ORIGINAL ARTICLES

Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, P.R. China

Sesquiterpenes and other constituents from Cacalia deltophylla

YING WANG, MIN YANG, CHENG-SHAN YUAN, YI-FENG HAN, ZHONG-JIAN JIA

Received January 10, 2003, accepted February 20, 2003

Prof. Zhong-Jian Jia, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China jiazj@lzu.edu.cn

Pharmazie 58: 596-598 (2003)

From the whole plant of *Cacalia deltophylla* (Maxim) Mattf, together with twelve known compounds (3–14), a new furanoeremophilane-type sesquiterpene named deltocacalone (1), and a new norsesquiterpene named deltonorcacalol (2) were isolated. Their structures were elucidated by spectroscopic methods including 2D-NMR techniques.

1. Introduction

The genus Cacalia (Compositae) is widespread in East Asia. In China, many species of Cacalia have long been used as traditional Chinese medicinal herb in the treatment of invigorating circulation of blood, relieving coughs and phlegm [1]. A number of furanoeremophilane-type sesquiterpenes derived from Cacalia have been reported [2, 3], however, no phytochemical investigation of Cacalia deltophylla (Maxim) Mattf have been carried out up to now. In our studies on the chemical constituents of this plant, a new furanoeremophilane-type sesquiterpene and a new norsesquiterpene were isolated from the whole plant of this species. Their structures were elucidated as deltocacalone (1) and deltonorcacalol (2) by spectroscopic methods including 2D-NMR techniques. In addition, twelve known compounds maturinone (3), β-amyrin acetate (4), α-amyrin (5), lupeol (6), β-sitosterol (7), daucosterol (8), caffeic acid (9), tyrosol (10), esculetin (11), scopoletin (12), syringaldehyde (13), (E)-cinnamic acid (14) were obtained. This paper reports the isolation and structure elucidation of these constituents.

2. Investigations, results and discussion

Compound 1 was obtained as yellow crystals from acetone, m.p. 183–185 °C. A strong absorption band at 1652 cm⁻¹ in its IR spectrum suggested a conjugated carbonyl group. The ¹H NMR spectrum (Table 1) showed the presence of a methyl group (δ 2.16, 3 H, brs) occupied the β -position of furan ring, a proton at the α -position of furan ring (δ 7.50, 1 H, brs), a 1,2,3-trisubstituted benzene (δ 8.31, dd; δ 7.40, t; δ 7.35, dd, 1 H each), a methyl group on benzene ring (δ 2.63, 3 H, s) and a pair of protons (δ 3.50, 3.78, 1 H each, d) belong to an oxygenated methylene. The ¹³C NMR and DEPT spectra exhibited fifteen carbon signals including two methyls, one methylene, four methines and eight quaternary carbons. The EIMS spectrum exhibited a molecular ion peak at m/z 240 [M]⁺. Thus, the molecular formula of 1 was deduced to be C₁₅H₁₂O₃ with ten degrees of unsaturation. In its ¹³C NMR spectrum, the signal of the oxygenated methylene $(\delta 52.0)$ appeared at relative high field implying a trimember epoxy ring. The supposed structure was proved by 3J cross peaks in HMBC experiment: C-5/H-1, 3, 14, 15; C-7/H-12, 13, 14; C-8/H-12; C-9/H-1. The configuration of the methylene at C-6 could be assigned as β in the biogenetic consideration of cacalone and cacalol (common components of *Cacalia*) [4–6]. Thus, the structure of compound **1** was established as a furanoeremophilane-type sesquiterpene, named deltocacalone.

596 Pharmazie **58** (2003) 8

ORIGINAL ARTICLES

Table 1: ¹H NMR data of compounds 1-3 (CDCl₃, TMS)^a

Н	1 ^b	2°	3 ^b	
1	8.31 (dd, 7.5, 1.6)	6.76 (dd, 9.8, 3.0)	8.14 (dd, 7.5, 1.5)	
2	7.40 (t, 7.5)	6.08 (ddd, 9.8, 6.4, 2.6)	7.58 (t, 7.5)	
$3(\alpha)$	7.35 (dd, 7.5, 1.6)	2.25 (ddd, 17.2, 2.6, 1.0)	7.50 (dd, 7.5, 1.5)	
3(α) 3β	_	2.49 (dddd, 17.2, 7.0, 6.4, 3.0)	_ ` ` ` ` ` `	
4α	_	3.10 (ddq, 1.0, 7.0, 7.0)	_	
12	7.50 (brs)	2.59 (s)	7.52 (brs)	
13	2.16 (brs)	2.30 (s)	2.37 (brs)	
14	2.63 (s)	1.04 (d, 7.0)	2.79 (s)	
15	3.50/3.78 (d, 5.8)	3.80 (s)	_	
OH	_	8.67 (brs)	_	

