ORIGINAL ARTICLES

National Laboratory of Applied Organic Chemistry¹, College of Chemistry and Chemical Engineering and Department of Biology², Lanzhou University, Lanzhou, China

Cytotoxic triterpenes from Ligulariopsis shichuana

Wen-Shu Wang¹, Kun Gao¹, Chun-Ming Wang², Zhong-Jian Jia¹

Received July 26, 2002, accepted September 3, 2002

Prof. Zhongjian Jia, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China Jiazi@lzu.edu.cn

Pharmazie 58: 148-150 (2003)

Five olean-12-ene triterpenes (1–5) were isolated from the whole plant of *Ligulariopsis shichuana*. Their structures were elucidated by spectroscopic methods, including IR, EIMS positive HRSIMS, 1DNMR, and 2DNMR. Among them, 16β ,28-dihydroxyolean-12-en-3-one (3), olean-12-en-3 β ,6 β ,16 β ,28-tetraol (4), 6β ,16 β -dihydroxyolean-12-en-3-one (5) are new compounds. In addition, compounds 4 and 5 showed cytotoxic activities on human hepatoma cells (SMMC-7721), human ovarian neoplasm cells (HO-8910) and human hepatocytes cells (LO2).

1. Introduction

Ligulariopsis shichuana is the only species in genus Ligulariopsis (Compositae) [1]. Because of its similarity with some Ligularia and Cacalia species, it has long been incorrectly assigned to the genus Cacalia [2]. As part of our research program in investigating plants of Compositae in China [3–5], we collected this special plant in Qinling Mountain and report here the isolation of three new olean-12-ene triterpenes, $16\beta,28$ -dihydroxyolean-12-en-3-one (3), olean-12-en-3 $\beta,6\beta,16\beta,28$ -tetraol (4), $6\beta,16\beta$ -dihydroxyolean-12-en-3-one (5), as well as two known triterpenes, gummosogenin (1) [6], and longispiongenin (2) [7, 8]. Furthermore, in order to find new biologically active compounds in Compositae, we chose olean-12-en-3 $\beta,6\beta,16\beta,28$ -tetraol (4) and $6\beta,16\beta$ -dihydroxyolean-12-en-3-one (5) for cytotoxic test.

2. Investigations, results and discussion

Dried and crushed whole plant material was extracted with acetone to give a residue (38 g). After repeated column chromatography with different eluates, new compounds 16β ,28-dihydroxyolean-12-en-3-one (3), olean-12-en-3 β ,6 β ,16 β ,28-tetraol (4), 6 β ,16 β -dihydroxyolean-12-en-3-one (5) and two known compounds were indentified. Compounds 1 and 2 were identified by comparison of their spectroscopic data (EIMS, 1 H NMR, 13 C NMR) with those of known compounds [6–8].

Compound 3 was obtained as white gum, its molecular formula was deduced as $C_{30}H_{48}O_3$ by the $[M+H]^+$ peak

at m/z 457.3724 (C₃₀H₄₉O₃, required 457.3676) in positive HRSIMS spectrum. The degree of unsaturation was 7. The IR spectrum contained bands at 3378 cm⁻¹ (broad), 1715 cm⁻¹ and 1650 cm⁻¹ for hydroxy groups, carbonyl group and double bond respectively. In combination with thirty carbon signals in its ¹³C NMR spectrum (Table 1), and seven methyl singlets in the highfield in the

