ORIGINAL ARTICLES

National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, P.R. China

Two new components from Serratula strangulata Iljin

JING-QIU DAI, YAN-PING SHI, LI YANG and YU LI

From the alcoholic extract of the whole plants of *Serratula strangulata*, two new compounds have been isolated and their structures established by spetroscopic methods as strangusin-A (1) and strangusin-B (2)

1. Introduction

The genus *Serratula* (Compositae) consists of about 70 species distributed throughout the world. Among them, *S. chinensis* has been used as a folk medicine to treat chickenpox, toxicosis, high cholesterol [1]. A phytochemical study of the plant *S. strangulata* has not been reported so far. In this paper, we describe the isolation and structural elucidation of the chemical constituents from the whole plant of this species.

2. Investigations, results and discussion

The alcoholic extract of the air-dried and powdered whole plants of *S. strangulata* was partitioned between water and ethyl acetate. The EtOAc-soluble part was concentrated and chromatographed over silica gel, to yield strangusin-A (1), strangusin-B (2), rheosimin-4-O- β -D-glucopyranside (3) [2], zingerone-4-O- β -D-glucopyranside (4) [2], 2-(p-

hydroxyphenyl)-ethanol-1-O- β -D-glucopyranside (5) [3], *p*-methoxyphenyl-1-O- β -D-glucopyranoside (6) [4], 3,4-dihydroxyphenylformic acid (7) [5], Olmelin (8) [6], 5,6,7trihydroxy-4'-methoxy-isoflavine (9) [7].

Compound 1, obtained as a colourless gum, was assigned the molecular formula $C_{26}H_{32}O_{11}$ by HR-FABMS (*m/z* 520.1957; Calc.: 520.1945). Its UV spectrum showed bands at 242 (log ε 4.23) and 280 nm (4.12), characteristic of a biphenyl chromophore. The IR spectrum (KBr) indicated the presence of hydroxyl (3383 cm⁻¹) and phenyl groups and double bonds (2929, 1602, 1514, 1462 cm⁻¹). The mass spectrum exhibited a base peak at m/z 325 [M- $C_6H_{11}O_5-OMe-H]^+$ and fragment ions at m/z 357 [M- $C_6H_{11}O_5]^+$ and 340[M- $C_6H_{11}O_5-OH]^+$. The ¹H NMR spectrum indicated the presence of two 1,2,4-trisubstituted benzene rings [δ 7.04 (1 H, d, J = 2.1 Hz), 6.91 (1 H, dd, J = 8.3, 2.1 Hz), 7.13 (1 H, d, J = 8.3 Hz); 6.98 (1 H, d, J = 1.8 Hz), 6.82 (1 H, dd, J = 8.2, 1.8 Hz), 6.78 (1 H, d, J = 8.2 Hz], two methoxyl groups [3.83, 3.85 (each 3 H, s)] and an anomeric proton of glucopyranoside [δ 4.90 (d, J = 7.1 Hz)], acid hydrolysis of 1 gave glucose which was identified by TLC. Furthermore, the MS cleavage fragments of 1 at m/z 127 (CH₃-ArCHO), 118 (ArCH=C=O), 107 $(ArCH=OH^+)$, 79 (ArH_2^+) , and the ¹H NMR signals at δ 3.08 (m, H-1, 5), 4.66 (d, J = 4.3 Hz, H-2, 6), 4.20 (dd, J = 9.0, 6.6 Hz, H-4 α , 8 α), 3.85 (dd, J = 9.0, 2.4 Hz, H-4 β , 8 β), suggested 1 to be a lignan containing 3,7-dioxabicyclo [3.3.0] octane ring system [8-9].

