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Quantitative structure/property relationship analysis on aqueous solubility
using genetic algorithm-combined partial least squares method
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The present study was initiated to generate a model of predicting aqueous solubility of substances from their molecular
structure. For 211 drugs or drug-like compounds, their topological indices were calculated by Molconn-Z software. The
optimal subset of the descriptors for the prediction of aqueous solubility was determined by genetic algorithm in combina-
tion with partial least squares (PLS) method. Thirty-four descriptors were selected by this method. Using 29 of the
descriptors selected, of which the scaled PLS coefficient was significant, the cross-validated predictive q2 was 0.785 with
19 principal components that was the optimal and the standard error of prediction was 0.676. Thus, it is suggested that
the model obtained would exhibit a good performance in predicting the aqueous solubility of compounds.

1. Introduction

Aqueous solubility is one of the most important factors in
determining the usefulness of a drug candidate. For exam-
ple, a poor solubility often hampers the bioavailability and
makes the formulation of drugs difficult. The ability to
predict the aqueous solubility of the compounds would
assist us to remove inappropriate sub-libraries, which
might have a tremendous impact both in terms of cost and
time required for drug discovery and development.
Theoretical calculation of aqueous solubility is not feasi-
ble at present, but various empirical methods have been
proposed. In these approaches, molecular descriptors are
quantified based on 2-dimensional or 3-dimensional mole-
cular structures, and then correlated with aqueous solubi-
lity through multivariate analyses. These molecular repre-
sentations include fragment descriptors [1�3], topological
indices [4�11], and quantum chemical parameters [12,
13]. On the other hand, multiple linear regression [4�7,
12, 13] and artificial neural networks [8�11] are often
used to find a quantitative relationship between the de-
scriptors and aqueous solubility.
The goal of the quantitative structure-property relationship
(QSPR) is to find a small subset of the large number of
calculated descriptors that can effectively predict the
property. The exploratory analysis can be automatically
achieved by the use of genetic algorithm [14] and simu-
lated annealing [15] that are algorithms to solve combina-
torial optimization problems. Both routines are iterative
optimization techniques with a small degree of random-
ness that allow the solution to escape local minima traps
and converge to near global conditions. Sutter and Jurs [6]
explored multiple linear regression (MLR) models for the
prediction of aqueous solubility by the use of both genetic
algorithm and simulated annealing and demonstrated that
both routines produced very similar models. Taking into
account that multicollinearities between the descriptors
should be eliminated in MLR analysis, however, com-
bination of the exploratory routines with MLR would be
limited for the use. One of the methods to escape the
multicollinearity problem is the use of orthogonal transfor-
mation in regression analysis, such as principal component
regression (PCR) or partial least squares (PLS) methods
[16, 17]. Usefulness of the combination of genetic algo-
rithm and partial least squares has been demonstrated by
Tropsha et al., who analyzed QSAR modeling of dopa-
mine D1 antagonists and identified the descriptor pharma-
cophores [18, 19].

In the present study, we explored a QSPR model for pre-
dicting aqueous solubility, using a genetic algorithm-com-
bined partial least squares method. Structural descriptors
were calculated by Molconn-Z software (Hall Associated
Consulting, Quincy, MA) that included connectivity indices,
shape indices, electrotopological state (E-state) indices and
atom-type E-state indices. A dataset of aqueous solubili-
ties of 211 drugs and drug-like compounds was taken
from the literature [9]. We will also compare the ability of
our approach with that of the previous method [9].

2. Investigations, results and discussion

To generate a model for predicting aqueous solubility, 220
structural descriptors were obtained by Molconn-Z soft-
ware. Prior to optimization of a subset of the descriptors
by genetic algorithm-based approach, the descriptors
showing a heavily skewed distribution (skewness of
greater than 3) were removed. The remaining 88 descrip-
tors were subjected to the genetic algorithm-driven subset
selection.
Fig. 1 shows the relationship between the average or max-
imum fitness and generation number. During genetic algo-
rithm-driven optimization, the average of the fitness (See
Eq. 5 in Experimental) tends to increase with increasing
generation number and reached plateau at around 200 gen-
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Fig. 1: Relationship between fitness and generation number by genetic al-
gorithm-driven optimization



erations. The best solution at 500th generation was taken
for the modeling of aqueous solubility.
The Table summarizes 34 Molconn-Z descriptors selected
by genetic algorithm and their scaled PLS regression coef-
ficients. When the descriptors with small scaled PLS re-
gression coefficients were removed, predictability of the
model was not so much changed. Therefore, 29 descrip-
tors except 5cch,

6cch,
4cvc,

5cvch, and 6cvch were regarded
effective for the prediction of aqueous solubility.
Fig. 2 illustrates a typical result of leave-some-out cross-
validated prediction. When the leave-some-out prediction
was repeated 15 times, the average predictive q2 was
0.785 � 0.009 with 19 principal components that was the
optimal and the standard error of prediction was
0.676 � 0.013. Thus, it is suggested that the model ob-
tained would exhibit a good performance in predicting
aqueous solubility of compounds.