Table 1: ${}^{13}C$ NMR spectra data of compounds 3, 4 and 5

		•		•	,	
С	3	DEPT	4	DEPT	5	DEPT
1	39.3	CH_2	41.4	CH_2	39.2	CH_2
2	33.4	CH_2	28.2	CH_2	34.4	CH_2
2 3	216.0	C	79.8	CH	216.4	C
4	47.8	C	41.5	C	46.6	C
5	55.3	CH	56.4	CH	56.6	CH
6	19.6	CH_2	68.6	CH	66.0	CH
7	34.1	CH_2	41.2	CH_2	39.0	CH_2
8	41.0	C	41.1	C	40.7	C
9	47.8	CH	47.9	CH	48.8	CH
10	37.0	C	37.2	C	37.4	C
11	23.6	CH_2	24.2	CH_2	21.4	CH_2
12	122.4	CH	123.7	CH	122.4	CH
13	142.8	C	142.7	C	142.9	C
14	44.8	C	45.5	C	44.5	C
15	36.0	CH_2	36.8	CH_2	36.3	CH_2
16	67.9	CH	69.3	CH	69.2	CH
17	40.9	C	40.0	C	36.3	C
18	44.8	CH	45.5	CH	44.4	CH
19	46.5	CH_2	47.4	CH_2	46.5	CH_2
20	31.8	C	31.6	C	30.6	C
21	32.1	CH_2	34.3	CH_2	30.9	CH_2
22	25.9	CH_2	26.8	CH_2	25.9	CH_2
23	26.7	CH_3	28.7	CH_3	29.7	CH_3
24	15.3	CH_3	17.8	CH_3	16.5	CH_3
25	16.6	CH_3	17.8	CH_3	16.5	CH_3
26	16.5	CH_3	19.0	CH_3	18.7	CH_3
27	26.4	CH_3	27.7	CH_3	27.1	CH_3
28	71.2	CH_2	72.0	CH_2	25.9	CH_3
29	33.1	CH_3	33.9	CH_3	33.2	CH_3
30	23.8	CH ₃	24.7	CH ₃	23.6	CH ₃

 $^{13}\text{C NMR},~100~\text{MHz},~\text{CDCl}_3,~\text{TMS},~\delta,~\text{ppm}.$

Pharmazie **58** (2003) 2

ORIGINAL ARTICLES

¹H NMR, δ 0.92 (s, CH₃), δ 1.06 (s, CH₃), δ 1.07 (s, CH₃), δ 1.09 (s, CH₃), δ 1.11 (s, CH₃), δ 1.24 (s, CH₃), δ 1.26 (s, CH₃), this compound should be a pentacyclic triterpene. Furthermore, in the ¹³C NMR spectrum, the characteristic double bond carbons were δ 122.4 (CH), δ 142.8 (C), indicating this triterpene was an olean-12-ene [9]. Similarities in ¹H NMR of compound 3 and 2 showed a hydroxymethyl at C-28, δ 3.21 (d, J = 12.8 Hz, H-28a), δ 4.16 (d, J = 12.8 Hz, H-28b), and a β -hydroxy at C-16, δ 4.32 (dd, J = 10.2, 6.8 Hz, H-16 α). In the HMBC spectrum, the carbonyl signal δ 216.0 correlated with two methyls (CH₃-23, CH₃-24) and a CH₂-2 group at δ 2.54 (ddd, J = 12.0, 2.8, 1.2 Hz, H-2 α), δ 2.39 (dt, J = 12.0, 4.6 Hz, H-2 β), which led to the assignment of C-3 carbonyl. Those characteristic RDA fragments [10] m/z at 232 [D/E-H₂O]⁺, 219 [D/E-CH₂OH]⁺, 201 [D/E-H₂O-CH₂OH]⁺ and 206 [A/B ring]⁺ in the EIMS spectrum supported all the conclusion. Thus this compound was established as 16β,28-dihydroxyolean-12-en-3-one.

Compound **4** was obtained as white powder, $[M + H]^+$ peak at m/z 475.3786 ($C_{30}H_{51}O_4$, requires 475.3782) in positive HRSIMS spectrum and the signals at δ 123.7 (CH) and δ 142.7 (C) in ^{13}C NMR indicated that this compound was another olean-12-ene with the molecular formula $C_{30}H_{50}O_4$. The degree of unsaturation was 6, showing that the four oxygen atoms were belonging to hydroxy groups. Indeed, there was a broad and strong absorption at 3394 cm⁻¹ in its IR spectrum. Compared with compound **3**, **1** and **2**, 1H NMR of **4** indicated β-OH at C-3, δ 3.16 (dd, J = 8.7, 7.0 Hz, H-3α), hydroxymethyl at δ 3.21 (d, J = 11.8 Hz, H-28a), δ 4.17 (d, J = 11.8 Hz, H-28b), and δ -OH at C-16, δ 4.30 (dd, J = 12.0, 5.0 Hz, H-16α). The

