Research Department of Natural medicines, Shenyang Pharmaceutical University, Shenyang, P.R. China

Isoflavans from Sphaerophysa salsula

ZHONG-JUN MA, BAI-LING HOU, JIN-HUI WANG and XIAN LI

The total flavonoidal glycosides of the plant *Sphaerophysa* salsula (Pall.) DC have anti-hypertensive activity [1]. The aim of this study was to investigate the chemical constituents of the plant *S. salsula* (Pall.) DC. Chromatographic separation of the ethanol extract of the whole herbs of *S. salsula* (Pall.) DC afforded four isoflavans, namely sphaerosin s_1 (1), (+)-isomucronulatol (2), 3',7-dihydroxy-2',4'-dimethoxyisoflavan (4) and glyasperin H (5). Compounds 2, 4 and 5 were the first time isolated from *S. salsula* (Pall.) DC. Compond 1 is unstable and degrades into several other compounds under standard conditions without adding any oxidant. The products of natural degradation of 1 were isolated by preparative TLC. One of then, sphaerosin s_3 (3), is a novel compound, the others were compounds 4 (0.8 mg) and 5 (1 mg).

Compound 4 (50 mg) was identified by comparing 1 H and 13 C NMR data with literature data [2].

Compound 1 (5 mg) had the molecular formula $C_{22}H_{26}O_5$, as determined by positive-ion ESIMS {m/z 371.2 [M+H]⁺} and its ¹³C NMR spectrum. It showed a positive reaction with FeCl₃ reagent. The ¹H and ¹³C NMR spectra of 1 exhibited the signals of rings B and C similar to compound 4; 1 has five more carbon signals than 4, viz. δ 7.68 (C-4"), 22.21 (C-1"), 25.65 (C-5"), 122.17 (C-2"), 133.44 (C-3"), suggesting an isopentenyl group. The location of the isopentenyl group at C-8 was based on HMBC and HMQC spectra. The position of the hydroxyl groups at C-3' was determined with designed deuterium induced isotope shift in ¹³C NMR experiments. All the results led us to assign the structure of sphaerosin s₁ as 4',7-dihydroxy-2',3'-dimethoxy-8-isopentenylisoflavan.

Compound **3** (1 mg) showed a molecular ion peak $[M + H]^+$ at m/z 331.3 in the positive ESIMS and gave ¹³C NMR data consistent with the molecular formula C₁₈H₁₈O₆. It showed positive FeCl₃ reaction. The ¹H NMR and ¹³C NMR spectra of **3** were similar to those of **4**. Signal at δ 194.30 suggested a carbonyl group. The location of the carbonyl group was assigned by HMBC and HMQC spectra of **3**. In the ¹H NMR spectrum of **3**, two signals were existing at δ 10.33 and δ 11.80. Signal at δ 10.33 is a proton in aldehyde group. And the structure of sphaerosin s₃ was assigned as 4',7-dihydroxy-2',3'-dimethoxy-8-aldehydoisoflavan.

Compounds 2 (10 mg) and 5 (50 mg) were identified by comparison of their spectral data (UV, ¹HNMR, ¹³C NMR, MS) with published data [3, 4]. The location of hydroxyl groups of compounds 4 and 5 were determined

by acetylation of the compounds. Compounds 1 and 2 possessed selective toxicity to Gram-positive organism (*Staphylococcus aureus*) at 0.5 μ g mL⁻¹; and showed no toxicity to a Gram-negative one (*Pseudomonas aeruginosa*).

Experimental

1. Plant material

The whole herbs of *S. salsula* were collected in the Western part of Autonomous Region of Inner Mongolia. The plant was authenticated by Shuanglong Kang, Professor of Autonomous Region of Inner Mongolia Institute for drug control.

2. Extraction and isolation

Dried whole herbs of the plant (1.8 kg) were extracted with ethanol. After filtration, the extract was concentrated to 1.8 l, and fractionated with CHCl₃, EtOAc and t-BuOH successively. The part of CHCl₃ extract was subjected to column chromatographic over silica gel and eluted with a mixture of Petroleum and Acetone.

