SHORT COMMUNICATIONS

National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, P.R. China

Two new terpenoid glucosides from Clerodendrum serratum

JI-CHUN CHEN and QI-XIU ZHU

Clerodendrum serratum (Verbenaceae), named "san dui lie" in China, a small shrub with fragrant flowers found widely in forests in the south of China, has been used as a folk medicine in Yunna for the treatment of many diseases, such as hepatitis, malaria [1]. Several works had been done with Clerodendrum serratum [2-4]. In our research, we isolated two new compounds from the CH₂Cl₂ and EtOAc extracts, 5-hydroxyl-10-O-cinnamoyloxy-tarennoside (1) and 17-aldehedeyloxy-19-β-D-glucopranosyloxy-lab- 8,13(E)-dien-15-iol (2), which, to the best of our knowledge, are described as natural products for the first

Compound 1 has the molecular formular $C_{25}H_{28}O_{11}$ based on FAB-MS data $(m/z 511[M + Li]^+; 525[M + Na]^+)$ and on counting its ¹H and ¹³C NMR DEPT spectra. The IR spectrum of compound 1 shows that the typical absorption of the iridoid enol ether system at 1630 cm⁻¹ [5], of an aldehyde function at 1661 cm⁻¹ and of an ester function at 1710 cm⁻¹. The UV maximum at 301 nm revealed the presence of an α , β unsaturated ester (β -aromatic substituted) [6]; a shoulder at 241 nm was attributed to a conjugated ether system [5]. The ¹H NMR spectrum of 1 shows the presence of a cinnamoyl moiety with one trans-olefinic system (δ 6.44 and δ 7.61 J = 16), and shows the signals of one glucose moiety, which revealed sugar protons H-1' at δ 4.60 (d J = 8) and H-6' at δ 3.56 and δ 3.70 (brd). Compared with the ¹H NMR of tarennoside, theveside and the viridoside [7–8], the singlet at δ 7.36 could be attributed to H-3 in an iridoid substituted at C-5, the signals at δ 5.76 and δ 2.78 (brd) could be assigned to H-1 and H-6. The other signlet signals δ 5.73 (m) and δ 9.19 (s) should be assigned to H-7 and H-11 (the proton of a carbon aldehyde group). These were in good agreement with the document. The only difference lies in the signals of H-10. Comparing the chemical shifts of H-10 and C-10 of 1 with similar compounds like isoscrophularioside, melittoside and 10-O-cinnamoylmelittoside [9-11], we concluded that the cinnamoyl was attached to C-10, and this was identified by the HMBC NMR (O=C related to H-10). The ¹³C NMR spectrum of **1** shows the presence of 25 carbon atoms. The DEPT spectrum of 1 shows 16 methines, 3 methylenes and 9 quarter carbons. Nine of them could be ascribed to the cinnamoyl unit and six carbons assigned to the glucose moiety (Table 1). Two absorptions at δ 164.1 and δ 125.84 could be assigned to C-3 and C-4. The typical signals of a C-4 substituted iridoid glucoside with a carbonaldehyde function at C-4 and a hydroxyl function at C-5. This conclusion was supported by the signals at δ 192.6, δ 75.30 and δ 9.19 (s). Two signals at δ 100.28 and δ 97.36 were attributed to C-1' and C-1, respectively, on the basic of published values [5]. The signals at δ 136.55 and δ 131.58 were assigned to C-8 and C-7. Compound 1 yielded cinnamaric acid by alkaline hydrolysis, which ascertained further the presence of a cinnamoyl group in 1.

Compound 2 has molecular formular C₂₆H₄₂O₈ by FAB-MS data $(m/z \ 469[M + Li]^+; \ 485[M + Na]^+)$ and on counting its ¹H and ¹³C NMR DEPT spectra. The ¹³C

Table 1: ¹³C NMR (400 MHz) of compounds 1 and 2 (TMS as int, standard)

С	1*	2**	C	1*	2**
1	97.3	36.6	14(3")	78.3	126.3
2		18.6	15(4")	71.4	59.0
3	164.1	36.1	16(5")	77.4	16.3
4	125.8	38.8	17(6")	62.2	193.1
5	75.3	52.5	18(α)	118.5	27.9
6	45.8	19.1	19(β)	146.1	73.0
7	131.5	25.7	20(O=C)	166.2	20.8
8	136.5	132.3	1'	135.5	104.2
9	56.7	167.5	2'	129.9	74.7
10	62.9	41.5	3'	129.2	76.9
11	192.6	25.4	4'	130.7	71.6
12(1")	100.2	43.9	5′	129.2	77.9
13(2")	74.4	136.9	6′	129.9	62.8

