Institut für Pharmazeutische Chemie¹ der Technischen Universität Braunschweig und Institut für Pharmazie² der Freien Universität Berlin, Germany

Bislacton-anellierte 4*H*-Pyrane und 1,4-Dihydropyridine aus 3,3'-(Nitrobenzyliden)-bistetronsäuren

K. GÖRLITZER¹, J. TRITTMACHER¹ und U. BARTKE²

Die durch Base-katalysierte Umsetzung der Aldehyde **3** mit überschüssiger Tetronsäure (**2**) erhaltenen Bistetronsäure-Derivate **4** cyclisieren in Polyphosphorsäure (PPA) zu den 4*H*-Pyranen **5**. Das durch Reduktion der Nitro-Gruppe von **5a** erhaltene Amino-Derivat **6** zerfällt leicht in das Furochinolin **7** und **2**. Beim Erhitzen des Ammonium-bistetronats **8** erfolgt Ringschluss zum bisanellierten 1,4-Dihydropyridin (DHP) **9**. Das DHP **9** wird zum korrespondierenden Pyridin **10** dehydriert. Die Halbstufenpotentiale der 4*H*-Pyrane **5** und **6** sowie des 1,4-DHP **9** wurden durch Differenzpuls-Voltammetrie bestimmt.

Bis(lactone)-annulated 4H-pyranes and 1,4-dihydropyridines from 3,3'-(nitrobenzylidene)-bistetronic acids

The bistetronic derivatives 4, obtained by base catalyzed reaction of the aldehydes 3 with surplus tetronic acid (2), cyclize in polyphosphoric acid (PPA) to yield the 4*H*-pyranes 5. The amino derivative 6 formed by reduction of the nitro group of 5a easily splits to give the furoquinoline 7 and 2. By heating the ammonium bistetronate 8 ring closure occurs leading to the bisannulated 1,4-dihydropyridine (DHP) 9. The DHP 9 is dehydrogenated to the corresponding pyridine 10. The half wave potentials of the 4*H*-pyranes 5 and 6 as well as the 1,4-DHP 9 are determined by differential pulse voltammetry.

1. Einleitung

4-Aryl-2,6-dimethyl-4*H*-pyran-3,5-dicarbonsäureester, Oxa-Analoga der den Calcium-Kanal blockierenden 1,4-Dihydropyridine (DHP), besitzen Selektivität für calciumabhängige Kalium-Kanäle des Zentralnervensystems (ZNS) und eignen sich zur Therapie zentral degenerativer Erkrankungen [1]. Das zu Nifedipin analoge 4*H*-Pyran mit einer 4-(*o*-Nitrophenyl)-Gruppe ließ sich im Gegensatz zum Nitrendipin-Analogon **1a** mit dem 4-(*m*-Nitrophenyl)-Substituenten nur mit sehr geringer Ausbeute darstellen. Synthetisch gut zugänglich sind jedoch 4*H*-Pyran-Derivate wie **1b**, die in *o*-Position anstelle der elektronenziehenden Nitro-Gruppe einen Substituenten mit Elektronendonator-Eigenschaft aufweisen [2].

Röntgenkristallstrukturanalysen ergaben, dass die Ester-Gruppen der 4*H*-Pyran-Derivate **1a** s-*cis/s-cis-* und **1b** s-*cis/s-trans*-Konformation aufweisen [2]. Sie unterscheiden sich damit von denjenigen der 1,4-DHP [3]. Die s-*trans/s-trans*-Konformation lässt sich durch beiderseitige Anellierung der 4*H*-Pyrane und 1,4-DHP durch Lactone erzwingen. Über die Synthese und elektrochemische Untersuchungen zur Stabilität dieser Verbindungen wird hier berichtet.

