Institut für Pharmazeutische Chemie¹ der Technischen Universität Braunschweig und Institut für Pharmazie² der Freien Universität Berlin, Germany

Benzo[f]furo[3,4-c][2,7]naphthyridine aus Furo[3,4-b]pyridinen^{3,4}

K. GÖRLITZER¹ und U. BARTKE²

Die durch Dehydrierung der 4-(2-Nitrophenyl)-1,4-dihydropyridinlactone **4** erhaltenen Pyridine **5** geben bei der Reduktion der Nitro-Gruppe mit Zink/Ammoniumchlorid unter Ringschluss die Tetracyclen **6** und **7**. Die Bestrahlung der Verbindungen **4** mit UV-A-Licht führt zu den 4-(2-Nitrosophenyl)pyridinen **8**. Bei der Reaktion von **8** mit konz. Salzsäure cyclisiert die Nitroso-Gruppe mit der 5-Acyl-Gruppe zu den chlorsubstituierten Tetracyclen **9** und **10**. Die Hydroxamsäuren **6** und **9** werden durch Phosphortrichlorid zu den Lactamen **11** desoxygeniert und mit Acetanhydrid zu **12** *O*-acetyliert. Die *N*-Oxide **7** und **10** werden mit Phosphortrichlorid zu den Basen **13** reduziert; bei der Umsetzung mit Acetanhydrid erfolgt Boekelheide-Umlagerung zu den Acetaten **14**, die alkalisch zu den Alkoholen **15** verseift werden.

Benzo[*f*]furo[3,4-*c*][2,7]naphthyridines from furo[3,4-*b*]-pyridines

The pyridines 5, obtained by dehydrogenation of the 4-(2-nitrophenyl)-1,4-dihydropyridine lactones 4, give the tetracycles 6 and 7 by reduction of the nitro group with zinc/ammonium chloride followed by ring closure. Irradiation of the compounds 4 with UV-A light leads to the 4-(2-nitrosophenyl)pyridines 8. During the reaction of 8 with conc. hydrochloric acid the nitroso group cyclizes with the 5-acyl group yielding the chloro substituted tetracycles 9 and 10. The hydroxamic acids 6 and 9 are deoxygenated by phosphorus trichloride to yield the lactames 11, while O-acetylation with acetic anhydride affords 12. Phosphorus trichloride reduces the N-oxides 7 and 10 to the bases 13. Using the reaction with acetic anhydride the acetates 14 are formed by Boekelheide-transformation. Alcaline saponification of 14 gives the alcohols 15.

1. Einleitung

Bei der Biotransformation des Calciumkanalblockers Nifedipin (1) entsteht als Hauptmetabolit die 5-Methoxycarbonyl-2,6-dimethyl-4-(2-nitrophenyl)pyridin-3-carbonsäure (2) und als Nebenmetabolit ein Lacton, der 2-Methyl-4-(2-nitrophenyl)-5-oxo-5,7-dihydrofuro[3,4-*b*]pyridin-3-carbonsäuremethylester (**3a**) [1]. Das (*R*)-Enantiomer von **4a** mit einer 1,4-Dihydropyridin-Partialstruktur zeigt im Gegensatz zu Nifedipin die Wirkung eines Calcium-Agonisten, während das (*S*)-Enantiomer nur noch ein schwacher Calcium-Antagonist ist [2]. Die Verbindungen **3a** und *rac*-**4a** erwiesen sich aber auch als nützliche Edukte zur Synthese tetracyclischer Hydroxamsäuren als potentielle Inhibitoren des Enzyms Lipoxygenase [3].

Hier wird über die chemischen Eigenschaften von Furo-[3,4-*b*]pyridin-Derivaten mit einer 3-Acetyl- oder 3-Carbon-

Schema 1

säureethylester-Gruppe berichtet. Die dargestellten tetracyclischen Verbindungen stellen zugleich Vorstufen auf dem Weg zu potenziellen Antimalariamitteln dar.

2. Untersuchungen, Ergebnisse und Diskussion

Dehydrierung der Dihydropyridinlactone **4** [4] mit Salpetersäure führte zu den Pyridinlactonen **5** [4]. Durch Reduktion der Nitro-Gruppe von **5b** mit Zink/Ammoniumchlorid und Aminolyse des gebildeten Hydroxylamins mit der Ester-Gruppe wurde die Hydroxamsäure **6** [4] erhalten. Mit Zink und Salzsäure wurde aus **5c** durch regioselektive Cyclisierung des intermediär gebildeten Amins das *N*-Oxid **7** isoliert (Schema 2).

