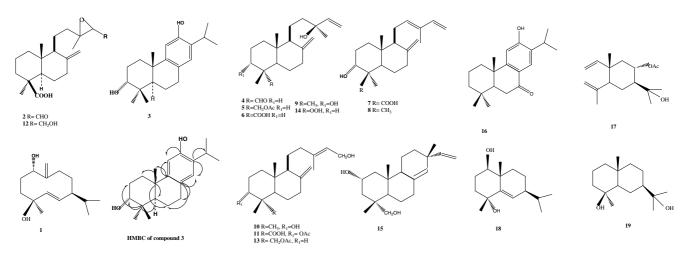
Department of Chemistry National Laboratory of Applied Organic Chemistry Lanzhou University, Lanzhou, P.R. China

Terpenes from Juniperus przewalskii and their antitumor activities

WEN-SHU WANG, ER-WEI LI and ZHONG-JIAN JIA

Two new diterpenes were isolated from *Juniperus przewalskii*, together with 17 known terpenes. Their structures were elucidated by spectroscopic methods (IR, MS, ¹H, ¹³C and 2DNMR). In addition, 3α -hinokiol (**3**) and 3α -hydroxymannol (**9**) exhibited effective antitumor activities to cervical carcinoma (HeLa) and human ovaria carcinoma (HO-8910) cell lines.

1. Introduction


Fifteen species of Juniperus are widely distributed in China from the north to the south [1]. Among them, Juniperus przewalskii grows in the lower parts of the Qinzang plateau, at an altitude of 3000 m above sea level. Its leaf has long been used in China in antitussive and haemostatic drugs [2]. A series of diterpenes and sesquiterpenes have been isolated from species of Juniperus as described in previous papers [3-9]. In addition, the diterpenes showed biological activities such as inhibition of PAF [10], antitumor, antileukaemic, antibiotic [11, 12] and insecticidal activity [3]. From the fruits of J. przewalskii, a new labdane 15oxolaba-13(14)-epoxy-8(17)-en-19-oic acid (2) and a new abietane 3α -hinokiol (3) were has been obtained, in addition to such known diterpenes as 13-epitorulosal (4) [13]; 19-acetoxy-13(s)-hydroxylabda-8(17),14-diene (5) [13]; 13-epi cupressic acid (6) [13]; 3α-hydroxy-labda-8(17),12E,14-trien-19oic acid (7) [10]; 3α-hydroxy-labda-8(17),12E,14-triene (8) [10]; 3α-hydroxymannol (9) [10]; 3α ,15-dihydroxy-labda-8(17),13E-diene (10) [10]; 3α acetoxyisocupressic acid (11) [10]; 13,14-epoxyimbricatolic acid (12) [9]; agatholate (13) [14] 4-hydroperoxide-of nor-torulosol (14) [15]; isopimara 8(14), 15-diene- $2\alpha, 18$ diol (15) [16] which is reported as a natural compound for the first time; and sugiol (16) [5], and four known sesquiterpenes (+)-8α-acetoxyelemol (17) [17]; eudesm-5ene-1 β ,4 α -diol (18) [18]; cryptomeridiol (19) [19] and germacra-5,10(14)-dien-1 α ,4 β -diol (1) [20]. Their structures were elucidated by spectroscopic methods. The antitumor activities of compounds 3, 9 and 16 were tested on cervical carcinoma (HeLa) and human ovarian carcinoma (HO-8910) cell lines, only compound 3 and compound 9 showing strong and moderate cytotoxicities to the two kinds of cancer cells.

2. Investigations, results and discussion

The air-dried powdered fruits of *J. przewalskii* were extracted with petroleum ether (60–90 °C) at room temperature. The extract was chromatographed on a silica-gel column with a petroleum ether (60–90 °C)–EtOAc gradient in developing ratio. This resulted in two novel diterpenes, 15-oxolaba-13(14)-epoxy-8(17)-en-19-oic acid (2) and 3α -hinokiol (3), together with 17 known compounds.

The molecular formula of compound 2 was determined as $C_{20}H_{30}O_4$ by the molecular ion peak $[M]^+ = 334$ in the EIMS spectrum and the ¹³C NMR and DEPT data (Table 1). Its IR spectrum include absorption peaks at 1720 cm^{-1} (CHO) and 3320 cm^{-1} (COOH). In ^fH NMR (Table 2) three methyl groups appeared at δ 0.60 (s, 3 H) δ 1.24 (s, 3 H) and δ 1.44 (s, 3 H) and characteristic methylene signals appeared at δ 4.48 (brs, 1 H), δ 4.87 (brs, 1 H), indicating that 2 had a labdane skeleton, like the 8(17)-ene labdanes reported in the literature [9, 10, 13]. The ¹³C NMR spectrum showed an epoxy group δ 56.3 (CH) δ 64.5 (C), corresponding to the signal δ 3.15 (d, J = 5.2 Hz 1 H) and δ 9.36 (d, J = 5.2 Hz, 1 H) in the ¹H NMR. Comparing its ¹H NMR spectra with those of 13(14) epoxy-diterpenes in the literature [21], its structure deduced as 15-oxolaba-13(14)-epoxy-8(17)-en-19-oic acid.