2. Untersuchungen, Ergebnisse und Diskussion

2.1. Synthesen

Die Schmelze von Tetronsäure (2) mit einem Überschuss der Nitrobenzaldehyde 3 unter Zusatz von konz. Salzsäure liefert 3-Nitrobenzyliden-2,4-(3H,5H)furandione [4, 5] und als Nebenprodukte die Bistetronsäuren 4. Die Bistetronsäuren 4 entstehen dagegen in sehr guter Ausbeute, wenn die Komponenten 2 und 3 im Verhältnis 2:1 Base-katalysiert umgesetzt werden. Dabei setzt sich die intermediär gebildete Benzyliden-Verbindung mit überschüssiger Tetronsäure (2) zum Michael-Addukt 4 um.

Die 3,3'-Benzyliden-bistetronsäuren **4** liegen nach Daten des ¹H-NMR-Spektrums in [D₆]DMSO als vinyloge Carbonsäuren vor und die Enol-Gruppe gibt mit Eisen(III)-chlorid einen rotbraunen Chelatkomplex. Das Methin-Proton am verknüpfenden C-Atom wird bei **4a** bei tieferem Feld ($\delta = 5.15$) als bei **4b** ($\delta = 4.76$) registriert, weil das Proton durch die synperiplanare *o*-Nitro-Gruppe entschirmt wird.

Durch Erhitzen der Bistetronsäuren 4 in Polyphosphorsäure (PPA)/Eisessig trat Cyclokondensation zu den Bislacton-anellierten 4H-Pyranen 5 ein.

In den IR- und ¹H-NMR-Spektren von **5** fehlen OH-Absorptionen. Das 4*H*-Pyran-Proton tritt im ¹H-NMR-Spektrum, verglichen mit dem Edukt **4**, bei tieferem Feld auf. Im MS dominiert die Abspaltung eines OH-Radikals zum Basispeak m/z 298, charakteristisch ist die Eliminierung des Nitrophenyl-Substituenten, die in Analogie zum Abbau der 1,4-DHP das Pyrylium-Ion m/z 193 ergibt.

Die Reduktion der Nitro-Gruppe von **5a** mit Zinn und Salzsäure lieferte das gelbe 4-(2-Aminophenyl)pyranbislacton **6**. Im UV-Vis-Spektrum erscheinen die aromatischen Protonen und das Methin-Proton ($\delta = 4.72$) stark diamagnetisch verschoben. Das 4*H*-Pyran-Derivat **6** ist thermolabil und zerfällt bereits beim Erhitzen in methanolischer Lösung zum blau fluoreszierenden Furo[3,4-*b*]chinolinon **7** [6]. Die Bildung von **7** lässt sich einerseits erklären, indem zunächst der Amino-Stickstoff mit dem freien Elektronenpaar an dem zur Lactoncarbonyl-Gruppe β ständigen Kohlenstoff angreift und nach Öffnung des Pyran-Rings ein Molekül Tetronsäure (2) in einer "Retro-Michael-Reaktion" eliminiert wird. Andererseits ist als Primärschritt eine solvolytische Ringaufspaltung zum vinylogen Monomethylester 11 zu diskutieren. Für die zweite Alternative spricht, dass auch nach Reduktion der Nitro-Gruppe von 4a das Furochinolinon 7 isoliert werden konnte.

Im ¹H-NMR-Spektrum von 7 werden im Vergleich mit 6 keine Amino-Protonen, sondern nur zwei Methylen-Protonen eines Fünfringlactons und fünf aromatische Protonen, darunter ein stark entschirmtes Singulett bei $\delta = 9.08$ (9-H) registriert. Im MS wird ausgehend vom Basispeak m/z 185 CHO-Abspaltung zum Basispeak m/z 156 und daran anschließend CO- sowie HCN-Eliminierung zu den Fragment-Ionen m/z 128 und m/z 101 beobachtet (Schema 1). Nach der Methode von Butula [7] konnte die Bistetronsäure 4b mit Ammoniak in das Diammonium-Salz 8 überführt und dieses durch Erhitzen i. Vak. zum 1,4-DHP 9 cyclisiert werden. Nach Oxidation mit Salpetersäure resultierte das Pyridin-Derivat 10. Der Ringschluss von 4a zum 1,4-DHP unter gleichen Bedingungen scheiterte. Das erhaltene Diammonium-Salz erwies sich als instabil, da sich dessen Stickstoffgehalt schon beim Trocknen der Substanz bei Raumtemperatur (RT) laufend verringerte. Auch das Erhitzen der Bistetronsäure 4a oder des 4H-Pyrans 5a mit Ammoniumacetat in Acetanhydrid/Eisessig, selbst unter drastischen Bedingungen, führte nicht zum Ziel. Beim Einleiten von Ammoniak in eine methanolische Lösung der 4H-Pyrane 5 entstanden anstelle der als Zwischenpro-

