Phenylboronic Acid (2a) using *p*-Benzoquinone as the Oxidant in

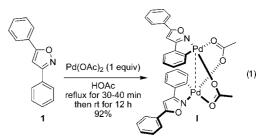
 Various Solvents<sup>a</sup>


| entry | solvent <sup>b</sup> | product | yield (%) <sup>c</sup> |
|-------|----------------------|---------|------------------------|
| 1     | 1,4-dioxane          | 3a      | 66                     |
| 2     | dichloromethane      | 3a      | 50                     |
| 3     | tert-amyl alcohol    | 3a      | 47                     |
| 4     | acetonitrile         | 3a      | 45                     |
| 5     | acetic acid          | 3a      | 11                     |


<sup>*a*</sup> Conditions: isoxazole palladacycle I (15.0 mg, 0.02 mmol), phenylboronic acid (**2a**; 5.90 mg, 0.05 mmol), *p*-benzoquinone (4.10 mg, 0.04 mmol) at reflux temperature for 1 h. <sup>*b*</sup> Two milliliters was used. <sup>*c*</sup> All yields were determined by <sup>1</sup>H NMR using dichloromethane (5  $\mu$ L) as the internal standard.

alkylation of 3,5-diphenylisoxazole (1) with organoboronic acids using palladium as a catalyst.

3,5-Diphenylisoxazole (1) was prepared by the method of *Click chemistry*.<sup>8</sup> To confirm our hypothesis that isoxazole could provide a good anchor for ortho metalation of aromatic rings, compound 1 was treated with a stoichiometric amount of palladium acetate in acetic acid to give the isoxazole palladacycle I in 92% yield (eq 1). Other solvents, such as dichloromethane, 1,2-dichloroethane, acetonitrile, *tert*-amyl alcohol, and 1,4-dioxane, did not give the complex I. The structure of complex I was unambiguously determined by a single-crystal X-ray crystallography analysis, as shown in Figure 1. Two interesting phenomena were found in the structure of isoxazole palladacycle I: (a) the phenyl and isoxazole rings on the metal center of I are parallel in space and located in opposite directions in a head-to-tail structure and (b) the  $\pi$ - $\pi$  interactions between


Table 3. Arylation of the Isoxazole Palladacycle I with Boronic Acids<sup>a</sup>





<sup>*a*</sup> Conditions: ArB(OH)<sub>2</sub> (2.5 equiv), *p*-benzoquinone (2 equiv), 1,4-dioxane, reflux for 1 h. <sup>*b*</sup> The isolated yield was determined by three runs.

these two aromatic rings appear to play a critical role in reducing the Pd–Pd distance (2.837 Å).<sup>9</sup>



The palladium-catalyzed Suzuki-type cross-coupling reaction is a powerful method for carbon–carbon bond formation.<sup>10</sup> To test the C–C bond formation reaction, the isoxazole palladacycle I was treated with 2.5 equiv of phenylboronic acid (**2a**) in the

<sup>(6)</sup> Yu, W. Y.; Sit, W. N.; Lai, K. M.; Zhou, Z.; Chen, A. S. C. J. Am. Chem. Soc. 2008, 130, 3304–3306.

<sup>(7) (</sup>a) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698–1712. (b) Jia,
C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633–639. (c)
Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077–1101. (d)
Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174–238.
(e) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172–1175.

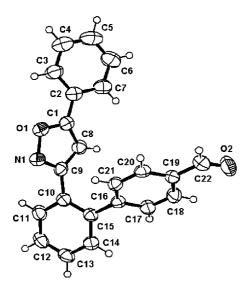
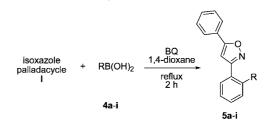



Figure 2. ORTEP drawing of compound 3c.

presence of 2 equiv of *p*-benzoquinone in various solvents for 1 h. The relative yields of **3a** by different solvents were determined by proton NMR using dichloromethane as the internal standard. The results are summarized in Table 1. 1,4-Dioxane appears to be the best solvent in this C-C bond formation reaction. In addition to *p*-benzoquinone, various oxidants were also employed in this study. The results are shown in Table 2, which indicated that *p*-benzoquinone is the best oxidant for the reaction of **I** with phenylboronic acids.<sup>11</sup>

