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Prediction of Caco-2 cell permeability using partial least squares
multivariate analysis
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The permeability across Caco-2 cell monolayers of structurally diverse compounds were predicted using computed mole-
cular descriptors and multivariate Partial Least Squares (PLS). The molecular descriptors including log polarization, log
solvent accessible surface area, hydration energy, heat of formation, and dipole moment were calculated with Hyperchem
and ChemPlus QSAR programs for Windows. Other physicochemical properties such as hydrogen acceptor for oxygen
atoms, hydrogen acceptor for nitrogen atoms, hydrogen bond donors, hydrogen bond forming ability, molecular weight,
and log distribution coefficient were also used as descriptors. Cross validation with internal test set and prediction with
external test set indicated the usefulness of the derived model for Caco-2 cell permeability. Hydrogen bonding is one of
the important factors associated with permeability. While increased logD and hydration energy facilitate permeability, an
increased dipole moment of molecules has a negative effect on permeability.

1. Introduction

The use of Caco-2 cell monolayers has increased in po-
pularity as a surrogate marker for in vivo intestinal per-
meability in humans [1–3]. The apparent permeability in
Caco-2 cells shows good correlation with in vivo human
absorption and can be used to predict absorption of
compounds regardless of transport mechanism, transcellu-
lar, paracellular or carrier-mediated [4]. The oral absorp-
tion can also be predicted by in vivo animal models,
however, these methods are more expensive, time-con-
suming and sometimes controversial. Thus, at present,
the Caco-2 cell permeability model is generally used as
a screen for selection of new chemical entities for drug
discovery and development programs. The ability to pre-
dict Caco-2 cell permeability therefore has a scientific
value. The relationship between Caco-2 cellular perme-
ability and physicochemical properties [5–7], molecular
surface properties [8] and capacity factors from immobi-
lized artificial membrane (IAM) columns [9] has been
reported.
For drug design, it is of a great value if the optimum
physicochemical properties for new drug structures can
be predicted earlier using a computational method. Thus
it is not necessary to synthesize new compounds for
testing the required physicochemical properties. The cal-
culation and prediction of Caco-2 cell permeability
using Molsurf parametrization has been previously re-
ported [6], however, small size of data set (only 17
compounds) was examined in that study. In this paper,
the relationship between the Caco-2 cell permeability
and molecular properties calculated by computational
methods were investigated using Partial Least Squares
or Projections to Latent Structures (PLS) multivariate
analysis. Fifty-one structurally diverse compounds with
a variety of physicochemical characteristics and different
transport routes (transcellular and paracellular transports)
were examined.

2. Investigations, results and discussion

The log of Caco-2 cell permeability coefficient, logD [5],
physicochemical and calculated molecular parameters of
all compounds are summarized and presented in Table 1.

The goodness-of-fit of multivariate model can be ex-
pressed as a root mean square error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
i¼1

ðŷyi � yiÞ2

s

where ŷi and yi represent the calculated and the experi-
mental value of Caco-2 cell permeability coefficient, re-
spectively, and N is a number of samples. The value of
RMSE is an indication of the average error in the analysis
for each set.

The statistical results obtained for the PLS model 1
(training set 1) and model 2 (training set 2) are summar-
ized in Table 2. The optimum number of PCs for both
models is three. It can be observed that the better values
of correlation coefficient, RMSEs for calibration and vali-
dation are obtained for model 1. The predictability using
PLS model 1 is also better since the RMSE for prediction
of the same samples (external test set 2) is lower as
shown in Table 2. The calculated and predicted results of
PLS analyses of models 1 and 2 were shown in Table 3.
Plots of experimental vs. calculated/prediction permeabil-
ities for models 1 and 2 are shown in the Fig.