a Chemical shifts in ppm from internal TMS and coupling constants in Hz;
b Obtained on a 400 MHz spectra recorder;

Compound 2 was obtained as colorless needles from acetone, m.p. 150-152 °C. The absorption bands in its IR spectrum indicated a hydroxyl group (3282 cm⁻¹), a conjugated carbonyl group (1670 cm⁻¹) and double bonds (1586, 1456, 1426 cm⁻¹). The ¹³C NMR and DEPT spectra exhibited fifteen carbon signals including four methyls, one methylene, three methines and seven quaternary carbons. The EIMS spectrum showed the molecular ion peak at m/z 246 [M]⁺. Hence, the molecular formula of compound 2 was deduced as C₁₅H₁₈O₃, indicating seven degrees of unsaturation in the molecule. Except the signal of the carbonyl carbon (δ 205.6), all of the remaining six quaternary carbons were at low field (between δ 125 and δ 150) in the ¹³C NMR spectrum, thus a complete substituted benzene ring was suggested. The ¹H NMR spectrum showed the presence of a secondary methyl group (δ 1.04, 3 H, d), two tertiary methyl groups (δ 2.30, 2.59, 3 H each, s) and a methoxyl group (\delta 3.80, 3H, s). These groups was combined by the ¹H-¹³C cross peaks (³J) in the HMBC experiment: C-1/H-3; C-2/H-4; C-3/H-1, 14; C-5/H-1, 3, 13, 14; C-7/H-12, 13, -OH; C-9/H-1, -OH, -OCH₃; C-10/H-2, 4. The configuration of 14-Me at C-4 was determined as β on the basis of a strong correlation between C-13 and \dot{H} -4 α in NOESY experiment. The determination also matches the biogenesis of cacalol [6, 7]. Thus, compound 2 was identified as deltonorcacalol.

The structure of compound 3 was elucidated as maturinone from its EIMS, IR, ¹H and ¹³C NMR spectra data. The ¹³C NMR data of 3 are reported here for the first time, while its IR and ¹H NMR data were the same as those reported in the literature [8]. Comparison of the EIMS, ¹H and ¹³C NMR data with literature, compounds **4** and **5** were identified as β -amyrin acetate [9] and α amyrin [10], respectively. Compounds 6, 7, 8, 9, 10 and 11 were identified as lupeol, β-sitosterol, daucosterol, caffeic acid, tyrosol [11] and esculetin [12], respectively, by direct comparison with authentic samples (TLC, m.p. and EIMS data). Compounds 12 and 13 were identified as scopoletin [12] and syringaldehyde [13], respectively, by comparison of their EIMS and ¹H NMR data with the literature. Compound 14 was determined as (E)-cinnamic acid on the basis of its IR, EIMS, ¹H and ¹³C NMR data (see Experimental).

3. Experimental

3.1. Apparatus

Optical rotations were recorded on a Perkin-Elmer 341 Polarimeter; UV spectra were obtained on a TU-1901 UV-VIS spectrophotometer; IR spectra were taken on a Nicolet Avatar 360 FT-IR spectrometer; The NMR spectra were obtained on a Bruker AM 400 FT-NMR spectrometer with chemical shifts reported in δ (ppm) using TMS as an internal standard; MS data were obtained on a VG-ZAB-HS instrument (70 eV); Silica gel (200-300 mesh) used for column chromatography and silica GF₂₅₄ (10-40 μ) for TLC supplied by Qingdao Marine Chemical Factory, Qingdao, P.R. China; Spots were detected on TLC under UV or by heating after spraying with 5% H₂SO₄ in C₂H₅OH; Melting points are uncorrected.