Scheme

Table 2: IC₅₀ (µg/ml) of compounds 4 and 5

Compd.	SMMC-7721 cells	HO-8910 cells	LO2 cells
Vincristine 4 5	30.35	20.74	17.25
	31.84	48.50	44.86
	27.87	54.41	35.39

fourth hydroxy was assigned on C-6, for the absence of CH₂-6 signal in olean-12-ene, which always appeared at δ 18.0 in ^{13}C NMR spectrum [11]. Actually, there were cross peaks between proton δ 4.60 (m, J = 4.8 Hz, H-6 α) and carbons δ 41.1 (C-8), δ 37.2 (C-10) respectively in the HMBC spectrum. Only H-6 in α orientation, where the angles between H-6 α and H-5 α , H-7 α / β were similar and about 40° , leading to δ 4.60 (m, J = 4.8 Hz, H-6 α). EIMS of compound 4 also gave a correct series of RDA fragmentation ions at m/z 232 [D/E-H₂O]+, 219 [D/E-CH₂OH]+, 201 [D/E-H₂O-CH₂OH]+ and 187 [A/B-2H₂O-H]+. Therefore, compound 4 was deduced as olean-12-en-3 β ,6 β ,16 β ,28- tetraol.

Compound 5 was obtained as a white gum, it had a $[M + H]^+$ peak at m/z 457.3677 (C₃₀H₄₉O₃ required 457.3676) in positive HRSIMS, which showed the molecular formula was C₃₀H₄₈O₃. There were thirty carbon signals in the ¹³C NMR spectrum (Table 1), and eight methyl singlets δ 0.82 (s, 3 H), δ 0.90 (s, 3 H), δ 0.92 (s, 3 H), δ 1.18 (s, 3 H), δ 1.19 (s, 3 H), δ 1.37 (s, 3 H), δ 1.43 (s, 3 H) and δ 1.52 (s, 3 H) in the ¹H NMR spetrum, both of which indicated that 5 had an olean-12-ene skeleton. Besides the six unsaturated degrees of skeleton, there was one caused by a carbonyl group, which was proved by the absorption of 1710 cm⁻¹ in the IR spectrum. Compared with 13 C NMR of 3, δ 216.4 (C) of 5 should be assigned to C-3 carbonyl. Similarities in ¹H NMR of compound 5 and **3**, **4** displayed that δ 4.19 (dd, J = 11.8, 4.8 Hz, 1 H) should be H-16 α , and δ 4.52 (m, J = 4.5 Hz, 1 H) should be H-6α. Furthermore, the characteristic RDA fragmentation ions m/z at 234 [D/E ring]⁺, 219 [D/E-CH₃]⁺, 201 $[D/E-CH_3-H_2O]^+$, and 222 $[A/B \text{ ring}]^+$, 203 $[A/B-H_2O]^+$ H₂O-H]⁺ (Scheme) in EIMS verified all the above deduction. This olean-12-ene was then established as 6β , 16β -dihydroxyolean-12-en-3-one.

Compounds 4 and 5 showed strong cytotoxity to human hepatoma cells (SMMC-7721), and showed cytotoxity to human ovarian neoplasm (HO-8910) cells and human hepatocytes (LO2), when compared with the reference compound vincristine (Table 2).

3. Experimental

3.1. Equipment

All optical rotations were measured on Perkin-Elmer model 341 polarimeter. IR spectra were taken on a Nicolet AVATAR 360 FT-IR spectrometer. Positive HRSIMS were tested on Bruker Daltonics APEX II 47e Specifications. $^{13}\text{C NMR}$ (100 MHz, CDCl3) spectra and $^{1}\text{H NMR}$ spectra (400 MHz, CDCl3) were recorded on a Bruker AM 400 FT-NMR spectrometer with TMS as internal standard. EIMS data were recorded on HP-5988 MS spectrometer. Silica gel (200–300 mesh) was used for CC and silica GF254 for TLC. Spots were detected on TLC under UV or by heating after spraying with 5% H_2SO_4 in C_2H_5OH .

3.2. Plant material

The whole plant of *L. shichuana* was collected in Qingling Mountain, Shaanxi Province, P. R. China, in September 2000. The plant material was identified by Prof. Yao-Jia Zhang, Department of Biology, Lanzhou University, Lanzhou, P. R. China. The voucher specimen (No. 2000823) was deposited at College of Chemistry and Chemical Engineering, Lanzhou University.