In the ${}^{1}\text{H}-{}^{1}\text{H}$ COSY spectrum of **1**, there were significant cross-peaks between 3.08 (H-1, 5) and 3.85 (H-4 α , 8 β), and 4.20 (H-4 $\alpha,$ 8 $\alpha),$ H-1 and 4.66 (H-2); H-5 and 4.71 (H-6). This further testified the presence of furofuran ring in 1. In the NOESY spectrum of 1, there were significant cross-peaks between H-1 and H-8 α , H-2 and H-8 β , H-5 and \hat{H} -4 α , H-6 and H-4 β , indicating H-1, 5 as α -orientated and H-2, 6 as β -orientated. Now, the only structural problem left was to ascertain the locations of glucose, hydroxy and two methoxyl groups. The HMBC spectrum exhibited related peaks at δ 156.65 (C-2') and 3.85 (OCH₃) and 7.04 (H-3'); 156.73 (C-2") and 3.83 (OCH₃) and 6.98 (H-3"); 124.60 (C-1') and 7.13 (H-6') and 4.66 (H-2); 122.96 (C-1") and 6.78 (H-6") and 4.71 (H-6); 155.97 (C-4") and 6.82 (H-5") and 6.98 (H-3"); 157.25 (C-4') and 6.91 (H-5') and 7.04 (H-3') and 4.90 (the glucosyl C-1 proton signal). Consequently, the structure of 1 was established. This appears to be the first reported occurrence of a lignan in the family Serratula.

Compound **2** was obtained as a colourless gum. The IR spectrum showed the presence of hydroxyl (3389cm⁻¹), aromatic rings (3008, 1600, 1510 cm⁻¹) and carbonyl group (1708 cm⁻¹). FABMS exhibited the [M]⁺ peak at m/z 670. The ¹³C NMR and DEPT spectrum indicated that compound **2** possesses $16 \times$ CH, $7 \times$ CH₂, $1 \times$ CH₃

and seven quarternary carbon atoms. Thus, the molecular formula of 2 was determined as $C_{31}H_{42}O_{16}$, which was confirmed by HR-FABMS (m/z 670.2469; Calc.: 670.2473). The ¹H NMR spectrum displayed resonances at δ 6.96 (1 H, d, J = 8.2 Hz), 6.62 (1 H, d, J = 1.4 Hz), 6.51 (1 H, dd, J = 8.2, 1.4 Hz), 6.74 (1 H, d, J = 1.1 Hz), 6.65 (1 H, d, J = 8.0 Hz), 6.56 (1 H, dd, J = 8.0, 1.1 Hz), indicating the presence of two 1,2,4-trisubstituted benzene rings. The ¹H NMR spectrum also showed the presence of two anomeric protons of glucopyranoside [δ 4.68 (d, J = 7.3 Hz), 4.26 (d, J = 7.6 Hz). These data together with ¹³C NMR signals at δ 103.87 (CH), 74.19 (CH), 76.93 (CH), 70.70 (CH), 77.17 (CH), 62.03 (CH₂), and 8 104.30 (CH), 74.49 (CH), 77.47 (CH), 71.12 (CH), 77.68 (CH), 62.37 (CH₂), indicated compound **2** to have two β -glucosyl moiety [10].

In the ${}^{1}H{}^{-1}H$ cosy spectrum of 2, there were significant cross-peaks between δ 2.67 (H-7) and 2.53 (H-8), 1.75 (H-8') and 2.61 (H-7') and 3.83 (H-9'), suggesting the presence of the partial structures -CH2-CH2- and -CH₂-CH₂-CH₂-, respectively. the HMBC spectrum exhibited related peaks at δ 137.93 (C-1) and 2.67 (H-7) and 6.62 (H-2) and 6.51 (H-6); 144.56 (C-4) and 6.96 (H-5) and 4.68 (the glucosyl C-1 proton signal); 148.24 (C-3) and 3.83 (OCH3) and 6.62 (H-2); 175.26 (C-9) and 2.53 (H-8) and 3.83 (H-9'); 134.16 (C-1') and 2.61 (H-7') and 6.74 (H-2') and 6.56 (H-6'); 148.30 (C-4') and 6.65 (H-5') and 4.26 (the glucosyl C-1' proton signal). Furthermore, in its FABMS spectrum, the fragment ions at m/z342 ($C_{16}H_{21}O_8^+$) and 358 ($C_{16}H_{21}O_9^+$) was due to the α fragmentation around carbonyl group. Thus, the structure of 2 was deduced.