3.2. Plant material

The whole plant of Cacalia deltophylla (Maxim.) Mattf. was collected in September 2000, in Forestry Center Shuang-Cha in Luqu county, Gansu Province, People's Republic of China, and was identified by Prof. Yao-Jia Zhang, Department of Biology, Lanzhou University. A voucher specimen (No. 2000915) is deposited in the Department of Chemistry, Lanzhou University, People's Republic of China.

3.3. Extraction and isolation

The air-dried whole plant of C. deltophylla (3.0 kg) was pulverized and then percolated with methanol (four times; 5 days per time) at room temperature. The extract was concentrated under reduced pressure to yield a residue (500 g), which was dispersed into water and extracted with petroleum ether (three times), then with EtOAc (three times). Each organic layer was concentrated under reduced pressure, to obtain a petroleum ether residue (75 g) and an EtOAc residue (25 g). The petroleum ether residue was subjected to CC on silica gel (200-300 mesh, 800 g) eluted with a gradient of petroleum ether-acetone, to obtain Fr. A (18 g), Fr. B (8 g), Fr. C (12 g), and Fr. D (6 g) of petroleum ether-acetone (30:1, 20:1, 15:1, and 10:1, respectively). Fr. A was then separated by CC on silica gel (200 g) eluted with a gradient of petroleum ether-EtOAc. The eluate A₁ (petroleum ether-EtOAc 30:1, 3 g) was purified by CC on silica gel (60 g) eluted with benzene-EtOAc (40:1) to give 4 (20 mg). The eluate A2 (petroleum ether-EtOAc 20:1, 3 g) was further purified by CC on silica gel (60 g) eluted with petroleum ether-benzene (10:1) to afford 5 (26 mg) and 6 (20 mg). Crude 3 deposited from eluate A₃ (petroleum ether-EtOAc 15:1) and was re-crystallized from acetone to yield pure 3 (21 mg). Crystals of 7 (30 mg) deposited from Fr. B and were re-crystallized from a mixture of petroleum ether-EtOAc. Fr. C was purified by CC on silica gel (150 g) and eluted repeatedly with petroleum ether-EtOAc (15:1), to give 1 (8 mg) and 2 (30 mg). Compound 14 (18 mg) was obtained from Fr. D by CC on silica gel (80 g) eluted with petroleum ether-EtOAc (10:1). The EtOAc residue was subjected to CC on silica gel (300 g) eluted with a gradient of petroleum ether-acetone, to obtain Fr. E (4 g), Fr. F (3 g), Fr. G (6 g), and Fr. H (3 g) of petroleum ether-acetone (10:1, 8:1, 5:1, and 2:1, respectively). Fr. E was separated by CC on silica gel (80 g) eluted with CHCl3-MeOH (50:1), then further purified by CC eluted with petroleum ether-EtOAc (20:1), to give 10 (8 mg) and 13 (12 mg). Compound 12 (10 mg) deposited from Fr. F and was re-crystallized from MeOH. Fr. G was purified by CC on silica gel (10 g) eluted with CHCl3-MeOH (15:1), to afford 9 (10 mg) and 11 (8 mg). Crude 8 deposited from Fr. H and was re-crystallized from EtOH to yield pure 8 (16 mg). For ¹H and ¹³C NMR data see Tables 1 and 2.

3.4. Deltocacalone (1)

Yellow crystals (acetone); m.p. 183–185 °C; $[\alpha]_{\rm D}^{20}$ –5.4 (c, 0.35, acetone); IR (v^{KBr}, cm⁻¹): 3100, 2919, 1652, 1583, 1535, 1467, 1417, 1365, 1222, 993, 887, 832, 756; EIMS m/z (rel int): 240 $[{\rm M}]^+$ (46), 225 $[{\rm M-CH_3}]^+$ (100), 210 (75), 153 (26), 139 (12), 115 (13), 63 (10).