Schema 1

Schema 2

dukte der DHP-Synthese erwarteten Tetronsäureamide die Bistetronsäuremonomethylester **11** (Schema 1).

Die IR-Spektren von **11** zeigen eine zusätzliche Carbonylvalenzschwingung bei 1735 cm⁻¹ für den Tetronsäureester. In den ¹H-NMR-Spektren von **11** wird ein Signal mit der Intensität von drei Protonen für die Methoxy-Gruppe registriert und die Methylen-Protonen der beiden Lactone treten als zwei separierte Singuletts auf.

Die Darstellung des Bislacton-anellierten 1,4-DHP mit *o*-Nitrophenyl-Gruppe gelang jedoch aus Nifedipin durch Umsetzung mit zwei Äquivalenten Pyridiniumbromidperbromid (PBPB) [8].

Das 1,4-DHP 9 zeigt eine NH-Absorption im IR-Spektrum bei 3315 cm⁻¹ sowie im ¹H-NMR-Spektrum ein mit D₂O austauschbares Singulett bei $\delta = 10.81$. Das Methin-Proton tritt im gleichen Bereich ($\delta = 4.89$) wie das des 4*H*-Pyrans **5b** in Resonanz. Im MS führt die Eliminierung des Nitrophenylrestes aus dem Molekülion m/z 314 zum Basispeak m/z 192. Im ¹H-NMR-Spektrum von **10** fehlen Signale für das Methin- und das NH-Proton, im Elektronenspektrum findet sich das langwellige Maximum um 30 nm hypsochrom verschoben bei 280 nm (Schema 2).

2.2. Elektrochemische Untersuchungen

Für den Calciumkanalblocker Nifedipin wurde die einstufige zweielektronige Oxidation zum korrespondierenden Pyridin bewiesen und das Halbstufenpotential für das Redox-Paar 1,4-Dihydropyridin (DHP)/Pyridin (Py) ermittelt [9–11]. Um vergleichbare Aussagen über die Stabilität der synthetisierten Bislacton-anellierten Derivate, des 1,4-DHP 9 und der 4H-Pyrane 5 und 6, treffen zu können, wurden die Halbstufenpotentiale $E_{1/2}$ durch anodische Oxidation an der rotierenden Platinelektrode (RPE) gegen die gesättigte Kalomel-Elektrode (GKE) bestimmt. Als Verfahren wurde die Differenzpuls-Voltammetrie (DPV) gewählt. Die Untersuchungen wurden in Acetonitril-Lösungen durchgeführt, die als Leitsalz Lithiumperchlorat enthielten [12]. Aus den Spitzenpotentialen (Ep) der Glockenkurven mit der Pulsamplitude (AE) wurden die Halbstufenpotentiale nach: $E_{1/2} = Ep + \Delta E/2$ errechnet [13]. Für die Referenzsubstanz Nifedipin beträgt $E_{1/2} = 1,15$ V [10].

Das 1,4-DHP **9** zeigt mit $E_{1/2} = 1,50$ V eine gegenüber Oxidationsmitteln deutlich erhöhte Stabilität. Die 4-(Nitrophenyl)-4*H*-pyrane **5a** und **5b** liefern infolge Zersetzung des Leitelektrolyten keine auswertbaren Maxima. Das 4*H*-Pyran **6** ($E_{1/2} = 0,95$ V) mit einer Elektronendonator-Gruppe am 4-Phenyl-Substituenten ist dagegen oxidationsempfindlicher als die Vergleichssubstanz mit dem *o*-Nitro-Substituenten.