Assigned by 1H/1HCOSY and HMBC NMR; Solvent CD3OD

Table 2: ¹H NMR (400 MHz) of compounds 1 and 2 (TMS as int. standard)

Н	1*	2**	Н	1*	2**
1α(1)	5.76 s	0.93 m [!]	15		4.06 d 6.4
$1\beta(3)$	7.36 s	1.85 m!	16		1.68 s
$2\alpha(6)$	2.78 brd	1.35 m!	17		10.05 s
$2\beta(7)$	5.73 m	1.73 m!	18		1.09 s
$3\alpha(9)$	3.06 s	0.97 m!	19		3.99 d 9.6
$3\beta(10)$	4.72 m	2.01 m!			3.34 d 9.2
5(11)	9.19 s	1.26 m!	20		1.03 s
$6\alpha(\alpha)$	6.44 d 16	2.03 m!	1'	4.60 d 8.0	4.23 d 7.6
$6\beta(\beta)$	7.61 d 16	1.54 m!	2'	3.16 t 8.4	3.21 t 7.6
$7\alpha(2'')$	7.31 d 7.2	1.53 m!	3′	3.24 m	3.29 m
$7\beta(3'')$	7.50 m [!]	2.03 m!	4'	3.19 t 4.8	3.12 m
$11\alpha(4'')$	7.50 m [!]	1.90 m!	5′	3.32 m	3.40 m
11β		1.47 m!	6'	3.70 dd 12.0	3.81 d 10.4
12α		2.28 ddd		3.56 dd	3.69 brd
12β		2.10 ddd		12, 6.4	
14		5.42 t 6.4		•	

^{*}Assigned by ¹H/¹HCOSY and HMBC NMR; Solvent CD₃OD.

! Overlapping signals

NMR spectra (DEPT, see Table 1) shows signals for 3 CH₃, 10 CH₂, 8 CH and 5 quartearbons. Comparison of the chemical shifts with literature data [4, 12, 13] confirmed the presence of a Labdane with a Δ 13, 14 unsaturated side-chain, a free hydroxyl at C-15, an aldehyde function at C-17 and a glucose attached to C-19. The double bond at C-13 was shown to be E-configurated by comparison of the chemical shifts of C-12 and C-16 (δ 43.9) and 16.3) with similar compounds [12, 13]. And if the double bond would be Z-configurated, the chemical shift of C-12 would be shifted upfield to about δ 35.6, as well as C-16 be shifted downfield to about δ 23.7 [14]. The 2D-1H/1H COSY, HMQC and HMBC spectra allowed unambiguous assignment of all proton signals in the ¹H NMR spectrum (Table 2). The absolute stereochemistry of 2 was established by NOSY NMR. It shows that the pro-

270 Pharmazie **56** (2001) 3

Assigned by HMBC, HMOC and NOSY NMR: In C3D6O

Assigned by HMBC, HMQC and NOSY NMR; In C3D60

SHORT COMMUNICATIONS

tons of CH₃-20 have the NOE information with CH₂-19, not with CH₃-18. Thus, the structure of 2 was determined as 17-aldehedeyloxy-19-β-D-glucopranosyloxy-lab-8,13(E)-dien-15-iol.

Experimental

1. Equipment

M.p.s.: X4-micrope (The fourth instrument of Beijing) uncorr. Optical rotation: polarimeter 241 (Perkin Elmer) solvent MeOH. IR-spectra were recorded on Nicolet-5DX. IR spectrometer. ¹H, ¹³C and 2D NMR spectra were recorded at 400 Mhz, solvent CD₃OD and C₃D₆O, using TMS as int. standard. FAB-MS was determined on a ZAB-HS mass spectrometer.

2. Plant material

The plant material was collected from Longling county Yunna province of P.R. China and identified by Prof. Ru-Neng Zhao, Faculty of Pharmacy, Lanzhou Medical colleage of P.R. China. A voucher specimen (no. cler1) has been deposited at the Lab. of Natural Products, Chemistry Department, Lanzhou University, Lanzhou, P.R. China.