Doppelresonanz-¹H-NMR-Experimente beweisen, dass das 11-H des *N*-Oxids 7 eine besonders drastische paramagne-

tische Verschiebung mit $\delta = 10.15$ erfahren hat, die auf die räumliche Nähe des Sauerstoffs der Lactoncarbonyl-Gruppe zurückzuführen ist. Im IR-Bereich absorbiert die *N*-Oxid-Gruppe bei 1235 cm⁻¹. Die *N*-Oxid-Struktur von 7 wird auch durch das MS belegt, da ausgehend vom Molekülpeak unter Abspaltung von Sauerstoff ein Fragment-Ion beobachtet wird.

Bei der Bestrahlung der 4-(2-Nitrophenyl)-1,4-dihydropyridin-Derivate **4b** und **4c** mit UV-A-Licht ($\lambda = 315-400$ nm) trat eine intramolekulare Redoxreaktion⁵ unter Elimierung von Wasser ein. Dabei wurden die 4-(2-Nitrosophenyl)pyridin-Derivate **8b** und **8c** gebildet. Die Nitrosophenyl-Verbindung **8b** lieferte bei der Behandlung mit konz. Salzsäure die chlorsubstituierte Hydroxamsäure **9**⁶ [3]. Das Acetyl-Derivat **8c** cyclisierte regioselektiv zum anellierten Chlorchinolin-*N*-oxid **10** (Schema 3).

Die Nitrosophenyl-Verbindungen 8 bilden grüne Kristalle. Im IR-Spektrum tritt anstelle der für Nitro-Gruppen charakteristischen intensiven Doppelbanden im Fingerprint-

Schema 3

Schema 4

Schema 5

Bereich nur noch eine Bande um 1500 cm^{-1} für die Nitroso-Gruppe auf. In den ¹H-NMR-Spektren von **8** sind, verglichen mit den Nitrophenyl-Verbindungen **5**, die aromatischen Protonen 3-H, 5-H und in besonderem Maße 6-H zu höherem Feld verschoben, 4-H wird jetzt bei tiefstem Feld registriert. Das *N*-Oxid **10** weist einen Molpeak mit dem typischen Isotopenmuster für ein organisch-gebundenes Chlor [6] auf und das ¹H-NMR-Spektrum beweist die Substitutionsposition *p*-ständig zur Nitroso-Gruppe.

Die cyclischen Hydroxamsäuren 6 und 9 reagierten mit Phosphortrichlorid unter Desoxygenierung aus der tautomeren Lactim-*N*-oxid-Form zu den Lactamen 11. Mit Acetanhydrid ließen sich die Hydroxamsäuren zu den *O*-Acetyl-Derivaten 12 umsetzen (Schema 4).

In den ¹H-NMR-Spektren von **11** erscheint das aromatische Proton 8-H gegenüber den Edukten um $\Delta \delta = 0.5$ zu hohem Feld verschoben, das NH-Proton wird dagegen um den gleichen Betrag bei tieferem Feld registriert. Von den aromatischen Protonen wird 11-H weiterhin bei tiefstem Feld beobachtet. Die Carbonyl-Gruppe der Acetate **12** absorbiert bei >1800 cm⁻¹.

Die *N*-Oxide **7** und **10** gaben bei der Behandlung mit Phosphortrichlorid in glatter Reaktion die Desoxygenierungsprodukte **13**. Umsetzung mit Acetanhydrid führte unter Boekelheide-Umlagerung [7] zu den 6-Acetoxymethyl-Derivaten **14**. Die Essigsäureester **14** wurden mit Natronlauge chemoselektiv zu den 6-Hydroxymethyl-Verbindungen **15** verseift (Schema 5).

In den ¹H-NMR-Spektren von **13** erscheint das aromatische 8-H gegenüber den *N*-Oxiden erwartungsgemäß bei höherem Feld ($\Delta \delta \sim 1$).

3. Experimenteller Teil

3.1. Allgemeine Angaben

Vgl. [8].