3. Experimenteller Teil

3.1. Allgemeine Angaben

Schmp.: Linström-Gerät (SPA-1, Fa. Bühler), nicht korrigiert. Elementaranalysen: Perkin-Elmer-Elementaranalysator 240 B, Institut für Pharmazie der FU Berlin; die Ergebnisse lagen bei den einzelnen Verbindungen innerhalb der üblichen analytischen Grenzen. IR-Spektren: Perkin-Elmer-Spektralphotometer 297. UV-Spektren: Zeiss PMQ 2. MS: CH-7A Varian MAT Bremen; Elektronenstoßionisation (EI): Ionisierungsenergie 70 eV, Quellentemperatur 170 °C. ¹H-NMR (250 MHz)-, ¹³C-NMR (62.89 MHz)-Spektren: Bruker WM-250; die chemischen Verschiebungen sind in ppm nach der δ_{TMS} -Skala, die Kopplungskonstanten in Hz angegeben. DC: Fertigplatten (Glas) Merck, 5×10 cm; Adsorbens: Kieselgel 60 F₂₅₄; Fließmittel: FM 1 Toluol/EtOH (8:2). Differenzpuls-Voltammetrie vgl. [2].

3.2. 3,3'-(2-Nitrobenzyliden)bistetronsäure (4a)

l g (10 mmol) Tetronsäure (2) in 20 ml 50% EtOH werden mit 10 Tropfen HNEt₂ versetzt. Anschließend werden bei RT 0.75 g (5 mmol) 2-Nitrobenzaldehyd (**3a**) in 20 ml EtOH unter Rühren zugetropft. Der Ansatz wird 2 h unter Rückfluss erhitzt, mit 30 ml H₂O versetzt, mit 25% H₂SO₄ angesäuert und am Rotationsverdampfer eingeengt. Der Niederschlag wird abgesaugt und mit H₂O und wenig EtOH gewaschen. Ausbeute: 1.45 g (87%). Farblose Kristalle, Schmp. ab 236 °C (Zers.) (EtOH). IR (KBr): $\tilde{\nu}$ (cm⁻¹) = 3040, 2660 (OH), 1708 (C=O), 1645–1670 (C=C), 1520, 1353 (NO₂). UV (MeOH): λ_{max} (lg ε) = 228 nm (4.40). ¹H-NMR ([D₆] DMSO): δ (ppm) = 4.58 (t, 4H, CH₂, entartetes AB-System, J_{AB} = 16.7), 5.15 (s, 1 H, CH), 7.45 (dt, 1 H, 4-H, J = 7.9, J = 7.4, J = 1.5), 7.52 (dd, 1 H, 6-H, J = 7.4, J = 1.5), 7.60 (dt, 1 H, 5-H, J = 7.4, J = 1.1), 7.82 (dd, 1 H, 3-H, J = 7.9, J = 1.1). MS: m/z = 333 [M]⁺⁺. C₁₅H₁₁NO₈ (333.3)

3.3. 3,3'-(3-Nitrobenzyliden)bistetronsäure (4b)

Darstellung analog 3.2. mit 3-Nitrobenzaldehyd (**3b**). Ausbeute: 1.4 g (84%). Farblose Kristalle, Schmb. 242–243.5 °C (Zers.) (EtOH). IR (KBr): $\bar{\nu}~(cm^{-1}) = 3080-2900$ (OH), 1705 (C=O), 1643–1625 (C=C), 1535, 1348 (NO₂). UV (MeOH): $\lambda_{max}~(lg~\epsilon) = 202$ nm (4.02), 228 (4.10). ¹H-NMR ([D₆] DMSO): δ (ppm) = 4.59 (d, 2H, CH₂, J_{AB} = 16), 4.62 (d, 2H, CH₂, J_{AB} = 16), 4.76 (s, 1H, CH), 7.56 (t, 1H, 5-H, J = 7.8), 7.70 (d, 1H, 6-H, J = 7.8), 8.06 (m, 2H, 2-H, 4-H). MS: m/z = 333 [M]⁺⁺. C_{15}H_{11}NO_8 (333.3)