Pharmazie **58** (2003) 2

ORIGINAL ARTICLES

3.3. Extraction and isolation

The air-dried and powdered whole plants of L. shichuana (750 g) were extracted with acetone (3 L) (5 days × 3) at room temperature. The combined extracts were evaporated in vacuo to yield 38 g of residue, which was chromatographed over silica gel (500 g). The column was eluted with petroleum ether-acetone (20:1, 15:1, 10:1, 8:1, 5:1, 3:1, 1:1, V/V) solvent system. The eluted fractions were monitored by TLC, the combination afforded 11 fractions (A-K). Compound 1 (5 mg) was deposited from fraction C (petroleum ether-acetone, 10:1, 0.4 g) and recrystalized from MeOH. Fraction C was further separated by column chromatography on silica gel using petroleum ether-ethyl acetate 8:1, eight subfractions were yielded and subfractions 4-6 were combined to give 3 (4 mg). Fraction F (petroleum ether-acetone 5:1, 0.2 g) was subjected to column chromatography on silica gel eluted with CH₃Cl-acetone 6:1 repeatedly to give 5 (3 mg). From fraction G (between petroleum ether-acetone 5:1 and petroleum ether-acetone 3:1, 0.2 g), 2 (6 mg) was deposited and recrystalized from MeOH. Fraction H (petroleum ether-acetone 3:1, 0.3 g) was rechromatographed (petroleum ether-acetone 5:1) again to afford crude 4, which was then purified again using different solvent system (CH3Cl-acetone 3:1) to give 4 (5 mg).

3.4. 16β , 28-Dihydroxyolean-12-en-3-one (3)

White gum; Rf 0.72 (petroleum ether-acetone 3:1); $[\alpha]_D^{20}+4$ (acetone, c 0.15); IR (v\$^{KBr}_{max}\$, cm\$^{-1}\$): 3378 (broad and strong), 1715, 1650, 1031 cm\$^{-1}\$; Positive HRSIMS [M + H]\$^+ 457.3724 (calc. for \$C_{30}H_{49}O_3\$ 457.3676); EIMS (m\beta x_9\$) 438 [M-H_2O] (45), 420 [M-2H_2O] (31), 407 [M-H_2O-CH_2OH] (35), 232 [D/E-H_2O] (7), 219 [D/E-CH_2OH] (9), 201 [D/E-H_2O-CH_2OH] (100), 206 [A/B ring] (2), 205 (5); \$^1\$HNMR data (\delta\$, CDCl\$_3\$, 400 MHz): δ 0.92 (s, CH_3), δ 1.06 (s, CH_3), δ 1.07 (s, CH_3), δ 1.09 (s, CH_3), δ 1.11 (s, CH_3), δ 1.24 (s, CH_3), δ 1.26 (s, CH_3), δ 2.54 (ddd, J = 12.0, 2.8, 1.2 Hz, H-2\delta\$), δ 2.39 (dt, J = 12.0, 4.6 Hz, H-2\beta\$), δ 3.21 (d, J = 12.8 Hz, H-28a), δ 4.16 (d, J = 12.8 Hz, H-28b), δ 4.32 (dd, J = 10.2, 6.8 Hz, H-16\alpha\$), δ 5.23 (t, J = 4.0 Hz, H-12); 13 C NMR data see Table 1.

3.5. Olean-12-en-3\(\beta\),6\(\beta\),16\(\beta\),28-tetraol (4)

White powder; Rf 0.40 (CH₃Cl-acetone 3:1); $[\alpha]_D^{20}$: + 15 (acetone, c 0.23); IR (v_{mar}^{KBr} cm⁻¹): 3394 (broad and strong), 1644, 1024 cm⁻¹; Positive HRSIMS [M + H]⁺ 475.3786 (calc. for $C_{30}H_{51}O_4$ 475.3782); EIMS (m/z,%): 456 [M-H₂O] (30), 438 [M-2H₂O] (1), 407 [M-2H₂O—CH₂OH] (2), 232 [D/E-H₂O] (17), 219 [D/E-CH₂OH] (4), 201 [D/E-H₂O—CH₂OH] (100), 187 [A/B-2H₂O—H] (15); ¹H NMR data (δ , CDCl₃, 400 MHz): δ 0.92 (s, CH₃), δ 0.92 (s, CH₃), δ 1.10 (s, CH₃), δ 1.19 (s, CH₃), δ 1.20 (s, CH₃), δ 1.31 (s, CH₃), δ 1.33 (s, CH₃), δ 2.38 (brdt, J = 13.2, 3.4 Hz, H-22 β), δ 1.99 (d, J = 13.2 Hz, H-22 α), δ 3.16 (dd, J = 8.7, 7.0 Hz, H-3 α), δ 3.21 (d, J = 11.8 Hz, H-28a), δ 4.17 (d, J = 11.8 Hz, H-28b),

 δ 4.30 (dd, J = 12.0, 5.0 Hz, H-16a), δ 4.60 (m, J = 4.8 Hz, H-6a), δ 5.26 (t, J = 3.2 Hz, H-12); ^{13}C NMR data see Table 1.