Yazdanian et al. recently investigated the correlation of
distribution coefficients in three solvent systems and
Caco-2 cell permeability of these 51 compounds [5]. It
was reported that good correlation could not be obtained
with simple mathematics. In this study, the PLS analyses
of the same data set provided both good correlation be-
tween physicochemical properties and Caco-2 permeabil-
ity and also prediction of permeability by removing some
compounds (1, 3, 6, 9, 35, 45) considered as outliers. It is
noteworthy that the Caco-2 permeability of these com-
pounds are quite low ranging from �6.29 to �6.72 (log
scale). Compounds with high logPcaco-2 values are better
predicted. The predictive ability of model 1 with RMSEs
of 0.414 and 0.404 (test sets for 22 and 6 samples, respec-
tively) are comparable to that reported by Norinder et al.
(RMSE ¼ 0.409, test set for 8 samples) [6]. The extended
model (model 2) also provides a parallel predictability
with the RMSE for prediction of 0.550.
A good model for the prediction of human skin permeabil-
ity coefficients has been reported to be derived by the
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inclusion of the melting point as an independent variable
[10]. It was therefore included as an additional descriptor
(model 4). The same training set for model 4 and model 3
(without melting point variable) consists of 29 compounds
(2, 4, 6, 8–19, 21–25, 27–31, 33–34, 36–37). There is no
advantage to include this additional variable in the model,
since the correlation coefficient, RMSEs for calibration and
validation of models 3 and 4 are comparable (Table 2).
The regression coefficients of PLS models are shown in
Table 4. The important variables influencing the model are
hydrogen bonding, logD, dipole moment and hydration
energy. The sign for number of hydrogen bond acceptor
oxygen and nitrogen atoms (HAO and HAN) and donor

(HD) atoms is negative, however, that for hydrogen bond
forming ability (HB) is positive. Since HB is the sum of
HAO, HAN and HD, the sign may be wrong due to the
interaction of these variables. Because the better correla-
tion is obtained with all hydrogen bond parameters (HAO,
HAN, HD, HB) and correlation among parameters is not a
problem for PLS analysis, hydrogen bond parameters were
all used as variables. To verify the effect of hydrogen
bond on permeability, PLS analyses were performed with-
out HB variable; negative signs still obtained for HAO,
HAN and HD. Nevertheless, PLS analyses without HAO,
HAN and HD gave either a negative or a positive sign for
HB depending on the samples. The negative effect of hy-
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Table 1: Caco-2 cell permeability coefficient, distribution coefficient, physicochemical and molecular parameters of compounds

No Compound HAO HAN HD HB MP log polar logSAS Hyd E HoF m MW logPcaco-2 log D

1 Acebutalol 8 2 3 13 121.00 1.56 2.61 �7.31 �163.57 4.26 336.40 �6.29 �0.09
2 Acetylsalicylic acid 8 0 1 9 135.00 1.24 2.27 �4.92 �141.74 1.78 180.20 �5.04 �2.25
3 Acyclovir 6 5 4 15 256.75 1.32 2.37 5.76 �72.91 5.32 225.20 �6.60 �0.35
4 Alprenolol 4 1 2 7 – 1.47 2.50 �7.07 �57.55 1.02 249.30 �4.60 1.38
5 Aminopyrine 2 3 0 5 108.00 1.42 2.41 �0.96 23.37 4.17 231.30 �4.44 0.63
6 Atenolol 6 2 4 12 147.00 1.47 2.51 �13.48 �115.63 2.07 266.30 �6.28 �1.29
7 Bremazocine 4 1 2 7 – 1.56 2.54 �5.17 �65.80 2.40 315.46 �5.10 1.66
8 Caffeine 4 4 0 8 238.00 1.28 2.31 �2.25 �49.37 3.90 194.20 �4.51 0.02
9 Chlorothiazide 8 3 3 14 342.75 1.29 2.37 �16.47 �87.09 5.00 295.70 �6.72 �1.15