3.4. 8-(2-Nitrophenyl)-1,3,5,7-tetrahydro-8H-difuro[3,4-b;3',4'-e]pyran-1,7-dion (5a)

1.67 g (5 mmol) **4a** werden in ein Gemisch aus 20 g PPA und 40 g AcOH eingerührt und 3–5 h (dc-Kontrolle, FM 1) auf 110–120 °C erhitzt. Der Ansatz wird auf Eiswasser gegeben, der Niederschlag abgesaugt und mit H₂O gewaschen. Ausbeute: 0.9 g (57%). Farblose Nadeln, Schmb. 262–265 °C (EtOH). IR (KBr): \tilde{v} (cm⁻¹) = 1755, 1705 (C=O), 1665 (C=C), 1528, 1350 (NO₂). UV (MeOH): λ_{max} (lg ϵ) = 202 nm (4.28), 256 (3.67). ¹H-NMR ([D₆] DMSO): δ (ppm) = 5.16 (s, 4H, CH₂), 5.55 (s, 1H, 8-H), 7.58 (m, 2H, 4-H, 6-H), 7.73 (t, 1H, 5-H, J = 7.5), 8.01 (d, 1H, 3-H, J = 8). MS: m/z = 315 [M]^{+•}. C₁₅H₉NO₇ (315.2)

3.5. 8-(3-Nitrophenyl)-1,3,5,7-tetrahydro-8H-difuro[3,4-b;3',4'-e]pyran-1,7-dion (5b)

Darstellung analog 3.4. aus **4b**. Ausbeute: 1.24 g (79%). Farblose Kristalle, Schmb. 243–245 °C (EtOH). IR (KBr): $\tilde{\nu}$ (cm⁻¹) = 1763, 1705 (C=O), 1665 (C=C), 1530, 1353 (NO₂). UV (MeOH): λ_{max} (lg ϵ) = 202 nm (4.27), 263 (3.84). ¹H-NMR ([D₆] DMSO): δ (ppm) = 4.93 (s, 1 H, 8-H), 5.17 (s, 4 H, CH₂), 7.67 (t, 1 H, 5-H, J = 7.9), 7.88 (dd, 1 H, 6-H, J = 7.9, J = 0.9), 8.16 (m, 1H, 4-H), 8.25 (s, 1 H, 2-H). MS: m/z = 315 [M]^{+•}. C₁₅H₉NO₇ (315.2)

3.6. 8-(2-Aminophenyl)-1,3,5,7-tetrahydro-8H-difuro[3,4-b;3',4'-e]pyran-1,7-dion (6)

0.95g (3 mmol) 5a werden mit 2.1 ml H2O, 4.5 ml konz. HCl und 540 mg Sn versetzt und 90 min bei 80–90 °C gerührt. Der Ansatz wird zunächst

mit 3.5 M NaOH und dann mit 10% K₂CO₃-Lösung neutralisiert und mehrfach mit insgesamt 500 ml CHCl₃ ausgeschüttelt. Die organische Phase wird mit H₂O gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel abdestilliert. Ausbeute: 0.59 g (69%). Gelbliche Kristalle, Schmb. 202–204 °C (Me₂CO). IR (KBr): \bar{v} (cm⁻¹) = 3400, 3345 (NH), 1768, 1745, 1702, 1698 (C=O), 1655, 1650 (C=C). UV (MeOH): λ_{max} (lg ϵ) = 228 nm (3.43), 266 (3.57), 340 (3.11). ¹H-NMR ([D₆] DMSO): δ (ppm) = 4.72 (s, 1H, 8-H), 5.11 (s, 2H, NH₂), 5.12 (d, 2H, CH₂, J_{AB} = 16.8), 5.19 (d, 2H, CH₂, J_{AB} = 16.8), 6.54 (t, 1H, 5-H, J = 7.7, J = 7.5), 6.71 (d, 1H, 3-H, J = 7.9), 6.88 (d, 1H, 6-H, J = 7.5), 6.95 (t, 1H, 4-H, J = 7.9), J = 7.7). MS: m/z = 285 [M]^{+•}. C₁₅H₁₁NO₅ (285.3)