3.6. 6β , 16β -Dihydroxyolean-12-en-3-one (5)

White gum; Rf. 0.60 (petroleum ether-ethyl acetate 4:1); $[\alpha]_D^{20}$: + 5 (acetone, c 0.10); IR (v_{max}^{KBr} cm⁻¹): 3392, 1710, 1640, 1033 cm⁻¹; Positive HRSIMS $[M+H]^+$ 457.3677 (calc. for $C_{30}H_{49}O_3$ 457.3676); EIMS (m/2,%): 456 $[M]^+$ (12), 438 $[M-H_2O]$ (10), 423 $[M-H_2O-CH_3]$ (4), 420 $[M-H_2O]$ (1), 234 [D/E ring] (100), 219 $[D/E-CH_3]$ (30), 201 $[D/E-CH_3-H_2O]$ (36), 222 [A/B ring] (2), 204 $[A/B-H_2O]$ (6), 203 (18); 1H NMR data (δ , CDCl₃, 400 MHz): δ 0.82 (s, CH₃), δ 0.90 (s, CH₃), δ 0.92 (s, CH₃), δ 1.18 (s, CH₃), δ 1.19 (s, CH₃), δ 1.37 (s, CH₃), δ 1.43 (s, CH₃), δ 1.52 (s, CH₃), δ 1.70 (t, J = 11.8 Hz, H-15 β), δ 1.66 (dd, J = 11.8, 4.8 Hz, H-15 α), δ 2.78 (ddd, J = 14.0, 4.2, 1.2 Hz, H-2 α), δ 2.27 (dt, J = 14.0, 4.4, H-2 β), δ 4.19 (dd, J = 11.8, 4.8 Hz, H-16 α), δ 4.52 (m, J = 4.5 Hz, H-6 α), δ 5.34(t, J = 3.6 Hz, H-12); ${}^{13}C$ NMR data see Table 1.

3.7. Antitumor assays

Cytotoxic activity assays of compounds 4 and 5 were carried out in the Department of Biology of Lanzhou University, according to the MTT method [12].

Acknowledgements: This work was financed by National Natural Science Foundation of China (No. 29972017 and QT program).

References

- 1 Chen, Y. L.: Acta Phytotaxonomica Sinica 34, 631 (1996)
- 2 Institute of Botanic Boreali-Occidentali, Academica Sinica. Flora Tsinlingensis, Vol. 1, Chapter 5, p. 298, Science Publisher, Beijing 1985
- 3 Wang, W. S.; Gao, K.; Zhu, Q. X.; Jia, Z. J.: J. Chin. Chem. Soc. 47, 1291 (2000)
- 4 Gao, K.; Yang, L.; Jia, Z. J.: J. Chin. Chem. Soc. 46, 619 (1999)
- 5 Mao, M. J.; Zhang, Q.; Jia, Z. J.: Planta Med. 68, 55 (2002)
- 6 Takizawa T.; Kinoshita K.; Koyama K.; Takahashi K.: J. Nat. Prod. 58, 1913 (1995)
- 7 Morales G.; Mclaughlin J. L.: J. Nat. Prod. 52, 381 (1989)
- 8 Djerassi Carl; McDonald R. M.; Lemin A. J.: J. Am. Chem. Soc. 76, 5940 (1953)
- 9 Tori K.; Seo S.; Shimaoka A.; Tomita Y.: Tetrahedron Lett. **48**, 4227 (1974)
- 10 Cong, P. Z.: Application of MS in Natural Organic Chemistry, 1st editon, p. 684, Science Publisher, Beijing 1987
- 11 Shashi B. Mathato; Asish P. Kundu.: Phytochemistry 37, 1517 (1994)
- 12 Han R.: Research and Development of Anticancer Drugs and Experimental Techniques, p. 284, Associated Press of Beijing Medical University and Xiehe Medical University of China, Beijing 1997

150 Pharmazie **58** (2003) 2