3.2. 7-Hydroxy-5-methyl-1,3,6,7-tetrahydrobenzo[f]furo[3,4-c][2,7]naphthyridin-1,6-dion (6)

3,42 g (10 mmol) **5b**, 1,31 g (20 mmol) Zinkstaub, 1,5 g (28 mmol) NH₄Cl, 40 ml EtOH und 80 ml H₂O werden 2 h bei 60 °C gerührt. Nach 1 h wird dem Ansatz 1 ml konz. HCl zugesetzt. Anschließend wird auf pH 4 eingestellt und mehrfach mit insgesamt 2,5 l CHCl₃ ausgeschüttelt. Die organische Phase wird über Na₂SO₄ getrocknet und i. Vak. eingeengt. Der feste Rückstand wird mit EtOH gewaschen. Gelbe Kristalle, Schmp. 287 °C Zers. (Dioxan), Schmp. 287 °C [4]. Ausbeute: 2,33 g (68%).

3.3. 5,6-Dimethyl-1-oxo-1,3-dihydrobenzo[f]furo[3,4-c][2,7]naphthyridin-7-oxid (7)

0,94 g (3 mmol) **5c**, 1,5 g Zinkstaub, 3 Tropfen konz. HCl werden in 100 ml trockenem MeOH 6 h (dc Kontrolle) unter Rückfluss erhitzt. Nach jeder Stunde werden erneut 2 Tropfen konz. HCl zugesetzt. Der Ansatz wird mit 100 ml CHCl₃ versetzt, filtriert und das Filtrat eingengt. Der feste Rückstand wird mit wenig Me₂CO erhitzt und nach dem Abkühlen abgesaugt. Gelbe Nadeln, Schmb. 251,5–253,5 °C Zers. (Me₂CO). Ausbeute: 693 mg (74%). IR (KBr): $\hat{\nu}$ (cm⁻¹) = 1755, 1742 (CO, Lacton), 1235 (N \rightarrow O). UV (Dioxan): λ_{max} (lg ϵ) = 205 nm (3.87), 228 (3.99), 270

(4.04), 340 (3.62), 400 (2.98). ¹H-NMR (CDCl₃): δ (ppm) = 3.14 (s, 6 H, J = 8.5, J = 1.1), 10.15 (dd, 1 H, 11-H, J = 8.4, J = 1.1). MS: m/z = 280 [M]^{+•}.

C16H12N2O3 (280.3)

3.4. Allgemeine Arbeitsvorschrift zur Darstellung der Nitrosophenylpyridine 8 (AAV 1)

3 mmol 4 werden in 150 ml trockenem Me2CO gelöst. Die klare gelbe Lösung wird 2-3 h (dc Kontrolle; Eluent: PhMe/EtOH 8:2) direkter Sonnenbestrahlung ausgesetzt (Temp. der Lösung $<\!15~^\circ\text{C}$). Der Ansatz verfärbt sich tief grün. Das Lösungsmittel wird i. Vak. abdestilliert.

3.5. 2-Methyl-4-(2-nitrosophenyl)-5-oxo-5,7-dihydrofuro[3,4-b]pyridin-3-carbonsäureethyl-ester (8b)

Darstellung aus 4b nach 3.4. Das erhaltene grüne Öl wird mit Et₂O angerieben, der Niederschlag abgesaugt und mit wenig kaltem Et₂O gewaschen. Blaugrine Kristalle, Schmb. 154–155 °C (Et₂O). Ausbeute: 857 mg (83%). IR (KBr): $\tilde{\mathbf{v}}$ (cm⁻¹) = 1765 (CO, Lacton), 1725 (CO, Ester), (83%). IR (RBF): \mathbf{V} (cm⁻¹) = 1765 (CO, Lacton), 1725 (CO, Ester), 1500 (NO). UV (MeOH): λ_{max} (lg ε) = 222 nm (4.35), 276 (4.12), 310 (3.74). ¹H-NMR ([D₆]DMSO): δ (ppm) = 0.72 (t, 3 H, CH₂-CH₃), 2.76 (s, 3 H, C-CH₃), 3.95 (m, 2 H, CH₂-CH₃), 5.47 (d, 1 H, O-CHH, J = 16.4), 5.54 (d, 1 H, O-CHH, J = 16.4), 6.74 (dd, 1 H, 6-H, J = 8.0, J = 1.1), 7.69 (m ~ t, 2 H, 3-H, 5-H), 7.99 (dt, 1 H, 4-H, J = 7.5, J = 1.1). MS: m/z = 326 [M]^{+•}. $C_{17}H_{14}N_2O_5$ (326.3)