3.7. 3H-Furo[3,4-b]chinolin-1-on (7)

Eine Lösung von **6** in MeOH wird 1 h unter Rückfluß erhitzt und anschließend i. Vak. eingeengt. Ausbeute: quantitativ. Farblose Kristalle, Schmb. 218–220 °C (MeOH); Schmb. 219–220 °C [6]. IR (KBr): $\bar{\boldsymbol{v}}$ (cm⁻¹) = 1755 (C=O). UV (Dioxan): λ_{max} (lg ϵ) = 210 nm (4.36), 242 (4.57), 295 (3.74), 360 (2.68). ¹H-NMR ([D_6] DMSO): δ (ppm) = 5.57 (s, 2 H, CH₂), 7.77 (t, 1 H, 7-H, J = 8, J = 7), 8.00 (dt, 1 H, 6-H, J = 8.5, J = 7, J = 1.5), 8.16 (d, 1 H, 5-H, J = 8.5), 8.29 (d, 1 H, 8-H, J = 8), 9.08 (s, 1H, 9-H). MS: m/z = 185 [M]^{+\bullet}. C_{11}H_7NO_2 (185.2)

3.8. 3,3'-(3-Nitrobenzyliden)bistetronsäure-diammoniumsalz (8)

2.33 g (7 mmol) **4b** werden in 80 ml trockenem EtOH suspendiert. Bei RT wird anschließend über KOH-Rotuli getrocknetes NH₃-Gas eingeleitet. Nach wenigen min ist der Ansatz klar und gelb. Es wird mit wenig Petrol-äther versetzt und gekühlt. Der kristalline Niederschlag wird abgesaugt, mit wenig EtOH und Et₂O gewaschen und getrocknet. Ausbeute: 2.39 g (93%). Gelbe Kristalle, Schmb. 180–183 °C. IR (KBr): \tilde{v} (cm⁻¹) = 3300–2600 (NH_4⁺), 1725 (C=O), 1660, 1580 (C=C), 1525, 1348 (NO₂). UV (MeOH): λ_{max} (lg ϵ) = 232 nm (4.43), 256 (4.15). ¹H-NMR ([D₆] DMSO): δ (ppm) = 4.37 (d, 2 H, CH₂, J_{AB} = 15.5), 4.41 (d, 2 H, CH₂, J_{AB} = 15.5), 4.58 (s, 1 H, CH), 7.53 (t, 1 H, 5-H, J = 7.9), 7.67 (d, 1 H, 6-H, J = 7.9), 8.00 (d, 1 H, 4-H, J = 7.9), 8.07 (~s, 1 H, 2-H). C₁₅H₁N₃O₈ (367.3)

3.9. 8-(3-Nitrophenyl)-1,3,4,5,7,8-hexahydrodifuro[3,4-b:3',4'-e]pyridin-1,7-dion (9)