The PLS regression with 19 principal components was
conducted with all data to generate the equation for the
prediction of aqueous solubility. When the PLS matrix
equation was expanded, the following linear equation was
obtained:

Log S ¼ 1.0785 þ 0.0371 fw þ 1.8145 0c � 0.3719 3cp

� 0.5303 5cp � 2.8378 10cp � 2.5517 0cv

þ 1.0780 1cv þ 0.0900 2cv � 0.7639 6cvp

þ 1.4571 7cvp þ 0.3523 8cvp þ 0.3515 9cvp

þ 0.0282 totop � 0.3011 sumI þ 0.3159 SHsOH
� 0.2987 Hmax � 1.7444 Hmin � 0.2547 SssCH2
� 0.3570 SaasC þ 0.3461 SssNH þ 0.4580 SsssN
þ 0.1839 numHBa þ 0.1776 SHCsatu
� 0.3064 SHHBb � 0.2469 NHBint2
þ 0.2265 NHBint3 þ 0.2568 NHBint7
þ 0.5279 NHBint10 � 0.0194 SHBint2
(r2 ¼ 0.847, s ¼ 0.587, n ¼ 211) (1)

Several researchers demonstrated that artificial neural net-
work is useful for QSPR modeling of aqueous solubility
[8�11]. Artificial neural network can perform nonlinear
approximations, so that the complicated inter-relationship
between explanatory variables and response variable can
be simulated. In some cases, however, it is likely that
neural network models might be lack of robustness due to
a many degree-of-freedom. In the PLS regression, latent
factors that account for most of the variation in the re-
sponse are extracted from the data matrix [16, 17]. The
number of latent factors is usually less than that of expla-
natory variables; in other words, the degree-of-freedom in
the PLS regression is less than in the conventional multi-
ple linear regression. In addition, the extracted factors, so-
called scores, are orthogonal to one another. Thus, the
PLS is generally considered sufficiently robust and useful
for the QSPR modeling.
Huuskonen et al. [9] generated a prediction model for aqu-
eous solubility from Molconn-Z parameters using an artifi-
cial neural network with a configuration of 23 : 5:1. Their
model was able to estimate, with a reasonable degree of
accuracy, most of the aqueous solubilities of the training
dataset (r2 ¼ 0.90, s ¼ 0.46, n ¼ 160) and the testing data-
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Table: Scaled PLS regression coefficients of the subset of Mol-
conn-Z descriptors selected by genetic algorithm in
combination with PLS regression

Symbol Description of descriptor Scaled PLS
regression
coefficienta

fw Molecular weight 2.8693
0c Path 0 simple connectivity index 7.1452
3cp Path 3 simple connectivity index �0.9645
5cp Path 5 simple connectivity index �1.2517
10cp Path 10 simple connectivity index �1.7115
0cv Path 0 valence connectivity index �9.0408
1cv Path 1 valence connectivity index 2.3259
2cv Path 2 valence connectivity index 0.3538
6cvp Path 6 valence connectivity index �0.9822
7cvp Path 7 valence connectivity index 1.4442
8cvp Path 8 valence connectivity index 0.2625
9cvp Path 9 valence connectivity index 0.1748
5cch Chain 5 simple connectivity index �0.0113
6cch Chain 6 simple connectivity index 0.0453
4cvc Cluster 4 valence connectivity index �0.0482
5cvch Chain 5 valence connectivity index �0.0064
6cvch Chain 6 valence connectivity index 0.0104
totop Total topological index t 1.7284
sumI Sum of the intrinsic state values I �3.8882
SHsOH The sum of E-state

values for hydrogen atom-type (––OH)b
0.6656

Hmax Maximum hydrogen E-state
value in molecules

�0.1641

Hmin Minimum hydrogen E-state
value in molecules

�0.5284

SssCH2 Atom type electrotopological state index
values for atom types (––CH2––)b

�0.7045

SaasC Atom type electrotopological state index
values for atom types (––..C..)b

�0.6175

SssNH Atom type electrotopological state index
values for atom types (––NH––)b

0.6722

SsssN Atom type electrotopological state index
values for atom types (>N––)b

0.5143

numHBa Number of hydrogen bond acceptors 0.2742
SHCsatu E-state of C sp3 bonded

to unsaturated C atoms
0.2173

SHHBb Hydrogen bond donor index �0.6723
NHBint2 Count of potential internal H-bonds �0.1745
NHBint3 Count of potential internal H-bonds 0.1302
NHBint7 Count of potential internal H-bonds 0.1024
NHBint10 Count of potential internal H-bonds 0.1878
SHBint2 E-state descriptors of potential internal