10 Chlorpromazine 0 2 0 2 – 1.56 2.51 �1.02 48.62 2.48 318.90 �4.70 1.86
11 Cimetidine 0 6 3 9 142.00 1.43 2.47 �15.11 77.12 8.44 252.30 �5.86 �0.36
12 Clonidine 0 3 2 5 130.00 1.36 2.34 �7.39 29.01 3.07 230.10 �4.66 0.78
13 Corticosterone 8 0 2 10 182.00 1.57 2.56 �7.86 �184.26 4.12 346.50 �4.67 1.78
14 Desipramine 0 2 1 3 – 1.52 2.49 �2.70 43.32 1.39 266.40 �4.61 1.57
15 Dexamethasone 10 3 3 16 269.50 1.60 2.58 �10.13 �241.90 3.64 392.50 �4.91 2.16
16 Diazepam 2 2 0 4 125.50 1.49 2.45 �2.44 28.95 3.37 284.80 �4.48 2.58
17 Dopamine 4 1 4 9 – 1.22 2.26 �18.62 �70.57 2.58 153.20 �5.03 �0.80
18 Estradiol 4 0 2 6 217.50 1.50 2.47 �5.44 �98.40 2.28 272.40 �4.77 2.24
19 Ganciclovir 8 5 5 18 250.00 1.37 2.42 �22.01 �119.56 7.53 255.20 �6.42 �0.10
20 Griseofulvin 12 0 0 12 220.00 1.53 2.53 �4.65 �183.53 4.37 352.80 �4.44 2.47
21 Hydrochlorothiazide 8 3 4 15 274.00 1.30 2.39 �14.58 �101.43 5.07 297.70 �6.29 �0.12
22 Hydrocortisone 10 0 3 13 212.50 1.58 2.56 �10.74 �224.16 4.32 362.50 �4.85 1.48
23 Indomethacin 8 1 1 10 162.00 1.56 2.55 �9.06 �112.25 2.08 357.70 �4.69 1.00
24 Labetalol 6 2 5 13 – 1.57 2.57 �15.87 �97.62 5.20 328.41 �5.03 1.24
25 Mannitol 12 0 6 18 167.00 1.19 2.30 �26.26 �274.76 3.38 182.20 �6.42 �2.65
26 Meloxicam 8 3 2 13 254.00 1.50 2.51 �13.42 �56.57 5.30 351.40 �4.71 0.03
27 Methyl scopolamine 8 0 1 9 – 1.52 2.53 �7.60 64.52 14.12 318.50 �6.16 �1.14
28 Metoprolol 6 1 2 9 – 1.48 2.52 �6.83 �119.92 2.89 267.40 �4.63 0.51
29 Nadolol 8 1 4 13 130.00 1.53 2.55 �13.53 �177.60 2.00 309.40 �5.41 0.68
30 Nevirapine 2 4 1 7 248.00 1.46 2.44 �3.75 50.12 2.73 266.30 �4.52 1.81
31 Nicotine 0 2 0 2 – 1.29 2.30 �1.30 20.13 2.56 162.20 �4.71 0.41
32 Phencyclidine 0 1 0 1 46.25 1.48 2.45 1.08 �4.77 0.90 243.38 �4.61 1.31
33 Phenytoin 4 2 2 8 296.50 1.44 2.41 �7.56 �18.85 3.00 252.30 �4.57 2.26
34 Pindolol 4 2 3 9 172.00 1.45 2.47 �10.94 �51.33 3.90 248.30 �4.78 0.19
35 Pirenzepine 4 5 1 10 – 1.58 2.56 �4.60 �8.02 3.29 351.41 �6.36 �0.46
36 Piroxicam 8 3 2 13 199.00 1.48 2.50 �12.33 �63.35 3.22 331.40 �4.45 �0.07
37 Progesterone 4 0 0 4 129.50 1.56 2.54 1.40 �108.25 4.17 314.50 �4.63 3.48
38 Propranolol 4 1 2 7 96.00 1.50 2.49 �7.26 �52.33 2.26 259.30 �4.66 1.55
39 Ranitidine 4 3 2 9 68.50 1.52 2.55 �12.20 0.72 9.09 314.40 �6.31 �0.12
40 Salicylic acid 6 0 2 8 158.00 1.13 2.15 �11.89 �113.08 1.00 138.10 �4.66 �1.44
41 Scopolamine 8 1 1 10 80.00 1.50 2.51 �8.62 �97.38 2.51 303.40 �4.93 0.21
42 Sucrose 22 0 8 30 – 1.45 2.52 �31.52 �476.74 1.63 342.30 �5.77 �3.34
43 Sulfasalazine 10 4 3 17 242.50 1.57 2.58 �25.18 �71.15 4.60 398.39 �6.52 �0.42
44 Telmisartan 4 4 1 9 – 1.78 2.74 �10.09 30.56 7.45 514.60 �4.82 2.41
45 Terbutaline 6 1 4 11 120.50 1.39 2.43 �17.65 �133.87 1.19 225.30 �6.33 �1.07
46 Testosterone 4 0 1 5 155.00 1.52 2.50 �2.05 �111.15 3.80 288.40 �4.60 2.91
47 Timolol 6 4 2 12 – 1.51 2.55 �8.81 �110.07 4.34 316.42 �4.89 0.03
48 Uracil 4 2 2 8 335.00 1.00 2.06 �6.73 �67.79 3.99 112.10 �5.37 �1.11
49 Urea 2 2 4 8 132.70 0.73 1.89 �11.89 �41.04 4.07 60.10 �5.34 �1.64
50 Warfarin 8 0 1 9 161.00 1.52 2.49 �8.60 �105.97 3.37 308.30 �4.68 0.64
51 Zidovudine 8 5 3 16 109.00 1.40 2.43 �26.95 �69.04 0.81 268.25 �5.16 �0.58