3.6. 3-Acetyl-2-methyl-4-(2-nitrosophenyl)-5,7-dihydrofuro[3,4-b]pyridin-5-on (8c)

Darstellung aus 4c nach 3.4. Der erhaltene grüne Rückstand wird mit ca. 200 ml Et2O ausgekocht, vom Ungelösten heiß abfiltriert und eingeengt. Grüne Kristalle, Schmb. 157-158 °C (Et₂O). Ausbeute: 651 mg (69%). IR (KBr): \tilde{v} (cm⁻¹) = 1758 (CO, Lacton), 1695 (CO, Ac), 1500 (NO). UV (MeOH): λ_{max} (lg ϵ) = 222 nm (4.21), 286 (3.90), 310 (3.69). ¹H-NMR $([D_6]DMSO): \delta$ (ppm) = 2.14 (s, 3 H, Ac), 2.68 (s, 3 H, H₃), 5.41 (d, 1 H, O-CHH, J = 16.3), 5.51 (d, 1 H, O-CHH, J = 16.3), 6.71 (dd, 1 H, 6-H, J = 8.0, J = 1.1), 7.69 (m ~ t, 2 H, 3-H, 5-H), 7.99 (dt, 1 H, 4-H, J = 7.5, J = 1.1). MS: m/z = 296 [M]^{+•}. $C_{16}H_{12}N_2O_4$ (296.3)

3.7. Allgemeine Arbeitsvorschrift zur Darstellung der Benzo[f]furo-[3,4-c][2,7]-naphthyridine 9 und 10 (AAV 2)

2 mmol der Nitrosophenylpyridine 8 werden 30 min bei Raumtemp. in 20 ml konz. HCl gerührt.

3.8. 10-Chlor-7-hydroxy-5-methyl-1,3,6,7-tetrahydrobenzo[f]furo-[3,4-c][2,7]naphthyridin-1,6-dion (9)

Dartstellung aus 8b nach 3.7. Die gelbe Suspension wird mit NaOH-Lösung 10% auf pH 2–3 gebracht, der Niederschlag abgesaugt, mit NaHCO₃-Lösung 10%, H₂O und EtOH gewaschen. Gelbe Kristalle, Schmp. 292 °C Zers. (Dioxan), Schmp. 292 °C [4]. Ausbeute: 457 mg (70%).

3.9. 10-Chlor-5,6-dimethyl-1-oxo-1,3-dihydrobenzo[f]furo[3,4-c][2,7]naphthyridin-7-oxid (10)

Darstellung aus 8c nach 3.7. Die klare Lösung wird mit NaOH-Lösung 10% neutralisiert und mehrfach mit CHCl3 ausgeschüttelt. Die organische Phase wird mit H2O gewaschen, über Na2SO4 getrocknet und i. Vak. abdestilliert. Gelbbraune Nadeln, Schmb. 236–236,5 °C Zers. (EtOH). Ausbeute: 421 mg (71%). IR (KBr): $\tilde{\nu}$ (cm⁻¹) = 1742 (CO, Lacton), 1225 $(N \to O). \ UV \ (\mbox{Dioxan}): \ \lambda_{max} \ (lg \ \epsilon) = 208 \ nm \ (4.28), \ 248 \ (4.41), \ 270 \ (4.36), \ 345 \ (4.02), \ 410 \ (3.33). \ ^{1}H-NMR \ ([D_6]DMSO): \ \delta \ (ppm) = 3.02 \ (s, \ horemath{n}) \ (horemath{n}) \ (horem{n}) \ (horemath{n}) \ (horemath{n}) \ (horemath{n}) \ (horemath$ 3 H, CH₃), 3.13 (s, 3 H, CH₃), 5.55 (s, 2 H, O–CH₂), 8.10 (dd, 1 H, 9-H, J = 9.1, J = 2.1), 8.76 (d, 1 H, 8-H, J = 9.1), 10.26 (d, 1 H, 11-H, J = 2.1). MS: m/z = 314 [M]^{+•}. C₁₆H₁₁ClN₂O₃ (314.7)

3.10. Allgemeine Arbeitsvorschrift zur Darstellung der Lactame 11 (AAV 3)

1 mmol der Hydroxamsäure 6 oder 9 wird in 15 ml trockenem CHCl3 suspendiert, mit 2 ml PCl3 versetzt und ca. 7 h (dc Kontrolle; Eluent: PhMe/ EtOH 8:2) unter Rückfluss und Feuchtigkeitsausschluss erhitzt. Nach 3 h wird nochmals 1 ml PCl3 zugesetzt. Der Ansatz wird in 200 ml H2O eingerührt und mit NaOH-Lösung 10% alkalisiert (pH 12-13). Der Niederschlag wird abgesaugt.