The formula of compound **3** was deduced as being $C_{20}H_{30}O_2$ from the molecular ion peak $[M]^+ = 302$ in the EIMS spectrum. While the ¹³C NMR and DEPT data showed $5 \times CH_3$, $4 \times CH_2$; $5 \times CH$; and $6 \times C$ (Table 1), δ 6.63 (s, 1 H) and δ 6.83 (s, 1 H) in the ¹H NMR demonstrated 1,2,4,5-tetra benzene. There were also five methyl groups in the ¹H NMR δ 0.95 (s, 3 H); δ 1.03 (s, 3 H); δ 1.19 (s, 3 H) and δ 1.23 (d, J = 7.2 Hz, 6 H) and an oxygenated proton δ 3.49 (t, J = 2.8 Hz, 1 H). The ¹H-

Pharmazie 57 (2002) 5

ORIGINAL ARTICLES

Table 1: ¹³C NMR data of compounds 2 and 3^a

С	2	3	С	2	3
1	39.2 (CH ₂)	31.6 (CH ₂)	11	32.1 (CH ₂)	110.9 (CH)
2	19.9 (CH ₂)	25.9 (CH ₂)	12	32.6 (CH ₂)	150.7 (C)
3	37.9 (CH ₂)	75.8 (CH)	13	64.5 (C)	131.5 (C)
4	44.2 (C)	37.5 (C)	14	56.3 (CH)	126.6 (CH)
5	55.5 (CH)	43.6 (CH)	15	199.8 (CH)	26.8 (CH)
6	26.1 (CH ₂)	18.8 (CH ₂)	16	17.4 (CH ₃)	22.5 (CH ₃)
7	38.6 (CH ₂)	29.5 (CH ₂)	17	106.9 (CH ₂)	22.8 (CH ₃)
8	147.5 (C)	127.2 (C)	18	22.2 (CH ₃)	22.1 (CH ₃)
9	55.9 (CH)	148.3 (C)	19	182.2 (C)	28.1 (CH ₃)
10	40.6 (C)	37.7 (C)	20	12.7 (CH ₃)	24.6 (CH ₃)

¹³C NMR, 100 Hz, CDCL₃, TMS, δ, ppm; ^a DEPT data in parentheses

¹H COSY and HMQC studies indicated fragments such as: -CH₂CH₂CHOH-; -CHCH₂CH₂- and CH₃CHCH₃ and two aromatic CH groups. HMBC was then used to join these fragments and groups into an abietane skeleton, whose planar structure is the same as hinokiol [22]. However in the ¹H- ¹H COSY, H-3 in this compound coupled with H-2α, H-2β only in 2.8 Hz, showing that H-3β was in equitol orientation contrary to δ 3.35 (dd, $J_{2\beta,3\alpha} = 8.5$, $J_{2\alpha,3\alpha} = 5$ Hz, 1 H) of H-3α in hinokiol. Finally, CH₃-20 showed a cross peak with H-7β in the NOESY spectrum, but no cross peak with H-5α. Thus this compound was deduced as being 3α-hinokiol.

3. Experimental

3.1. Equipment

Optical rotation: Perkin-Elmer 241 polarimeter solvent MeOH, IR spectra were taken on a Nicolet 170sx FT-IR spectrometer. ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectra and 2D NMR spectra (HMQC, HMBC) were recorded on a Bruker AM 400FT-NMR spectrometer with TMS as internal standard. EIMS data were obtained on a HP-5988 MS spectrometer. Silica gel (200–300 mesh) was used for CC and silica GF₂₅₄ for TLC. Spots were detected on TLC under UV or by heating after spraying with 5% H₂SO₄ in C₂H₅OH.

3.2. Plant material

The fruit of *Juniperus przewalskii* was collected in Sept. 1999, in Luqu County, Gansu Province, People's Republic of China, and was identified by Prof. Y. J. Zhang, Department of Biology, Lanzhou University. A voucher specimen (No. 990923) is deposited in Department of Chemistry Lanzhou University.

