Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Two new naphthalene and anthraquinone derivatives from *Asphodelus tenuifolius*

M. ABDEL-MOGIB and S. A. BASAIF

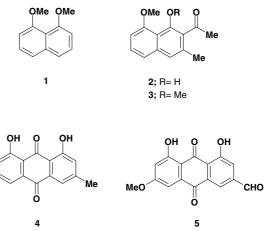
Chromatographic separation of an ethanolic extract of rhizomes of *Asphodelus tenuifolius* Cav. (Asphodelaceae) yielded in addition to β -sitosterol, stigmasterol and two anthraquinone derivatives, 1,8-dimethoxynaphthalene as well as two new naphthalene derivatives. The new compounds were identified as 2-acetyl-8-methoxy-3-methyl-1-naphthol and 2-acetyl-1,8-dimethoxy-3-methylnaphthalene. The separated compounds were identified on the basis of IR, MS, ¹H and ¹³C NMR data.

1. Introduction

The genus *Asphodelus* was considered as belonging to the family Liliaceae, but very recently, it has been separated as a distinct family, Asphodelaceae [1].

Some Asphodelus species have been reported to contain anthraquinone [2-10] as well as bianthrone [6, 11] derivatives. Essential oil from the aerial parts of *A. microcarpus* has been found to be antimicrobial [8], while the extract of the flowering aerial parts of *A. fistulosus* has been reported to be antifungal [7]. The flowery apexes of *A. albus* showed great anti-inflammatory activity [12]. The plant under investigation, *A. tenuifolius* has been investigated only in respect of lipids from its seeds [13].

In this paper, we present the isolation and identification of some anthraquinones and naphthalene derivatives.


2. Investigations, results and discussion

Chromatographic separation of an ethanolic extract of rhizomes of *A. tenuifolius* yielded 1,8-dimethoxynaphthalene (1) [14], previously isolated from *Daldinia concentrica* [15], chrysophanol (4), previously isolated from *A. microcarpus* [2], fallacinal (5), previously isolated from the lichen *Cetraria cucullata* [16], β -sitosterol and stigmasterol [17], in addition to two new naphthalene derivatives 2 and 3.

The ¹H NMR spectrum of **2** (Table) showed signals of an aromatic methyl group (δ 2.37, s, 3H), an acetyl group (δ 2.63, s, 3H), a methoxyl group (δ 4.07, s, 3H), four aromatic protons (from δ 6.5 to δ 7.5) and an aldehydic or hydroxyl group as a singlet at δ 9.74 ppm. The presence of an IR absorption band at 3362.8 cm⁻¹ and the disappearance of the proton singlet at δ 9.74 in D₂O confirm the existence of a hydroxyl group. Thus an acetyl-, hydroxy-, methoxy-, methylnaphthalene derivative is most

Table: ¹H NMR data of compounds 2 and 3 (δ-value, multiplicity (J Hz), 400 MHz, CDCl₃)

H-atom	2	3
H-4	7.10 brs	7.39 brs
H-5	7.30 d (7.70)	7.33 d (7.70)
H-6	7.33 t (7.7)	7.38 t (7.7)
H-7	6.76 d (7.7)	6.84 d (7.7)
OCH ₃	4.07 s	4.02 s
	_	3.82 s
OH	9.74 s	-
CH ₃	2.37 s	2.35 s
COCH ₃	2.63 s	2.61 s

probable. The MS gave the expected molecular ion peak, M^+ at m/z 230 and a base peak (100%) at m/z 215 due to M-CH₃. Comparing the results with literature data, the compound was assigned as the 8-methyl ether of the known naphthalene derivative musizin, previously isolated from *Rhamnus procumbens* [18].

The ¹H NMR spectrum of **3** (Table) was similar to that of **2**, with the hydroxyl group singlet at δ 9.74 no longer present and a further methoxyl group singlet at δ 3.82. Thus, a dimethyl ether of musizin [18] is proposed. No hydroxyl group absorptions were seen in the IR spectrum. The MS confirmed the proposed structure. The molecular ion, at m/z 244 due to C₁₅H₁₆O₃, gave a base peak (100%) at m/z 229 by loss of a methyl group. The ¹³C NMR chemical shifts (Experimental) were in agreement with the proposed structure.