Table 1: ¹H and ¹³C NMR data of compound 1 ((CD₃)₂CO, TMS, ppm)^{*}

$\delta_{\rm H}$	δ_{C}	DEPT
3.08 m	55.09	СН
4.66 d (4.3)	86.56	CH
4.20 dd (9.0, 6.6)	72.17	CH_2
3.85 dd (9.0, 2.4)		
3.08 m	55.21	CH
4.71 d (4.2)	86.30	СН
4.20 dd (9.0, 6.6)	72.26	CH_2
3.85 dd (9.0, 2.4)		-
	124.60	С
	156.65	С
7.04 d (2.1)	107.31	СН
	157.25	С
6.91 dd (8.3, 2.1)	109.57	СН
7.13 d (8.3)	130.13	СН
3.85 s	56.39	CH ₃
	122.96	C
	156.73	С
6.98 d (1.8)	108.14	CH
	155.97	С
6.82 dd (8.2, 1.8)	110.22	СН
6.78 d (8.2)	130.50	CH
3.83 s	56.20	CH ₃
		-
4.90 d (7.1)	102.48	CH
3.44 dd (7.1, 8.0)	74.47	СН
3.83 dd (8.1)	77.70	СН
3.46 dd (8.0)	71.06	СН
3.50 ddd (8.0, 4.9, 1.1)	77.54	CH
3.67 dd (11.8, 4.9)	62.42	CH_2
3.80 dd (11.8, 1.1)		-
	$\frac{\delta_{H}}{4.66 d (4.3)}$ 3.08 m 4.66 d (4.3) 4.20 dd (9.0, 6.6) 3.85 dd (9.0, 2.4) 3.08 m 4.71 d (4.2) 4.20 dd (9.0, 6.6) 3.85 dd (9.0, 2.4) 7.04 d (2.1) 6.91 dd (8.3, 2.1) 7.13 d (8.3) 3.85 s 6.98 d (1.8) 6.82 dd (8.2, 1.8) 6.78 d (8.2) 3.83 s 4.90 d (7.1) 3.44 dd (7.1, 8.0) 3.83 dd (8.1) 3.46 dd (8.0) 3.50 ddd (8.0, 4.9, 1.1) 3.67 dd (11.8, 4.9) 3.80 dd (11.8, 1.1)	$\begin{array}{c c} \delta_{\rm H} & & \delta_{\rm C} \\ \hline 3.08 \ {\rm m} & 55.09 \\ 4.66 \ {\rm d} (4.3) & 86.56 \\ 4.20 \ {\rm dd} (9.0, 6.6) & 72.17 \\ 3.85 \ {\rm dd} (9.0, 2.4) & & \\ 3.08 \ {\rm m} & 55.21 \\ 4.71 \ {\rm d} (4.2) & 86.30 \\ 4.20 \ {\rm dd} (9.0, 6.6) & 72.26 \\ 3.85 \ {\rm dd} (9.0, 2.4) & & \\ & 124.60 \\ 156.65 \\ 7.04 \ {\rm d} (2.1) & 107.31 \\ 157.25 \\ 6.91 \ {\rm dd} (8.3, 2.1) & 109.57 \\ 7.13 \ {\rm d} (8.3) & 130.13 \\ 3.85 \ {\rm s} & 56.39 \\ 122.96 \\ 156.73 \\ 6.98 \ {\rm d} (1.8) & 108.14 \\ 155.97 \\ 6.82 \ {\rm dd} (8.2, 1.8) & 110.22 \\ 6.78 \ {\rm d} (8.2) & 130.50 \\ 3.83 \ {\rm s} & 56.20 \\ \hline 4.90 \ {\rm d} (7.1) & 102.48 \\ 3.44 \ {\rm dd} (7.1, 8.0) & 74.47 \\ 3.83 \ {\rm dd} (8.1) & 77.70 \\ 3.46 \ {\rm dd} (8.0, 4.9, 1.1) & 77.54 \\ 3.67 \ {\rm dd} (11.8, 4.9) & 62.42 \\ 3.80 \ {\rm dd} (11.8, 1.1) & \\ \hline \end{array}$