H-bonds strength
�0.2400

a Scaled PLS regression coefficients were calculated by multiplying partial regression
coefficient and standard deviation of the descriptors.
b The formula of the atom type or group; the bond types between the heavy atoms are
s ¼ single (––), d ¼ double (¼), and a ¼ aromatic (..)
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Fig. 2: Leave-some-out cross-validation prediction of aqueous solubility of
drugs from the subset of Molconn-Z descriptors selected by genetic
algorithm in combination with PLS regression



set (r2 ¼ 0.86, s ¼ 0.53, n ¼ 51). When our approach was
applied to the same datasets, the PLS regression model
consisting of 15 principal components from 53 descriptors
was obtained, with a comparable degree of accuracy
(r2 ¼ 0.85, s ¼ 0.57 for training and r2 ¼ 0.89, s ¼ 0.47
for testing). This suggests that selection of the optimal
subset of the descriptors might be able to reduce the de-
gree of freedom.
In conclusion, the proposed model, where Molconn-Z de-
scriptors were used as molecular descriptors, was able to
predict aqueous solubility with a reasonable degree of ac-
curacy. The descriptors were derived from 2-D molecular
graphs without the need for complicated 3-D conforma-
tional analysis. Since the calculation of Molconn-Z de-
scriptors is easy and fast, our prediction approach would
be useful for the screening of large virtual combinatorial
libraries. The present study also revealed that genetic algo-
rithm-combined partial least squares method is useful for
optimization of the QSPR model and would be widely
applicable to QSPR modeling of various physicochemical
and biological activities.

3. Experimental

3.1. Dataset

The aqueous solubilities of 211 drugs were taken from the literature [9].
The solubility were expressed as log units of molar solubility (M) and
ranged from 0.545 to –5.824.

3.2. Calculated molecular descriptors

The topological descriptors were calculated by Molconn-Z software (Hall
Associated Consulting, Quincy MA) on the basis of 2-dimensional struc-
tures. A total of 220 connectivity, shape and atom-type E-state indices
were calculated from the two-dimensional geometry. Prior to application of
genetic algorithm, the descriptors representing heavily skewed distribution
with a skewness of greater than 3 were removed. This method reduced the
entire descriptor pools to 88 members.

3.3. Genetic algorithm-driven optimization

A population of 100 random subsets of the structural descriptors was gen-
erated. Each subset was encoded as a binary string of digits, so-called
chromosome. The value of “1” implied that the descriptor was regarded as
of importance; while the value of “0” implied that the descriptor was dis-
regarded. The length of each string should be equal to the total number of
descriptors. Considering both goodness-of-fit to the training data and pre-
dictability of the testing data, the following value was basically defined as
the fitness in genetic algorithm optimization:

fitness ¼ 2

1

R*2 þ
1

predictive q2

ð2Þ

where,

R*2 ¼ 1 � n � 1

n � c � 1

P
ðyi � ycalÞ2P
ðyi � �yyÞ2

for training dataset ð3Þ

Predictive q2 ¼ 1 �
P

ðyi � ypredÞ2P
ðyi � �yyÞ2

for testing dataset ð4Þ

where n was the number of compounds; c was the optimal number of
components; �yy was an average of yi values; and ycal and ypred were the
theoretical values for training and testing datasets, respectively. The regres-
sion coefficient corrected by the degree of freedom (R*2) was used to

avoid over-fitting to the training data. Please note that the fitness is the
maximal when R*2 and predictive q2 are equal assuming that their total is
constant. Leave-some-out cross-validation was made by randomly dividing
the original dataset into 7 groups. The calculation was repeated three times
and the fitness was then as follows:

fitness ¼ 6

3

R*2 þ
P3 1

predictive q2

ð5Þ

In genetic algorithm, two strings were selected randomly by a roulette
wheel selection method according to fitness values. Two-point crossover of
the “parent” strings was performed at a predefined probability (P) of 0.8.
One of the new strings was taken, subjected to random mutation
(P ¼ 0.01), and stored in the next generation. Top 5 strings with high fit-
ness values were kept for the next generation (Elite ¼ 5). In each genera-
tion, a series of these steps were repeated until the predefined number
(100) of population was obtained. After 500 generations, the best string
that was generated by genetic algorithm-driven optimization was taken.
The standard error (s) and correlation coefficient (r) for prediction were
evaluated as follows:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðyi � ypredÞ2

n

s
ð6Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðyi � �yyÞ ðyi; pred � �yypredÞ
n

r
ð7Þ

This research paper was presented during the 3rd Conference on Retro-
metabolism Based Drug Design and Targeting, May 13–16, 2001, Amelia
Island. Florida, USA.
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