3.11. 5-Methyl-1,3,6,7-tetrahydrobenzo[f]furo[3,4-c][2,7]naphthyridin-1,6dion (11a)

Darstellung aus 6 nach 3.10. Dunkelgelbe Kristalle, Schmp. >360 °C (DMSO). Ausbeute: 99 mg (35%). IR (KBr): $\tilde{\nu}$ (cm⁻¹) = 3135, 3035, 2990 (Disto): Adsocate: 99 ing (35.6). IR (KBI): V (III) = 5135, 355, 2590 (NH), 1748 (CO, Lacton), 1662 (CO, Lactam). UV (Dioxan): λ_{max} ([g ϵ) = 206 nm (3.38), 233 (3.68), 280 (3.33), 360 (2.92). ¹H-NMR ([D₆]DMSO): δ (ppm) = 3.13 (s, 3H, CH₃), 5.46 (s, 2H, O–CH₂), 7.29 (t, 1H, 10-H, J = 8.4, J = 7.2), 7.39 (d, 1H, 8-H, J = 8.2), 7.67 (t, 1H, 10-H, J = 8.4), J = 7.2), 7.39 (d, 1H, 8-H, J = 8.2), 7.67 (t, 1H, 1H, 1H), J = 8.4 9-H, J = 8.2, J = 7.2), 9.70 (d, 1 H, 11-H, J = 8.4), 12.04 (s, 1 H, NH). MS: $m/z = 266 [M]^{+\bullet}$ C₁₅H₁₀N₂O₃ (266.3)

3.12. 10-Chlor-5-methyl-1,3,6,7-tetrahydrobenzo[f]furo[3,4-c][2,7]naphthyridin-1,6-dion (11b)

Darstellung aus 9 nach 3.10. Gelbliche Kristalle, Schmb. 344-345 °C Zers. (Dioxan). Ausbeute: 212 mg (67%). IR (KBr): \tilde{v} (cm⁻¹) = 3180, 3120, 3090 (NH), 1750 (CO, Lacton), 1660 (CO, Lactam). UV (Dioxan): λ_{max} (lg ϵ) = 206 nm (4.26), 235 (4.55), 283 (4.14), 370 3.66). ¹H-NMR 11-H, J = 2.3), 12.09 (s, 1 H, NH). MS: $m/z = 300 [M]^{+\bullet}$. C₁₅H₉ClN₂O₃ (300.7)

3.13. Allgemeine Arbeitsvorschrift zur Darstellung der Benzo[f]furo[3,4-c]-[2,7]-naphthyridine 12 und 14 (AAV 4)

1 mmol der Hydroxamsäure 6 bzw. des N-Oxids 7 wird in 10 ml Ac2O suspendiert und ca. 1 h (dc Kontrolle; Eluent: PhMe/EtOH 8:2) bei 95 °C gerührt.

3.14. 7-Acetoxy-5-methyl-1,3,6,7-tetrahydrobenzo[f]furo[3,4-c][2,7]naphthyridin-1,6-dion (12a)

Darstellung aus 6 nach 3.13. Der Ansatz wird in 150 ml H₂O eingerührt, mit NaOH-Lösung 10% auf pH 4-5 eingestellt und mehrfach mit insgesamt 200 ml CHCl3 ausgeschüttelt. Die organische Phase wird mit H_2O gewaschen, über Na₂SO₄ getrocknet und i. Vak. abdestilliert. Der Rückstand wird mit Et_2O gewaschen. Gelbliche Kristalle, Schmb. 265–268 °C Zers. (Dioxan/H₂O). Ausbeute: 226 mg (80%). IR (KBr): $\tilde{\nu}$ (cm⁻¹) = 1812 (CO, OAc), 1760 (CO, Lacton), 1680 (CO, Lactam). UV (CHCl₃): λ_{max} $(\lg \varepsilon) = 234 \text{ nm}$ (4.37), 280 (4.07), 360 (3.61). ¹H-NMR ([D₆]DMSO): δ (ppm) = 2.56 (s, 3 H, COCH₃), 3.11 (s, 3 H, CH₃), 5.51 (s, 2 H, O-CH₂), 7.49 (dt, 1 H, 10-H, J = 8.2, J = 7.5, J = 1), 7.61 (dd, 1 H, 8-H, J = 8.2, J = 1), 7.83 (dt, 1 H, 9-H, J = 8.2, J = 7.5, J = 1), 9.80 (dd, 1 H, 11-H, 11-H J = 8.2, J = 1). MS: m/z = 324 [M]^{+•}. $C_{17}H_{12}N_2O_5$ (324.3)