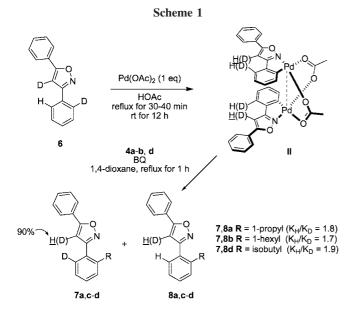
According to the test results, the isoxazole palladacycle I was then reacted with 2.5 equiv of phenylboronic acid in the presence of 2 equiv of *p*-benzoquinone in refluxing 1,4-dioxane for 1 h and the product **3a** was isolated after column chromatography in 65% yield. Other arylboronic acids bearing electron-donating or -withdrawing groups at the phenyl ring were used in this study. The coupling adducts **3b**-**f** were obtained in 55–92% yields (Table 3). The structure of the product **3c** was further confirmed by a single-crystal X-ray crystallography analysis, as shown in Figure 2. The results show that the boronic acids having electron-withdrawing subsituents on the phenyl ring gave better yields than those with electron-donating groups.

In the alkylation reactions of isoxazole palladacycle **I**, we found that reaction of **I** with the primary alkylboronic acids  $4\mathbf{a}-\mathbf{d}$  in refluxing 1,4-dioxane for 2 h gave the alkylating adducts  $5\mathbf{a}-\mathbf{d}$  in 45–65% yields. When secondary alkylboronic acids such as isopropyl-, cyclopentyl-, and cyclohexylboronic acids ( $4\mathbf{e}-\mathbf{g}$ ) were employed under the described reaction conditions, no desired alkylating adduct was obtained. However, reactions of **I** with cyclopropyl- and cyclobutylboronic acids ( $4\mathbf{h}$ ,i) gave the alkylating adducts  $5\mathbf{h}$ ,i in 40% and 30% yields,


(8) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210–216.
(9) For related papers on Pd-Pd bond formation, please see: (a) Fafard, C. M.; Adhikari, D.; Foxman, B. M.; Mindiola, D. J.; Ozerov, O. V. J. Am. Chem. Soc. 2007, 129, 10318–10319. (b) Adrian, R. A.; Zhu, S.; Powell, D. R.; Broker, G. A.; Tiekink, E. R. T.; Walmsley, J. A. Dalton Trans. 2007, 4399–4404. (c) Vuoti, S.; Haukka, M.; Pursiainen, J. Acta Crystallogr. 2007, C63, m601–m603.

(10) (a) Miyaura, N.; Yamada, K.; Suzuki, A. *Tetrahedron Lett.* 1979, 20, 3437–3440. (b) Miyaura, N.; Suzuki, A. *Chem. Rev.* 1995, 95, 2457–2483. (c) Suzuki, A. *J. Organomet. Chem.* 1999, 576, 147–168.

(11) The oxidant, *p*-benzoquione, was found to promote reductive elimination in metal-catalyzed coupling reactions; please see: (a) Albeniz, A. C.; Espinet, P.; Martin-Ruiz, B. *Chem. Eur. J.* **2001**, *7*, 2481–2489. (b) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. *J. Am. Chem. Soc.* **2002**, *124*, 1586–1587. (c) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. **2005**, *127*, 6970–6971.


 Table 4. Alkylation of the Isoxazole Palladacycle I with

 Alkylboronic Acids<sup>a</sup>



| Entry | RB(OH) <sub>2</sub>         | Product                                                                                            | Yield (%) <sup>b</sup> |
|-------|-----------------------------|----------------------------------------------------------------------------------------------------|------------------------|
| 1     | —В(ОН) <sub>2</sub><br>4а   | Ph O<br>5a                                                                                         | 65                     |
| 2     | B(OH) <sub>2</sub><br>4b    | 5b                                                                                                 | 65                     |
| 3     | B(OH) <sub>2</sub><br>4c    | $ \begin{array}{c} Ph & \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & \\ & 5c \end{array} $ | 55                     |
| 4     | <                           | ∑°<br>N<br>5d                                                                                      | 45                     |
| 5     | }_−в(ОН) <sub>2</sub><br>4е | Ph o<br>N<br>Se                                                                                    | trace <sup>c</sup>     |
| 6     | →−B(OH)₂ 4f                 | Ph<br>Ph<br>Sf<br>Ph                                                                               | trace <sup>c</sup>     |
| 7     | В(ОН) <sub>2</sub><br>4g    | yo<br>yn<br>5g                                                                                     | trace <sup>c</sup>     |
| 8     | ⊳—в(Он)₂<br>4h              | Phyon<br>N<br>Sh                                                                                   | 40                     |
| 9     | →-B(OH) <sub>2</sub> 4i     |                                                                                                    | 30                     |