Some naphthalene derivatives have been isolated from *Daldinia* [15], *Rhamnus* [18] and *Diospyros* [19] species. This is the first report of naphthalene derivatives from the genus *Asphodelus*.

3. Experimental

3.1. General

GC/MS spectra were recorded on a QP-7000 Shimadzu, with a fused silica capillary column (30 m \times 0.25 mm ID), film thickness 0.25 μ m (5% phenyl, 95% methylsilicon), and evaluation on an IBM computer with Class 500 software and a NIST library for comparison; NMR spectra were recorded on a Bruker FT-400 MHz; IR spectra were taken on a Perkin Elmer Spectrum RX FT IR spectrometer.

3.2. Plant material

Asphodelus tenuifolius Cav. (Asphodelaceae) was collected in April 2000 from Al-Shaffa top, the ring road, K.S.A., and identified by Prof. Dr. Ab-

delaziz Faied, Botany Department, Faculty of Science, King Abdulaziz University. A voucher specimen was deposited at the Herbarium of King Abdulaziz University.

3.3. Processing of the plant material

Underground tubers (500 g) were air-dried, cut into small pieces and soaked in ethanol (~21) at room temperature for 24 h. The crude extract (5.8 g) obtained by filtration and evaporation was defatted with cold methanol.

3.4. Separation of the compounds

The defatted extract (3.1 g) was separated on Silica Gel CC into two fractions: At 1 (1.9 g, eluted by pet. ether/ether 3:1) and At 2 (0.2 g, eluted by pet. ether/ether 1:1). Fraction At 2 mainly contained fats. Most of the material was present in At 1, which was reseparated by a silica gel flash CC into four fractions (At 11, At 12, At 13a and At 13b). Fraction At 11 (620 mg, eluted by pet. ether/ether 9:1) was separated by GC/MS into 1 (17%, Rt 11.22 min), 4 (10%, Rt 21.92 min) and 5 (73%, Rt 22.49 min). Fraction At 12 (340 mg, eluted by pet. ether/ether 4:1) according to GC/ MS contained 1 (13%, Rt 11.22 min), 2 (62%, Rt 13.36 min) and 3 (25%, Rt 14.61 min). Fraction At 13a (280 mg, eluted by pet. ether/ether 7:3) was separated by TLC (silica gel, pet. ether/ether 4:1) into 3 (52 mg, R_t) 0.51) and 2 (47 mg, Rt 0.46). Fraction At 13b (120 mg, eluted after At 13a by the same solvent system) was a mixture of β -sitosterol and stigmasterol (5:1).

3.5. 2-Acetyl-8-methoxy-3-methyl-1-naphthol (2)

Yellowish gummy material; IR, v_{max}^{CHCl3}, cm⁻¹: 3362.8 (OH), 2921.4, 2851.4 (str. CH, CH₃), 1697.5 (aromatic ketone), 1633.3 (C=C), 1581.3, 1463.8, 1359.4, 1270.1, 1253.0, 1092.5, 967.4, 842.2, 758.5; ¹H NMR: (Table); MS, m/z (rel. int.): 230 $[M]^{+\bullet}$ (90.3) (corresponding to $C_{14}H_{14}O_3$), $\begin{array}{c} \hline 215 \quad [M-CH_3]^{+*} \quad (100), \quad 200 \quad [215-CH_3]^{+*} \quad (66.7), \quad 187 \quad [215-CO]^{+*} \quad (14.3), \\ \hline 172 \quad [200-CO]^{+*} \quad (3.2), \quad 159 \quad (9.5), \quad 144 \quad (11.1), \quad 128 \quad (17.5), \quad 115 \quad (38.1), \quad 77 \end{array}$ (7.9), 63 (14.3),

3.6. 2-Acetyl-1,8-dimethoxy-3-methylnaphthalene (3).