3.15. 7-Acetoxy-10-chlor-5-methyl-1,3,6,7-tetrahydrobenzo[f]furo[3,4-c]-[2,7]naphthyridin-1,6-dion (12b)

Darstellung aus 9 nach 3.13. Die klare Lösung wird mit Et₂O versetzt. Beim Kühlen kristallisiert das Produkt. Fast farblose Kristalle, Schmb. 224-226 °C Zers. (Ac₂O/Et₂O). Ausbeute: 234 mg (74%). IR (KBr): v $(cm^{-1}) = 1808, 1800$ (CO, OAc), 1755 (CO, Lacton), 1678 (CO, Lactam). UV (CHCl₃): λ_{max} (lg ϵ) = 237 nm (4.62), 283 (4.26), 370 (3.73). ¹H-NMR $([D_6]DMSO): \delta$ (ppm) = 2.55 (s, 3 H, COCH₃), 3.10 (s, 3 H, CH₃), 5.53 (s, 2H, O–CH₂), 7.64 (d, 1H, 8-H, J = 8.9), 7.85 (dd, 1H, 9-H, J = 8.9, J = 2.2), 10.02 (d, 1H, 11-H, J = 2.2). MS: m/z = 358 [M]⁺. C₁₇H₁₁ClN₂O₅ (358.7)

3.16. Allgemeine Arbeitsvorschrift zur Desoxigenierung von N-Oxiden (AAV 5)

1 mmol der N-Oxide 7 oder 10 und 1 ml PCl3 werden in 40 ml trockenem CHCl3 gelöst und 30 min unter Rückfluss und Feuchtigkeitsausschluss erhitzt. Die Lösung wird in 200 ml H2O eingetragen, mit NaOH-Lösung 10% neutralisiert und mit insgesamt 200 ml CHCl3 extrahiert. Die organische Phase wird mit Wasser gewaschen, über Na2SO4 getrocknet und i. Vak. abdestilliert.

3.17. 5,6-Dimethyl-1,3-dihydrobenzo[f]furo[3,4-c][2,7]naphthyridin-1-on (13a)

Darstellung aus 7 nach 3.16. Farblose Nadeln, Schmp. 260 °C Zers. (EtOH). Ausbeute: 179 mg (64%). IR (KBr): $\tilde{\nu}$ (cm⁻¹) = 1743 (CO, Lacton). UV (Dioxan): λ_{max} (lg ε) = 211 nm (4.26), 229 (4.34), 246 (4.30), 268 (4.38), 360 (3.19). ¹H-NMR (CDCl₃): δ (ppm) = 3.23 (s, 3 H, CH₃), 28 (4.38), 240 (4.38), 240 (4.38), 241 (4.38), 24 3.28 (s, 3 H, CH₃), 5.42 (s, 2 H, O-CH₂), 7.73 (dt, 1 H, 10-H, J = 8.2, J = 7.5, J = 1.1), 7.90 (dt, 1 H, 9-H, J = 8.2, J = 7.5, J = 1.1), 8.09 (dd, 1 H, $\hbox{8-H, J} = 8.2, J = 1.1 \hbox{), } 10.03 (dd, 1\,H, 11\text{-}H, J = 8.2, J = 1.1 \hbox{). } MS: m/z = 264$ [M]+•

C16H12N2O2 (264.3)

3.18. 10-Chlor-5,6-dimethyl-1,3-dihydrobenzo[f]furo[3,4-c][2,7]naphthyridin-1-on (13b)