HAO: number of hydrogen bond acceptor oxygen atoms; HAN: number of hydrogen bond acceptor nitrogen atoms; HD: number of hydrogen bond donor atoms; HB: hydrogen bond
forming ability; MP: melting point (�C); log polar: log polarizability (�A3); logSAS: log solvent accessible surface area (�A2); HydE: hydration energy (kcal/mole); HoF: heat of
formation (kcal/mole); m: dipole moment (debye); MW: molecular weight; logPcaco-2: log Caco-2 cell permeability coefficient (cm/sec); logD: log distribution coefficient



drogen bonding was observed by Norinder et al. [6, 11]
and Abraham et al. [12]. However, Lien and Gao reported
that increased hydrogen bonding could have either a posi-
tive or a negative effect on skin permeability, depending
on the experiments [13]. So the hydrogen bonding may be
able to provide either a positive or a negative effect on

Caco-2 cell permeability for this data set [5] which in-
cludes compounds transported via both transcellular and
paracellular routes. Paracellularly, compounds are trans-
ported by water drag through the tight junctions; hydrogen
bond forming ability of compounds with water might fa-
cilitate the permeation. However, transcellular transport of
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Table 3: Experimental, calculated, and predicted permeability values over Caco-2 cells

Compound Model 1 Model 2

Expa Calcb Predc Predd Calce Predf

Acetylsalicylic acid –5.04 �4.93 �4.88
Alprenolol �4.60 �4.63 �4.60
Aminopyrine �4.44 �4.86 �4.90
Bremazocine �5.10 �4.68 �4.71
Caffeine �4.51 �4.93 �4.95
Chlorpromazine �4.70 �4.56 �4.61
Cimetidine �5.86 �5.90 �6.17
Clonidine �4.66 �5.06 �5.07
Corticosterone �4.67 �4.76 �4.85
Desipramine �4.61 �4.61 �4.58
Dexamethasone �4.91 �4.76 �4.92
Diazepam �4.48 �4.56 �4.60
Dopamine �5.03 �5.26 �5.26
Estradiol �4.77 �4.52 �4.49
Ganciclovir �6.42 �5.95 �6.19
Griseofulvin �4.44 �4.58 �4.70
Hydrochlorothiazide �6.29 �5.75 �5.90
Hydrocortisone �4.85 �4.91 �5.03
Indomethacin �4.69 �4.65 �4.78
Labetalol �5.03 �5.29 �5.47
Mannitol �6.42 �6.33 �6.31
Meloxicam �4.71 �5.30
Methyl scopolamine �6.16 �6.05 �6.49
Metoprolol �4.63 �4.82 �4.85
Nadolol �5.41 �5.30 �5.31
Nevirapine �4.52 �4.36 �4.48
Nicotine �4.71 �4.76 �4.67
Phencyclidine �4.61 �4.17 �4.11
Phenytoin �4.57 �4.82 �4.83
Pindolol �4.78 �4.85 �4.97
Piroxicam �4.45 �4.88 �5.11
Progesterone �4.63 �4.08 �4.12
Propranolol �4.66 �4.62 �4.63
Ranitidine �6.31 �5.49 �5.83
Salicylic acid �4.66 �4.66 �4.62
Scopolamine �4.93 �4.60 �4.73
Sucrose �5.77 �6.29 �6.41
Sulfasalazine �6.52 �5.60 �5.99
Telmisartan �4.82 �4.86 �5.35
Testosterone �4.60 �4.69 �4.65
Timolol �4.89 �5.51 �5.61
Uracil �5.37 �5.33 �5.25
Urea �5.34 �5.70 �5.60
Warfarin �4.68 �4.70 �4.81
Zidovudine �5.16 �5.23 �5.44