7.35 g (20 mmol) **8** werden i. Vak. (0.2 Torr) unter Rühren 2 h auf 170–175 °C erhitzt. Der Ansatz wird mit wenig H₂O und einigen ml 10% K₂CO₃-Lösung versetzt und darin aufgeschlämmt. Es wird vom Ungelösten abfiltriert und der Niederschlag mit H₂O und wenig EtOH gewaschen. Ausbeute: 4.33 g (69%). Fast farblose Nadeln, Schmb. 280.5–281 °C (EtOH). IR (KBr): \tilde{v} (cm⁻¹) = 3315 (NH), 1745 (C=O), 1978 (C=C), 1528, 1345 (NO₂). UV (Dioxan): λ_{max} (Ig ε) = 219 nm (4.16), 266 (3.64), 310 (3.46). ¹H-NMR ([D₆]DMSO): δ (ppm) = 4.89 (s, 1 H, 8-H), 4.97 (d, 2H, CH₂, J_{AB} = 16.7), 5.05 (d, 2 H, CH₂, J_{AB} = 16.7), 7.63 (t, 1 H, 5-H, J = 7.8), 7.79 (d, 1 H, 6-H, J = 7.8), 8.11 (m, 2 H, 2-H, 4-H), 10.81 (s, 1 H, NH). ¹³C-NMR ([D₆] DMSO): δ (ppm) = 33.83 (C-8), 65.40 (C-3, C-5), 10.26 (C-7a, C-8a), 121.78 (C-4'), 122.36 (C-2'), 129.55 (C-5'), 134.79 (C-6'), 144.53 (C-1'), 147.77 (C-3'), 158.43 (C-3a, C-4a), 170.68 (C-1, C-7). MS: m/z = 314 [M]^{+•}.

3.10. 8-(3-Nitrophenyl)-1,3,5,7-tetrahydrodifuro[3,4-b;3',4'-e]pyridin-1,7dion (10)

1.88 g (6 mmol) **9** werden mit einer Mischung aus 1.5 g konz. HNO₃ und 7 g 25% H₂SO₄ versetzt und unter Rühren vorsichtig auf dem Ölbad erwärmt, bis die Bildung nitroser Gase beendet ist (5–20 min). Nach dem Abkühlen wird mit H₂O verdünnt, der Niederschlag abgesaugt und mit H₂O und EtOH gewaschen. Ausbeute: 1.67 g (89%). Gelbliche Kristalle, Schmp. 279 °C (Me₂CO). IR (KBr): \hat{v} (cm⁻¹) = 1773, 1760 (C=O), 1543, 1360 (NO₂). UV (Dioxan): λ_{max} (lg ϵ) = 208 nm (4.42), 226 (4.33), 258 (4.18), 280 (4.08). ¹H-NMR ([D₆] DMSO): δ (ppm) = 5.59 (s, 4H, CH₂), 7.84 (t, 1H, 5-H, J = 8.0), 8.09 (dt, 1H, 6-H, J = 8.0, J = 1.9), 8.43 (m, 1H, 4-H), 8.56 (t, 1H, 2-H, J = 1.9). ¹³C-NMR ([D₆] DMSO): δ (ppm) = 69.43 (C-3, C-5), 117.30 (C-8), 124.62 (C-2'), 125.13 (C-4'), 129.04 (C-5'), 129.93 (C-7a. C-8a), 136.68 (C-6'), 146.97 (C-1', C-3'), 166.66 (C-1, C-7), 173.29 (C-3a, C-4a). MS: m/z = 312 [M]⁺⁺. C₁₅H₈N₂O₆ (312.2)

3.11. 3,3'-(2-Nitrobenzyliden)bistetronsäure-monomethylester (11a)

0.63g (2 mmol) **5a** werden in 50 ml trockenem MeOH suspendiert. Dann wird NH₃-Gas eingeleitet, bis der Ansatz klar ist (15–20 min). Anschließend wird auf ca. 10 ml eingeengt, mit der gleichen Menge H₂O versetzt und mit 10% HCl vorsichtig neutralisiert. Von den sich jetzt abscheidenden Verunreinigungen wird abdekantiert, dann angesäuert und mit insgesamt 300 ml CHCl₃ ausgeschüttelt. Nach dem Trocknen der organischen Phase über Na₂SO₄ wird zur Trockne eingeengt. Der Rückstand wird mit EtOH