Darstellung aus 10 nach 3.16. Beigefarbene Nadeln, Schmb. 251-252 °C Denstending aus 10 nach 5.10. Beigeraroene Nadeln, Schmb. 251–252 °C Zers. (MeOH). Ausbeute: 217 mg (69%). IR (KBr): \tilde{v} (cm⁻¹) = 1750 (CO, Lacton). UV (Dioxan): λ_{max} (lg ε) = 212 nm (4.30), 232 (4.36), 249 (4.34), 266 (4.39), 320 (3.68), 350 (3.32), 370 (3.19). ¹H-NMR (CDCl₃): δ (ppm) = 3.22 (s, 3H, CH₃), 3.29 (s, 3H, CH₃), 5.43 (s, 2H, O–CH₂), 7.82 (dd, 1H, 9-H, J = 8.7, J = 2.1), 8.00 (d, 1H, 8-H, J = 8.7), 10.19 (d, 1H, 11-H, J = 2.1) MS: m/z = 298 [M]⁺⁺ (d, 1 H, 11-H, J = 2.1). MS: $m/z = 298 \ [M]^{+\bullet}$. $C_{16}H_{11}ClN_2O_2$ (298.7)

3.19. 6-Hydroxymethyl-5-methyl-1-oxo-1,3-dihydrobenzo[f]furo-[3,4-c][2,7]naphthyridin-acetat (14a)

Darstellung aus 7 nach 3.13. Der Ansatz wird in 150 ml H2O eingerührt, mit NaOH-Lösung 10% neutralisiert und der Niederschlag abgesaugt. Farblose Nadeln, Schmb. 214-214.5 °C Zers. (EtOH). Ausbeute: 199 mg (71%). IR (KBr): \tilde{v} (cm⁻¹) = 1740 (CO, Ester, Lacton). UV (Dioxan): λ_{max} (lg ε) = 210 nm (4.33), 228 (4.37), 248 (4.31), 268 (4.44), 315 (3.71), 360 (3.18). ¹H-NMR (CDCl₃): δ (ppm) = 2.22 (s, 3 H, COCH₃), 3.25 (s, 3 H, CH₃), 5.45 (s, 2 H, O–CH₂, Lacton), 5.83 (s, 2 H, O–CH₂, Ester), 7.80 (t, 1 H, 10-H, J = 8.2, J = 7.5), 7.94 (t, 1 H, 9-H, J = 8, J = 7.5), 8.16 (d, 1 H, 8-H, J = 8), 10.08 (d, 1 H, 11-H, J = 8.2). MS: $m/z = 322 [M]^+$

C₁₈H₁₄N₂O₄ (322.3)

3.20. 10-Chlor-6-hydroxymethyl-5-methyl-1-oxo-1,3-dihydrobenzo[f]furo[3,4-c][2,7]naphthyridin-acetat (14b)

Darstellung aus 10 nach 3.13.; Aufarbeitung wie bei 3.19. Fast farblose Nadeln, Schmb. 195-197 °C (EtOH). Ausbeute: 252 mg (80%). IR (KBr): $\tilde{\nu}$ (cm⁻¹) = 1750, 1735 (CO, Ester, Lacton). UV (Dioxan): λ_{max} $(\lg \epsilon) = 210 \text{ nm}$ (4.33), 230 (4.36), 266 (4.47), 315 (3.77), 350 (3.35). ¹H-NMR (CDCl₃): δ (ppm) = 2.22 (s, 3 H, COCH₃), 3.27 (s, 3 H, CH₃), 5.45 (s, 2H, O-CH₂, Lacton), 5.82 (s, 2H, O-CH₂, Ester), 7.85 (dd, 1H, 9-H, J = 8.7, J = 2.2), 8.07 (d, 1 H, 8-H, J = 8.7), 10.24 (d, 1 H, 11-H, J = 2.2). MS: m/z = 356 [M]^{+•}. C18H13CIN2O4 (356.8)

3.21. Allgemeine Arbeitsvorschrift zur Verseifung der Acetate 14 (AAV 6)

1 mmol 14 wird in MeOH gelöst und nach Zusatz von 3 Tropfen NaOH-Lösung 10% kurz aufgekocht. Beim Einengen des Ansatzes kristallisiert das Produkt. Man saugt ab.