Table 2: ¹H NMR data of compounds 2 and 3^a

3.3. Extraction and isolation

Air dried and powdered fruits of J. przewalskii (1.0 kg) were extracted with petroleum ether (60–90 °C) to give a residue of 73.0 g. The residue was put on a silica-gel column with petroleum ether (60-90 °C)-EtOAc as a developing gradient yielding five fractions. Compound 8 (5 mg) was as a development gradient yretuing into fractions. Compound **5** (5) was purified by PTLC (CHCl₃-acetone 40:1) from Fr. 1 (petroleum ether $(60-90\ ^{\circ}C)$ -EtOAc 20:1). From Fr. 2 (petroleum ether $(60-90\ ^{\circ}C)$ -EtOAc 10:1) compounds **4** (10 mg), **14** (5 mg), **5** (7 mg), **16** (30 mg) and 17 (5 mg) were obtained by repeated silica-gel column chromatography with petroleum ether (60–90 °C)–EtOAc as eluant. When rechromatographed on a silica-gel column with petroleum ether (60-90 °C)-EtOAc then CHCl3-acetone, compounds 3 (80 mg), 7 (6 mg), 6 (5 mg) and 13 (4 mg) were obtained from Fr. 3 (petroleum ether (60-90 °C)-EtOAc 8:1). Compound 2 (2 mg) was obtained on a silica-gel column with petroleum ether (60-90 °C)-EtOAc 6:1 from Fr. 4 (petroleum ether (60-90 °C)-EtOAc 5:1), from which compound 12 (3 mg), 9 (70 mg), $\mathbf{18}$ (8 mg) and $\mathbf{11}$ (7 mg) were also obtained. Fr. 5 (petroleum ether (60-90 °C)-EtOAc 3:1) was again chromatographed on a silica-gel column to give compound 10 (8 mg), and then crude 1 was purified by silica CC with CHCl3-acetone 40:1 to give 1 (8 mg), while compounds 19 (3 mg) and 15 (4 mg) were also obtained from Fr. 5 by repeated chromatography on silica CC with petroleum ether (60-90 °C)-EtOAc 3:1 and $CHCl_3$ -acetone 5:1.

3.4. 15-Oxolaba-13(14)-epoxy-8(17)-en-19-oic acid (2)

Colorless oil, $[\alpha]_D^{20}$: +46.0 (MeOH, c 0.5,); Rf. 0.30 (petroleum ether (60–90 °C)–EtOAc 5:1); IR (v_{max}^{KBr} , cm⁻¹): 1720 (CHO), 3320 (COOH) 890 (C=CH₂); EIMS (m/z, %): 334 [M]⁺ (3), 316 [M-H₂O]⁺ (10), 287(3), 235(9), 121(57), 55(54), 43(100); ¹³C NMR data (Table 1) and ¹H NMR data (Table 2).

3.5. 3*a*-Hinokiol (3)

Colorless needle crystals, m.p. = 214-215 °C, $[\alpha]_{20}^{20}$: +44.4 (MeOH, c 0.23,); Rf. 0.51 (CHCl₃-acetone 10:1); IR (v_{max}^{KBr} , cm⁻¹): 3511, 3313, 860; EIMS (m/z, %): 302 [M]⁺ (29), 287 [M-H₂O]⁺ (4), 269(100), 227(5), 147(98), 43(11); ¹³C NMR data (Table 1) and ¹H NMR data (Table 2).

3.6. Antitumor assays

The 50% inhibition concentration (IC₅₀ μ g/ml) of compounds was tested in human cervical carcinoma (HeLa) and human ovaria carcinoma (HO-8910) cell lines is shown in Table 3.

Cancer cells numbers were measured by the MTT method. IC_{50} of compounds 9 and 3 were higher than that of vincristine in HeLa cells, and IC_{50} of both compounds in HO-8910 cells were very close to that of vincristine, especially IC_{50} of compound 3 which was slightly lower than that of vincristine. It is indicated that compound 3 significantly inhibits human ovaria carcinoma cells.