<sup>*a*</sup> Conditions: RB(OH)<sub>2</sub> (2.5 equiv), *p*-benzoquinone (2 equiv), 1,4-dioxane, reflux for 2 h. <sup>*b*</sup> Isolated yield was determined by three runs. <sup>*c*</sup> Analyzed by GC-MS spectroscopy.



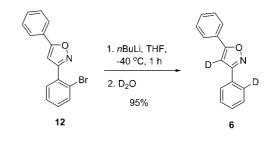
respectively (Table 4). The failure to obtain the coupling adducts by isopropyl-, cyclopentyl-, and cyclohexylboronic acids could be due to the steric hindrance or poor stability of the secondary carbanion. However, cyclopropyl- and cyclobutylboronic acids, having significant sp<sup>2</sup> carbon character, would allow the reaction to take place smoothly.<sup>12</sup>

To determine the isotope effect of the C–H bond activation of 3,5-diphenylisoxazole (1) by palladium, dideuterio-3,5diphenylisoxazole (6) was synthesized from 3-phenyl-5-(2bromophenyl)isoxazole by treating it with *n*BuLi, followed by quenching with D<sub>2</sub>O (see the Supporting Information).<sup>13</sup> Treatment of compound 6 with 1 equiv of palladium acetate in refluxing acetic acid gave the palladacycle **II**. The palladacycle **II** was then reacted with boronic acid **4a** to give the product as a mixture of **7a** and **8a**. The ratio of **7a** to **8a** was determined to be 1.8 using <sup>1</sup>H NMR analysis by measuring the integration of the numbers of hydrogen at the ortho position. Similar results

(12) Molander, G. A.; Yun, C. S. *Tetrahedron* **2002**, *58*, 1465–1470, and references cited therein.

were observed by the reaction of **II** with boronic acids **4b**,**d** (Scheme 1). This indicated that the value of  $K_{\rm H}/K_{\rm D}$  for the C–H bond activation averages 1.8.

We have also attempted to use a catalytic amount of palladium acetate to carry out the C–H activation and C–C bond formation of 3,5-diphenylisoxazole (1). Thus, compound 1 was treated with 2.5 equiv of (2-methoxyphenyl)boronic acid (2b) and 2.5 equiv of *p*-benzoquinone in the presence of 5 mol % of Pd(OAc)<sub>2</sub> in refluxing 1,4-dioxane; no desired product was obtained, and most of the starting materials were recovered.


In summary, we have developed a protocol for the arylation and alkylation of 3,5-diphenylisoxazole (1) through a stepwise C-H activation/C-C bond forming reaction pathway. Further mechanistic investigation and the development of catalytic reaction pathways are currently under investigation in our laboratory and will be reported in due course.

**Acknowledgment.** We thank the National Science Council of the Republic of China for financial support.

**Supporting Information Available:** Text and figures giving experimental procedures and characterization data for all compounds and CIF files giving crystallographic data for compounds **I** and **3c**. This material is available free of charge via the Internet at http://pubs.acs.org.

## OM800606C

<sup>(13)</sup> Compound **6** was prepared according to the following reaction conditions: to a stirred solution of compound **12** (2.33 g, 7.75 mmol) in THF (50 mL) was added dropwise a solution of *n*-butyllithium (19.4 mL of 1.6 M in hexane, 31.0 mmol) at-40 °C. The resulting reaction mixture was stirred at this temperature for 1 h and quenched with  $D_2O$  (14 mL) to give the desired compound **6** (1.64 g, 7.35 mmol) in 95% yield.