* Assignment from 1H-1H COSY HMQC, HMBC and NOESY

3. Experimental

3.1. Eauipment

¹H, ¹³C NMR and 2D NMR spectra were scanned on a Bruker AM 400 FT-NMR spectrometer with TMS as internal reference. IR spectra were recorded on a Shimadzu UV-260 spectrophotometer. HR-FABMS, FABMS and EIMS data were obtained on a Bruker APEX II FT-MS and HP-5988 MS spectrometers respectively. Silica gel (200-300, 300-400 mesh) was used for CC and silica gel GF254 for TLC. Spots were detected on TLC under UV light or by heating after spraying with 5% H₂SO₄.

3.2. Plant material

ľ

The plant material was collected in August 1996 in Gansu Province of China and identified by Prof. Yong-Hong Zhang of Lanzhou University. A voucher specimen (No. 9602) has been deposited at the Lab. of Natural Products, Department of Chemistry, Lanzhou University, Lanzhou, P.R. China.

3.3. Extraction and isolation

The air-dried whole plants of S. strangulata (3 kg) were powdered and extracted three times (each 5 days) with alcohol at room temperature. The extract was concentrated under reduced pressure. The residue was suspended in H₂O, and extracted with pet. ether, EtOAC and BuOH, respectively. The EtOAC extract (40 g) was obtained and subjected to CC over silica gel (800 g, 200-300 mesh) with a pet. ether-Me₂CO gradient. It was separated into 6 crude fractions (fractions 1-6). From fraction 3 (pet. Ether-Me₂CO 7:1), a crude material was obtained and purified by rechromatography on a silica gel column (300-400 mesh with pet. Ether-Me₂CO 8:1) to give compounds 8 (70 mg) and 9 (50 mg). Fraction 5 (pet. Ether- $Me_2CO 5:1$) (15 g) was further separated by CC over silica gel using CHCl₃-MeOH (30:1) (2500 ml) and pet. ether-Me₂CO (5:1) (3000 ml) as eluants, and purified by preparative TLC with pet. ether-Me_2CO as irrigant finally giving 20 mg of 1, 15 mg of 2, 30 mg of 3, 15 mg of 4, 20 mg of 5, 25 mg of 6, 45 mg of 7.

The known compounds were identified either by comparing their properties (m.p., IR, ¹H and ¹³C NMR) with literature values or by comparing with authentic samples.

Fable 2:	¹ H and	¹³ C NMR	data	of	compound	2	((CD ₃) ₂ CO,
	TMS, pj	om)*					

No.	$\delta_{H}~(Hz)$	$\delta_{\rm C}$	DEPT
1		137.93	С
2	6.62 d (1.4)	113.11	CH
3		148.24	С
4		144.56	С
5	6.96 d (8.2)	116.71	CH
6	6.51 dd (8.2, 1.4)	119.98	CH
7	2.67 dd (6.6)	32.37	CH_2
8	2.53 dd (6.6)	45.26	CH_2
9		175.26	С
1'		134.16	С
2'	6.74 d (1.1)	115.57	CH
3'		148.30	С
4'		145.56	С
5'	6.65 d (8.0)	119.00	CH
6'	6.56 dd (8.0, 1.1)	121.46	CH
7′	2.61 dd (7.5)	32.11	CH ₂
8'	1.75 m	29.79	CH ₂
9′	3.83 dd (6.0)	69.21	CH ₂
glu			
1	4.68 d (7.3)	103.87	CH
2	3.20 dd (7.3, 8.0)	74.19	CH
3	3.41-3.77 m	76.93	CH
4	3.41-3.77 m	70.70	CH
5	3.41-3.77 m	77.17	CH
6	3.41-3.77 m	62.03	CH ₂
1'	4.26 d (7.6)	104.30	CH
2'	3.34 dd (7.6, 8.1)	74.49	CH
3'	3.41-3.77 m	77.47	CH
4'	3.41-3.77 m	71.12	CH
5'	3.41-3.77 m	77.68	CH
6'	3.41-3.77 m	62.37	CH ₂