3.22. 6-Hydroxymethyl-5-methyl-1,3-dihydrobenzo[f]furo[3,4-c][2,7]naphthyridin-1-on (15a)

Darstellung aus 14a nach 3.21. Farblose Nadeln, Schmp. ab 225 °C Zers. (MeOH). Ausbeute: 219 mg (68%). IR (KBr): \tilde{v} (cm⁻¹) = 3420 (OH), 1740 (CO, Lacton). UV (Dioxan): λ_{max} (lg ϵ) = 210 nm (4.31), 229 (4.36), 245 (4.32), 360 (3.16). ¹H-NMR ([D₆]DMSO): δ (ppm) = 3.35 (s, 3 H, CH₃), 5.28 (d, 2 H, CH₂–OH, J = 5.3), 5.57 (s, 2 H, O–CH₂, Lacton), 5.80 (t, 1 H, CH₂–OH, J = 5.3), 7.81 (t, 1 H, 10-H, J = 8.4, J = 7.5), 8.01 (t, 1 H, 9-H, J = 8.1, J = 7.5), 8.17 (d, 1 H, 8-H, J = 8.1), 10.02 (d, 1 H, 11-H, J = 8.4). MS: $m/z = 280 [M]^{+\bullet}$. C16H12N2O3 (280.3)

3.23. 10-Chlor-6-hydroxymethyl-5-methyl-1,3-dihydrobenzo[f]furo-[3,4-c][2,7]-naphthyridin-1-on (15b)

Darstellung aus 14b nach 3.21. Beigefarbene Nadeln, Schmp. ab 224 °C Zers. (MeOH). Ausbeute: 232 mg (65%). IR (KBr): $\tilde{\mathbf{v}}$ (cm⁻¹) = 3340 (OH), 1742 (CO, Lacton). UV (Dioxan): λ_{max} (lg ε) = 212 m (3.98), 230 (A (1)) 248 (A (0)) 246 (A (07)) 260 (2000) (2 (4.01), 248 (4.00), 266 (4.07), 320 (3.32), 360 (2.86). ¹H-NMR ([D₆]DMSO): δ (ppm) = 3.35 (s, 3 H, CH₃), 5.25 (d, 2 H, CH₂-OH, J = 5.3), 5.57 (s, 2 H, CH₂, Lacton), 5.78 (t, 1 H, CH₂-OH, J = 5.3), 8.01 $(dd, \ 1\ H, \ 9\text{-}H, \ J=8.7, \ J=2.3), \ 8.14 \ (d, \ 1\ H, \ 8\text{-}H, \ J=8.7), \ 10.21 \ (d, \ 1\ H,$ 11-H, J = 2.3). MS: $m/z = 314 \ [M]^{+\bullet}$. C16H11CIN2O3 (314.7)

- Aus der Dissertation Ulrich Bartke, Freie Universität Berlin, 1983
- 4 Vorgetragen anläßlich der Tagung der Deutschen Pharmazeutischen Gesellschaft in Düsseldorf, 27.09.1984
- ⁵ Zum Reaktionsmechanismus der photochemischen Reaktion vgl. [5] et loc. cit.
- ⁶ Zum Reaktionsmechanismus der Cyclisierungsreaktion vgl. [5]

Literatur

- 1 Kondo, S.; Kuchiki, A.; Yamamoto, K.; Akimoto, K.; Takahashi, K.; Awata, N.; Sugimoto, I.: Chem. Pharm. Bull. 28, 1 (1980)
- Goldmann, S.; Stoltefuß, J: Angew. Chem. 103, 1587 (1991)
- Görlitzer, K.; Dobberkau, P.-M.; Ewert, H.-J.; Heinrici, Ch.; Bartke, U.; Buss, D.; Kupfer, C.; Nuhn, P.: Pharmazie 52, 575 (1997)
 Görlitzer, K.; Bartke, U.: Pharmazie 57, 672 (2002)
 Görlitzer, K.; Dobberkau, P.-M.: Pharmazie 51, 392 (1996)
 Pretsch, E.; Clerc, T.; Seibl.; J.; Simon, W.: Tabellen zur Strukturaufklärung organischer Verhindungen mit snektroskopischen Methoden Sprin-

- rung organischer Verbindungen mit spektroskopischen Methoden, Springer-Verlag Berlin, Heidelberg, New York, M100, 1976 7 Boekelheide, V.; Linn, W. J.: J. Am. Chem. Soc. **76**, 1286 (1954)
- 8 Görlitzer, K.; Trittmacher, J.; Bartke, U.: Pharmazie 57, 606 (2002)

Eingegangen am 21. Juni 2002 Angenommen am 7. August 2002 Prof. Dr. K. Görlitzer Institut für Pharmazeutische Chemie Beethovenstraße 55 38106 Braunschweig k.goerlitzer@tu-bs.de