Yellowish gummy material; IR, v^{CHCl₃}, cm⁻¹: 2917.2, 2849.4 (str. CH, Tenowisi gining material, ik, v_{max} , cm \cdot 2917.2, 2649.4 (su, CH, CH₃), 1702.3 (aromatic ketone), 1624.0 (C=C), 1568.3, 1462.0, 1336.8, 1271.7, 1099.2, 949.7, 762.5; ¹H NMR: (Table); ¹³C NMR: δ -value (multiplicity, assignment): 206.32 (s, C=O), 155.96, 152.92 (s, C-1, C-8), 137.23, 134.55, 132.14 (s, C-2, C-4a, C-8a), 111.83 (s, C-3), 127.11, 125.15 (s, C-1), 125.25 (s, C-1), 125 125.15, 120.33, 105.35 (d, C-4, C-5, C-6, C-7), 63.98, 55.99 (q, $2 \times OCH_3$), 19.04 (q, CH₃); MS, m/z (rel. int.): 244 [M]^{+•} (68.3) (corresponding to C₁₅H₁₆O₃), 229 [M-CH₃]^{+•} (100), 214 [229-CH₃]^{+•} (9.5), 201 $[229-CO]^{+}$ (1.6), 186 $[214-CO]^{+}$ (28.6), 169 (4.8), 155 (4.8), 139 (9.5), 128 (19.1), 115 (36.5), 63 (11.0).

References

- 1 Collenette, S.: Wildflowers of Saudi Arabia, p. 78 National Commission for Wildlife Conservation and Development, Kingdom of Saudi Arabia. 1999
- 2 Rizk, A. M.; Hammouda, F. M.; Abdel-Gawad, M. M.: Phytochemistry 11. 2122 (1972)
- 3 Hammouda, F. M.; Rizk, A. M.; Seif-El-Nasr, M. M.: Pharmazie 29, 609 (1974)
- 4 Abdel-Gawad, M.; Raynaud, J.; Netien, G.: Planta Med. 30, 232 (1976)
- 5 Sisini, A.; Picci, V.; Segni, P.; Virdis-Usai, R.: Boll. Soc. Ital. Biol. Sper. 54, 1794 (1978)
- 6 Adinolfi, M.; Lanzetta, R.; Marciano, C. E.; Parrilli, M.; De Giulio, A.: Tetrahedron 47, 4435 (1991)
- Abdel-Fattah, H.: Int. J. Pharm. 35, 274 (1997)
- 8 Bonsignore, L.; Cottiglia, F.; Loy, G.; Begala, M.; Sanna, L.; Scordo, F.; Ferpi, M.: Boll. Chim. Farm. 137, 186 (1998)
- 9 Abdel-Fattah, H.: Acta Pharm. 41, 147 (1991)
- 10 Utrilla, M. P.; Cabo, J.; Jimenez, J.; Miro, M.: Pharmazie 44, 358 (1989)
- 11 Adinolfi, M.; Corsaro, M. M.; Lanzetta, R.; Parrilli, M.; Scopa, A.: Phytochemistry 28, 284 (1989)
- Cabo, J.; Jimenez, J.; Miro, M.; Garcia, S.: Ars. Pharm. 23, 193 (1982) 12
- 13 Madaan, T. R.; Bhatia, I. S.: Indian J. Biochem. Biophys. 10, 55 (1973) 14 Cosmo, R.; Hambley, T. W.; Stemhell, S.: Acta Crystallogr. Sect. B 46,
- 557 (1990)
- 15 v. Gemert, J. T.: Austr. J. Chem. **21**, 2203 (1968) 16 Krivoshchekova, O. E.; Maximov, O. B.; Stepanenko, L. S.; Mishchenko, N. P.: Phytochemistry 21, 193 (1982)
- 17 Abdel-Mogib, M.: Phytochemistry 51, 445 (1999)
- 18 18 Majumder, P. L.; Chattopadhyay, A.; Bagchi, N.: J. Indian Chem. Soc. 62, 616 (1985)
- 19 Sankaram, A. V. B.; Sidhu, G. S.: Phytochemistry 10, 458 (1971).

Received June 6, 2001 Accepted August 28, 2001

Dr. M. Abdel-Mogib Prof. of Organic Chemistry King Abdulaziz University P.O. Box 80203 Jeddah-21589 Saudi Arabia mamdouh_m@hotmail.com