3. Extraction and isolation

Air-dried and powdered leaves of C. serratum (1 kg) were exhaustively extracted with EtOH at RT. The extract was concentrated under reduced pressure. The residue was supported in H₂O, extracted with petroleum, CH₂Cl₂ and EtOAc, respectively. The extract of CH₂Cl₂ and EtOAc (30 g) was obtained and chromatographed on a silica gel column (200-300 mesh 350 g) with a CHCl3-MeOH gradient as the developing solvent. Combination of the appropriate fractions (monitored by TLC analysis) led to four fractions. From fr.1 (CHCl3-MeOH 20:1) a crude oily material was received and purified by rechromatography on a silica gel column (300-400 mesh) with $C_6H_6-C_3H_6O-H_2O$ (4:1:0.05) twice, to give compounds 1 (30 mg) and 2 (50 mg). The other fractions have earlier been studied [4].

4. Alkaline hydrolysis

Compounds 1 and 2 (10 mg each) were refluxed for 12 h in 5% KOH-MeOH (3 ml). After extraction with EtOAc, the aq. of 1 and 2 were examined for glucose by PC. Then 1% HCl was added to 1 up to pH 2 and the solution was further extracted with CHCl₃. The CHCl₃ solution was evaporated to dryness and the residue was identified as cinnamaric acid by directed comparison with an authentic sample. The sugar gained from the aq. (1 and 2 were silylated in pyridine with hexamethyldisilazane and trimethylchlorosilane for 2 min. A GC of the trimethylsilyl derivatives showed that they had the same R_f as an authentic sample.

5. 5-Hydroxyl-10-O-cinnamoyltarennoside (1)

White crystals (CHCl3/MeOH) 10:1). m.p. 113–115 °C UV $_{\lambda}^{MeOH}$: 301, 241. IR (KBr, cm⁻¹): 3357(OH); 1710, 1661 (O=C-C=C); 1630 (C=C-O); 1604, 1515 (C=C); 1076, 1023 (glu); 857; 834. FAB-MS m/z: 511 $[M + Li]^+$; 527 $[M + Na]^+$; 342 $[M-glu]^+$. ¹H and ¹³C NMR: Tables.

6. 17-Aldehydlyloxy-19-β-D-glucopyranosyloxy-lab-8,13(E)-dien-15-iol (2)

White gum. UV $_{\lambda}^{MeOH}$: 243. IR (KBr, cm $^{-1}$): 3420, 3318 (OH); 1654 (O=C-C=C); 1435; 1376; 1158; 1073, 1026 (glu); 926. FAB-MS m/z: $469 [M + Li]^+$; $485 [M + Na]^+$; $320 [M-glu]^+$. ¹H and ¹³C NMR: Table.

Acknowledgement: This work was supported by National Science Foundation of China and the National Laboratory of Applied Organic Chemistry of Lanzhou University of P. R. China.

References

- 1 The Encyclopedia of Traditional Chinese Medicine P. 69, 535 and 1812 Shanghai Science and Technology Press, Shanghai 1985
- 2 Nair, A. G. R.; Vedantham, T. N. C.; Kannabrian, B.: Curr. Sci. 48, 440 (1979)
- 3 Nair, A. G. R.: Vedantham, T. N. C.: Subramanian, S. S.: Curr, Sci. 45. 391 (1976)
- 4 Chen, J.-C.; Zhu, Q.-X.; Cheng, D.-L.: Pharmazie **54**, 145 (1999) 5 Rimpler, H.: Plant Med. **33**, 313 (1978)
- 6 Loew, P.; Szczepanski, V.; Cocsia, C. J.: J. Chem. Soc. Chem. Commun. 1276 (1968)
- 7 Takeda, Y.; Nishimura, H.; Inouye, H.: Chem. Pharm. Bull. 24, 1216
- 8 Inouye, H.; Nishimura, T.: Phytochemistry 11, 1852 (1972)
- Swiatek, L.; Lehmann, D.; Chaudri, R. K.; Sticher, O.: Phytochemistry 20, 2023 (1981)

- 10 Belofsky, G. N.; Stermitz, F. R.: J. Nat. Prod. 51, 614 (1988)
- 11 Junior, P.: Planta Med. 43, 34 (1981)
- 12 Schmidt, T. J.; Passreiter, C. M.; Wendisch, D.; Willuhn, G.: Phytochemistry 40, 1213 (1995)
- 13 Feliciano, A. S.; Migyel Del Corral, J. M.; Gordaliza, M.; Angeles Castro, M.: Phytochemistry 30, 695 (1991)
- 14 Forster, P. G.; Ghisalberti, E. L.; Jefferies, P. R.,: Phytochemistry 24, 2991 (1985)

Received April 25, 2000 Accepted June 27, 2000

Doctor Qi-Xiu Zhu

National Laboratory of Applied Organic Chemistry Lanzhou University, Lanzhou Gansu (73000) P.R. China

Pharmazie 56 (2001) 3 271