angerieben und der Niederschlag abgesaugt. Ausbeute: 0.44 g (63%). Farblose Kristalle, Schmb. 195–198 °C (Zers.) (EtOH). IR (KBr): \tilde{v} (cm⁻¹) = 2970, 2700 (OH), 1755, 1715 (C=O), 1665 (C=C), 1520, 1350 (NO₂). UV (Dioxan): λ_{max} (lg ϵ) = 236 nm (3.55). ¹H-NMR ([D₆] DMSO): δ (ppm) = 3.75 (s, 3H, OCH₃), 4.61 (s, 2H, CH₂), 5.00 (s, 2H, CH₂), 5.15 (s, 1H, CH), 7.48 (m, 2H, 4H, 6-H), 7.62 (dt, 1H, 5-H, J = 8, J = 7, J = 1.2), 7.86 (dd, 1H, 3-H, J = 8.3, J = 1.2). MS: m/z = 347 [M]^{++}

C₁₆H₁₃NO₈ (347.3)

3.12. 3,3'-(3-Nitrobenzyliden)bistetronsäure-monomethylester (11b)

Darstellung analog 3.11. aus **5b**. Ausbeute: 0.48 g (69%). Farblose Nadeln, Schmb. 206–208 °C (Zers.) (EtOH). IR (KBr): $\tilde{\nu}~(cm^{-1})=3450-2600$ (OH), 1735, 1698 (C=O), 1655, 1620 (C=C), 1528, 1352 (NO₂). UV (Dioxan): $\lambda_{max}~(lg~\epsilon)=228$ nm (4.00). ¹H-NMR ([D6] DMSO): δ (ppm) = 3.81 (s, 3 H, OCH₃), 4.66 (s, 2 H, CH₂), 4.77 (s, 1 H, CH), 5.04 (s, 2 H, CH₂), 7.56 (t, 1 H, 5-H, J = 7.8), 7.69 (d, 1 H, 6-H, J = 7.8), 8.07 (m, 2 H, 2-H, 4-H), 12.0 (breit, 1 H, OH). MS: m/z = 347 [M]⁺⁺. C₁₆H₁₃NO₈ (347.3)

Literatur

1 Urbahns, K.; Heine, H.-G.; Junge, B.; Mauler, F.; Glaser, T.; Wittka, R.; De Vry, J.-M.-V. (Bayer AG): EP 758648, 1997; C.A. **126**, 225217w (1997)

- 2 Görlitzer, K.; Trittmacher, J.; Jones, P. G.: Pharmazie 57, 523 (2002)
- 3 Goldmann, S.; Stoltefuß, J.: Angew. Chem. 103, 1587 (1991)
- 4 Schmidt, D. G.; Zimmer, H.: J. Heterocycl. Chem. 20, 787 (1983)
- 5 Görlitzer, K.; Dobberkau, P.-M.; Ewert, H.-J.; Heinrici, Ch.; Bartke, U.; Buß, D.; Kupfer, C.; Nuhn, P.: Pharmazie 52, 575 (1997)
- 6 Fehnel, E. A.; Deyrup, J. A.; Davidson, M. B.: J. Org. Chem. 23, 1996 (1958)
- 7 Butula, I.; Grguric, D.: Synthesis, 80 (1979)
- 8 Görlitzer, K.; Bartke, U.; Schmidt, E.: Arch. Pharm. (Weinheim, Ger.) 324, 105 (1991)
- 9 Ludvik, J.; Turecek, F.; Volke, J.: J. Electroanal. Chem. 188, 105 (1985)
- 10 Ludvik, J.; Volke, J.; Pragst, F.: J. Electroanal. Chem. 215, 179 (1986)
- Ludvik, J.; Volke, J.; Klima, J.: Electrochim. Acta 32, 1063 (1987).
 Skala, V.; Volke, J.; Ohanka, V.; Kuthan, J.: Coll. Czech. Chem. Com-
- mun. **42**, 292 (1977)
- 13 Henze, G.; Neeb, R.: Elektrochemische Analyse, S. 97, Springerverlag, Berlin 1986

Eingegangen am 28. Februar 2002 Angenommen am 25. März 2002 Prof. Dr. K. Görlitzer Institut für Pharmazeutische Chemie Beethovenstraße 55 38106 Braunschweig k.goerlitzer@tu-bs.de