alog values of experimental data taken from reference 5. bcalculated from model 1. cpredicted external test set 1 from model 1. dpredicted external test set 2 from model 1. ecalculated
with model 2. fpredicted external test set 2 from model 2.

Table 2: Statistical parameters of the derived PLS models

Model r-c r-v No. of PCs Nc RMSEC RMSEcv Np1 RMSEp1 Np2 RMSEp2

1 0.960 0.881 3 17 0.142 0.241 22 0.414 6 0.404
2 0.893 0.825 3 38 0.276 0.348 6 0.550
3 0.904 0.846 2 29 0.273 0.343
4 0.903 0.836 2 29 0.275 0.353

r-c: calibration correlation coefficient; r-v: validated correlation coefficient; No. of PCs: number of principle components; Nc: number of compounds in the training set; RMSEC: root
mean square error of calibration; RMSEcv: root mean square error of validation; Np1: number of compounds in the external test set 1; RMSEp1: root mean square error for external
test set 1; Np2: number of compounds in the external test set 2; RMSEp2: root mean square error for external test set 2.



compounds might be unfavorable if compounds have a
strong hydrogen bond forming ability with cell constitu-
ents. As expected, increased logD has a positive effect on
the permeability. While increased hydration energy facili-
tates permeability, an increased dipole moment of mole-
cules has a negative effect on permeability.
These PLS models with the descriptors of solvent accessible
surface area (logSAS), logD, polarizability (logpolar), hydra-
tion energy, heat of formation, dipole moment, molecular
weight, hydrogen acceptor for oxygen and nitrogen atoms,
hydrogen bond donors, and hydrogen bond forming ability
provide good predictability for Caco-2 cell permeability.
These descriptors can be electronically calculated so the de-
rived PLS models should be useful for optimization of struc-
ture properties relationship of new design chemicals.

3. Experimental

3.1. Conformational analysis and molecular property
calculation

The hyperchem program package [14] was used to build
and calculate the optimum molecular structures of investi-
gated compounds. The MM+ molecular mechanics force
field was first run to get close to the optimized geometry.
Molecular mechanics calculations treat atoms as Newto-
nian particles interacting through a potential energy func-
tion. The potential energies depend on bond lengths, bond
angles, torsion angles, and nonbonded interactions (in-
cluding van der Waals forces, electrostatic interactions,
and hydrogen bonds). In these calculations, the forces on
atoms are functions of atomic position. The conformation
obtained from molecular mechanics was subjected to a
refined geometry optimization using PM3 semiempirical
quantum chemistry. Semiempirical calculations solve the
Schrödinger equation to describe the electronic properties
of atoms and molecules. Semiempirical methods make
many simplifications, calculating only for valence elec-
trons; neglecting the integrals for certain interactions;
using standard, non-optimized, electron orbital basis func-
tions. Dipole moment and heat of formation which repre-
sent basic molecular properties were obtained as the re-
sults of this calculation. The ChemPlus QSAR properties
program [15] was used for further calculation of other mo-
lecular properties such as hydration energy, polarizability,
and solvent accessible surface area (van der Waals sur-
face). The hydrogen bond-forming ability of the whole
molecule is the sum of maximum hydrogen bond numbers
of the various functional groups and was calculated as
described by Xia et al. [16].