* Assignment from 1H-1H COSY, HMQC and HMBC

3.4. Strangusin-A (1)

Colourless gum. $[\alpha]_{22}^{D}$ –59.8 (*c* 0.26, MeOH); UV (CHCl₃): 242 (log ε 4.23) and 280 nm (4.12); IR v_{max}^{KBr} cm⁻¹: 3383, 2929, 2870, 1602, 1462, 1271, 1127, 1074, 1037, 815, 628; FABMS [M]⁺ *m/z*: 520 (11), 481(5), 449 (7), 425 (10), 389 (22), 357 (62), 325 (100), 311 (49), 297 (45), 265 (40), 221 (10), 205 (20), 127 (24), 96 (2.5), 80 (10); ¹H and ¹³C NMR: Table1.

3.5. Strangusin-B (2)

Colourless gum; $[\alpha]_D^{22}$ -81.7 (*c* 0.30, MeOH); IR v_{max}^{KBr} cm⁻¹: 3389, 2922, 1708, 1601, 1514, 1430, 1370, 1276, 1074, 799, 582; FABMS [M]⁺ *m/z*: 670 (5), 661 (7), 571 (8), 525 (9), 449 (10), 433 (21), 419 (10), 403 (8), 489 (15), 471 (7), 357 (33), 341 (100), 325 (45), 311 (24), 297 (27), 265 (20), 205 (7), 173 (8), 157 (6), 127 (25), 99 (15), 80 (7); ^{1}H and ^{13}C NMR: Table 2.

Acknowledgements: The authors are grateful to Prof. Yong-hong Zhang, Department of Chemistry, Lanzhou University, for his help in identification of plant material, and the National Laboratory of Applied Organic Chemistry and Analysis Center, Lanzhou University, P.R.China for measuring ¹H, ¹³C NMR spectra and FAB-MS, HR-FABMS, respectively. This research project was supported by the Natural Science Foundation of Gansu province in China.

References

- 1 Liu, S. W.: Flora Rei pulicae popularis Sinicae, vol. 78, p 165. Science Press, Beijing 1987
- 2 Ryuichi, H.: Phytochemistry 16, 1587 (1977)
- 3 Yoshiteru, I. D.: Phytochemistry 35, 209 (1994)
- 4 Bilia, A. R.; Escudero, R. M.; Alvarez, M. L.: Planta Med. 60, 569 (1994)
- 5 Niemann, G. J.; Vander, K. A.: Physiol Mol. Plant pathol. 38, 417 (1991)
- 6 Wahala, K.; Hase, T. A.: Heterocycles 28, 183 (1989)7 Horie, T.: Chem. Pharm. Bull. 44, 486 (1996)
- 8 Duffield, A. M.: J. Heterocyclic Chem. 4, 16 (1967)
- 9 Pelter, A.: J. Chem. Soc. (C). 1376 (1967)
 10 Gong, Y. H.: ¹³C Nuclear Magnetic Resonance of Natural Product, p. 396. Yunnan Sci. Tech. Press, 1986

Received June 11, 2001 Accepted October 30, 2001 Jing-Qui Dai National Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou, Gansu 730000 China