Table 3: IC₅₀ (µg/ml) of compounds tested

Compd.	HeLa cells	HO-8910 cells
Vincristine	83.6	67.4
9	107.6	74.7
3	121.3	63.1

Н	2	3	Н	2	3
1α	1.83 (brd, 10.0)	1.05 (ddd, 11.3, 8.0, 5.0)	11	1.08 (m)	6.63 (s)
1β	1.31 (m)	1.93 (dt, 11.3, 4.0)	12	1.05 (m)	-
2α	1.59 (m)	2.09 (m)	13	_	_
2β	1.59 (m)	1.86 (m)	14	3.15 (d, 5.2)	6.83 (s)
3α	2.17 (brd, 13.6)	_	15	9.36 (d, 5.2)	3.10 (qq, 8.0)
3β	1.60 (m)	3.49 (t, 2.8)	16	1.44 (s)	1.23 (d, 8.0)
4	_	_	17	4.48 (brs), 4.87 (brs)	1.23 (d, 8.0)
5α	1.05 (dd, 13.0, 3.0)	1.74 (dd, 11.0, 4.0)	18	1.24 (s)	0.95 (s)
6α	1.54 (m)	1.77 (m)	19	_	1.03 (s)
6β	1.33 (m)	1.77 (m)	20	0.60 (s)	1.19 (s)
7α	1.96 (ddd, 10.8, 4.0, 2.8)	2.78 (ddd, 12.8, 10.3, 4.0)			
7β	2.39 (dt, 10.8, 3.8)	2.85 (ddd, 12.8, 5.6, 1.5)			
8	_	_			
9α	1.86 (t, 7.0)	-			
10	_	_			

¹H NMR, 400 Hz, CDCl₃, TMS, δ, ppm; ^a Coupling constants in parentheses in Hz

Acknowledgements: This work was supported by the NNSFC (No. 29972017) and the FMEC (No. 98073003)

References

- 1 Lu, S. W.; Xu, X. S.; Shen, M. J.: Botany, p. 196, Higher education Publisher, People's Republic of China 1992
- 2 Jiangsu College of New Medicine: A Dictionary of the traditional Chinese Medicines, p. 1952, Shanghai Science and Technology press, Shanghai 1977
- 3 Dhar, K. L.; Suri, O. P.; Suri, K. A.; Sood, S.; Sood, R. P.: Indian J. Chem. **29B**, 911 (1990)
- Lee, C. K.; Fang, J. M.; Cheng, Y. S.: Phytochemistry 35, 983 (1994)
 Fang, J. M.; Sou, Y. C.; Chiu, Y. H.; Cheng, Y. S.: Phytochemistry 34,
- 1581 (1993)
- 6 Pascual, J. D.; Feliciano, A. S.; Miguel Del Corral J. M.; Barrero, A. F.: Phytochemistry 22, 300 (1983)
- 7 Lee, C. K.; Fang, J. M.; Cheng, Y. S.: Phytochemistry 39, 391 (1995)
- 8 Koray, Sakar, M.: Fitoterapia 25, 304 (1994) 9 Teresa, J. D. P.; Barrero, A. F.; Muriel, L.; Feliciano, A. S.; Grande, M.: Phytochemistry 19, 1153 (1980)
- 10 Kagawa, K.; Tokura, K.; Uchida, K.; Kakushi, H.; Shike, T.; Kikuchi, J.; Nakai, H.; Dorji, P.; Subedi, L.: Chem. Pharm. Bull. 41, 1604 (1993)
- 11 Ara, I.; Siddiqui, B. S.; Faizi S.; Siddiqui, S.: Phytochemistry 29, 911 (1990)

- 12 Han, H. X.; Lu, M.; Tu. P. F.: Nat. Prod. Res. Devel. 12, 72 (1999)
- 13 Su, W. C.; Fang, J. M.; Cheng; Y. S.: Phytochemistry **37**, 1109 (1994) 14 Rowe, J. W.; Shaffer, G. W.: Tetrahedron Lett. 2633 (1965)
- 15 Caputo, R.; Mangoni, L.; Previtera, L.; Iaccarino, R.: Tetrahedron 29, 2047 (1973)
- 16 Cambie, R. C.: J. Org. Chem. 40, 3789 (1975)
- 17 Nata, R.; Navarrete, A.; Algarez, L.; Miranda, R. P.; Delgado, G.; Vivar, A. R. D: Phytochemistry 26, 191 (1987)
- 18 Guo, W.; Zhu, R. X.; Shi, Y. P.; Jia, Z. J.: Ind. J. Chem. 38B, 828 (1999)
- 19 Evans, F. E.; Miller, D. W.; Cairns, T.; Baddeley, G. V.; Wenkert, E.: Phytochemistry 21, 937 (1982)
- 20 Wratten, S. J.; Faulkner, D. J.: J. Org. Chem. 42, 3343 (1977)
- 21 Urones, J. G.; Marcos, I. S.; Cuadrado, M. J. S.; Basabe, P.; Bertelloni, A. M. L.: Phytochemistry 29, 1247 (1990)
- 22 Kuo, Y. HS.; Yang, I. C.; Chen, C. S.; Lin, Y. T.: J. Chin. Chem. Soc. 34, 125 (1987)

Received July 22, 2001 Accepted October 19, 2001 Prof. Zhongjian Jia Department of Chemistry Lanzhou University Lanzhou, Gansu 730000 P.R. China zhengrl@lzu.edu.cn