3.2. Statistical analysis

The relationship between the experimentally determined
Caco-2 cell permeability values (logPcaco-2) and the de-
scriptors was determined using the PLS1 regression. The
software package used for conducting PLS calibration and
prediction was Unscrambler [17]. Calibration was done
using a set of samples of known permeability and original
variables. In this way, the descriptor matrix X (m, n) and
permeability matrix Y (m, k), where m, n and k are cali-
bration samples, original variables, and permeability, re-
spectively, are obtained. PLS methodology breaks down
matrices X and Y into their latent variables.

X ¼ TxLx þ Ex

Y ¼ TyLy þ Ey
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Table 4: Regression coefficients of PLS models

Descriptor Model 1 Model 2 Model 3 Model 4

log solvent accessible surface area �0.0127 �0.0264 �0.0234 �0.0358
logD 0.3491 0.2652 0.1790 0.1843
log polarizability 0.0789 0.0726 0.0542 0.0429
Hydration energy 0.2201 0.2603 0.2850 0.2862
Heat of formation 0.0693 �0.0231 0.0380 0.0293
Dipole moment �0.3384 �0.3608 �0.2433 �0.2329
Molecular weight 0.0402 �0.0835 �0.0559 �0.0573
Number of hydrogen bond acceptor oxygen atoms �0.0287 �0.0600 �0.1053 �0.0950
Number of hydrogen bond acceptor nitrogen atoms �0.1760 �0.1500 �0.1624 �0.1568
Number of hydrogen bond donor atoms �0.3420 �0.2351 �0.2959 �0.2912
Hydrogen bond forming ability 0.3570 0.2285 0.1057 0.1141
Melting point –– –– –– �0.0497
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Caco-2 cell monolayers for (A) model 1, (B) model 2



where Tx (m, a) and Ty (m, a) are the score matrices, Lx

(a, n) and Ly (a, k) the loading matrices, and Ex (m, n)
and Ey (m, k) the residual matrices, a being the number of
principal components or factors. By relating Tx and Ty, a
diagonal relation matrix F is obtained.

Ty ¼ TxF þ E

Matrix F is used in the prediction step to estimate the
permeability from the descriptor values x0 of the sample:

y0 ¼ x0ðT0
yXÞ0FLy

Determining the number of principal components (PC) re-
quired is the most important step in implementing multi-
variate calibration. Model components are typically ex-
tracted in such a way that most information is conveyed
by the first principal component (PC), then the second
PC, and so on. At a certain point, the variation modeled
by any new PC is mostly noise. The optimum number of
PCs, providing useful modeling information, but avoiding
overfitting, was chosen using the Unscrambler’s criterion.
It employs the number of PCs resulting in the first local
minimum in the residual variances vs. PC plot.
Prior to PLS processing, all variables were centered and
also scaled (standardization weighting technique, where
the weight is the variable’s standard deviation, 1/Sdev) in
order to give all variables the same variance, i.e. 1. This
gives all variables the same chance to influence the esti-
mation of the components. The calibration model was ob-
tained by the full cross-validation method in which only
one sample at a time is kept out of the calibration and
used for prediction. This is repeated in a way that all sam-
ples are kept out once. The residual variance can then be
determined from the prediction residuals. The advantage
of PLS analysis over other methods is that it performs
particularly well when the various variables express com-
mon information, i.e. when there is a large amount of cor-
relation, or even collinearity.

3.3. Data set

In this study, the experimental values for the Caco-2 cell
permeability and distribution coefficients (D) for the 51
data set compounds were taken from Yazdanian et al.
[5].

A calibration set 1 (training set 1) was composed of 17
compounds as indicated in Table 3. It was selected to cov-
er compounds that span the variations both in variable de-
scriptors and logPcaco-2. The outliers which showed up
having a large leverage as well as a high residual were
removed to make a better model. The remaining com-
pounds were used as an external test set to assess the pre-
dictive ability of the model. The expanded data set (train-
ing set 2) consisted of 38 compounds and was listed in
Table 3. This data set was used to explore the correlation
of a large sample set and also the predictability of the
model.
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