2.1. Sphaerosin s_1 (1)

Colorless needles from CHCl₃, m.p. 120–122 °C, ESIMS: m/z 371.2 $[M + H]^+$, UV δ_{Max} (CH₃OH) nm 235, 279. $[\alpha]_D$ + 38.6° (20 °C, c = 0.065, CH₃OH); ¹H NMR (300 MHz, in CDCl₃) δ : 4.32 (1 H, br. d, J = 10.0 Hz, H-2e), 3.95 (1 H, t, J = 10.0 Hz, H-2a), 3.54 (1 H, m, H-3), 2.88 (2 H, m, H-4), 6.78 (1 H, d, J = 8.2 Hz, H-5), 6.39 (1 H, d, J = 8.2 Hz, H-6), 6.62 (1 H, d, J = 8.6 Hz, H-6'), 6.58 (1 H, d, J = 8.6 Hz, H-5'), 3.40 (2 H, d, J = 6.6 Hz, H-2''), 5.27 (1 H, br t, J = 6.6 Hz, H-1''), 1.71 (3 H, s, 5''-C<u>H₃</u>), 1.79 (3 H, s, 4''-C<u>H₃</u>), 3.88 (3 H, s, 4'-OC<u>H₃</u>), ¹³C NMR, see Table.

 Table:
 ¹³C NMR spectral data for compounds 1, 2, 3, 4 and 5 (75.0 MHz, in CDCl₃)

Carbon No.	1	2	3	4	$5 \ ({\rm in} \ {\rm DMSO-d}_6)$
2	70.31	70.42	70.85	70.46	70.14
3	31.42	32.07	31.48	31.74	31.07
4	31.85	30.09	30.83	31.37	31.42
5	127.27	130.33	138.87	130.38	129.35
6	107.89	107.98	108.99	107.88	108.29
7	152.21	155.07	161.91	155.14	151.37
8	114.53	130.63	110.39	103.21	109.16
9	153.34	154.98	156.97	154.86	149.32
10	114.12	114.42	112.63	114.70	114.59
1'	127.54	120.29	126.60	127.45	126.65
2'	146.49	147.41	146.93	146.67	147.86
3'	138.53	135.35	138.76	138.68	139.37
4′	145.17	151.06	145.32	145.30	146.15
5'	106.53	103.20	106.42	106.48	107.67
6'	116.81	121.82	116.93	116.96	116.28
1''	22.18		194.30		27.45, 27.26
2''	122.24				75.32
3''	133.43				116.42
4''	17.62				129.35
5''	25.59				
2'-OCH ₃	55.95	55.74	56.27	56.22	56.02
4'-OCH ₃	60.84	60.39	61.02	61.01	60.33

2.2. (+)*Isomucronulatol* (2)

Colorless needles from CHCl₃, m.p. 137–140 °C, ESIMS: m/z 303.2 [M + H]⁺, UV λ_{Max} (CH₃OH) nm 213, 279. [α]_D +28.6° (20 °C, c = 0.070, CH₃OH); ¹³C NMR, see Table.

2.3. Sphaerosin s_3 (3)

J = 10.0 Hz, H-2e), 4.06 (1 H, t, J = 10.0 Hz, H-2a), 3.56 (1 H, m, H-3), 2.88 (2 H, m, H-4), 7.19 (1 H, d, J = 8.6 Hz, H-5), 6.46 (1 H, d, J = 8.6Hz, H-6), 6.60 (1 H, d, J = 8.6 Hz, H-6'), 6.65 (1 H, d, J = 8.6 Hz, H-5'), 13.88 (3 H, s, 2'-OC<u>H</u>₃), 3.83 (3 H, s, 4'-OC<u>H</u>₃), 10.33 (1 H, s, C<u>H</u>O), 11.80 (1 H, 7-OH). ¹³C NMR, see Table.

2.4. 3',7-Dihydroxy-2',4'-dimethoxyisoflavan (4)

Colorless needles from CHCl₃, m.p. 132–134 °C, ESIMS: m/z 302.3 [M + H]⁺, UV λ_{Max} (CH₃OH) nm 212, 281 [α]_D +30.6° (20 °C, c = 0.035, CH₃OH); ¹³C NMR, see Table.

2.5. Glvasperin H (5)

Colorless needles from CHCl₃, m.p. 78–80 °C, EIMS: m/z 368.2 [M]⁺, UV λ_{Max} (CH₃OH) nm 205, 228, 278 8.6° (20 °C, c = 0.050, CHCl₃); ¹³C NMR, see Table.

References

1 Zhou, M.: Tao, J. Y.: Xu, S. Y.: Chin. J. Pharm. Toxicol. **1**, 258 (1987) 2 Yu, R. M.: Li, X.: Zhu, T. R.: J. Shenyang Coll. Pharm. **6**, 283 (1989) 3 Zeng I.; Fukai Toshio: Nomura Taro: Heterocycles **34**, 1813 (1992) 4 He, Z. Q.: Fiadly, J. A.: J. Nat. Prod. **54**, 810 (1991)

Received May 2, 2001 Accepted July 30, 2001 Dr. Zhong-Jun Ma Research Department of Natural Medicines, Shenyang Pharmaceutical University, Shenyang, 110015 P.R. China lixian@mail.sy.ln.cn