3.5. Deltonorcacalol (2)

Colorless needles (acetone); m.p. 150–152 °C; [αJ_D^{20} +84.6 (c, 0.39, CHCl $_3$); IR (ν^{KBr} , cm $^{-1}$): 3282, 2963, 2930, 1670, 1586, 1456, 1426,

^c Obtained on a 200 MHz spectra recorder

ORIGINAL ARTICLES

Table 2: ¹³C NMR data of compounds 1-3 (CDCl₃, TMS)^a

C	1 ^b	2°	3 ^b	
1	126.4 d	120.8 d	125.8 d	
2	128.0 d	129.1 d	132.6 d	
3	137.1 d	30.8 t	138.2 d	
4	135.3 s	27.4 d	134.2 s	
5	135.9 s	131.4 s	129.8 s	
6	56.8 s	128.2 s	184.4 s	
7	136.1 s	125.9 s	130.7 s	
8	149.0 s	148.2 s	151.9 s	
9	172.6 s	141.5 s	173.6 s	
10	136.7 s	128.6 s	141.9 s	
11	119.4 s	205.6 s	121.8 s	
12	146.0 d	32.6 q	145.8 d	
13	7.8 q	16.3 q	8.8 q	
14	19.7 q	18.7 q	23.1 q	
15	52.0 t	61.4 q	_	

Signals assigned on the basis of HMOC and HMBC spectra:

1357, 1270, 1167, 1047, 999, 975; EIMS m/z (rel int): 246 [M]⁺ (41), 231 [M-CH₃]⁺ (29), 199 (22), 157 (32), 128 (16), 115 (22), 91 (11), 77 (11), 43 (100).

3.6. *Maturinone* (3)

Yellow prisms (acetone); m.p. $160-162 \,^{\circ}\text{C}$; IR (ν^{KBr} , cm $^{-1}$): 2919, 2849, 1706, 1667, 1531, 1467, 1226, 963; EIMS m/z (rel int): 226 [M]⁺ (100), 197 (36), 169 (20), 141 (60), 115 (40), 89 (18), 64 (16).

3.7. \(\beta\)-Amyrin acetate (4)

Colorless needles (petroleum ether-EtOAc); m.p. 239-240 °C; EIMS m/z (rel int): 468 [M]⁺ (3), 453 [M-CH₃]⁺ (0.7), 393 [M-CH₃-AcOH]⁺ (0.8), (rel int): 468 [M]⁺ (3), 453 [M-CH₃]⁺ (0.7), 393 [M-CH₃-AcOH]⁺ (0.8), 270 (0.9), 257 (20), 249 (20), 218 (100), 203 (35), 119 (11), 95 (12), 69 (13), 43 (24); ¹H NMR δ ppm (CDCl₃, 400 MHz): 0.83 (3 H, s, H-23), 0.87 (6 H, s, H-24, H-25), 0.88 (6 H, s, H-29, H-30), 0.96 (3 H, s, H-26), 0.97 (3 H, s, H-27), 1.13 (3 H, s, H-28), 4.50 (1 H, dd, 6.8 Hz, 8.8 Hz, H-3), 5.18 (1 H, dd, 3.2 Hz, 3.2 Hz, H-12), 2.05 (3 H, s, COOCH₃); ¹³C NMR and DEPT δ ppm (CDCl₃, 100 MHz): 38.27 (CH₂, C-1), 23.57 (CH₂, C-2), 80.95 (CH, C-3), 37.72 (C, C-4), 55.26 (CH, C-5), 18.27 (CH₂, C-6), 32.60 (CH, C-7), 39.81 (C, C-8), 47.56 (CH, C-9), 36.85 (C, C-10) C-6), 32.60 (CH₂, C-7), 39.81 (C, C-8), 47.56 (CH, C-9), 36.85 (C, C-10), 23.54 (CH₂, C-11), 121.65 (CH, C-12), 145.22 (C, C-13), 41.72 (C, C-14), 26.93 (CH₂, C-15), 26.14 (CH₂, C-16), 32.50 (C, C-17), 47.24 (CH, C-18), 46.79 (CH₂, C-19), 31.08 (C, C-20), 34.74 (CH₂, C-21), 37.15 (CH₂, C-22), 28.40 (CH₃, C-23), 16.70 (CH₃, C-24), 15.56 (CH₃, C-25), 16.81 (CH₃, C-26), 25.95 (CH₃, C-27), 28.04 (CH₃, C-28), 33.33 (CH₃, C-29), 23.69 (CH₃, C-30), 21.31 (OCH₃), 171.0 (C=O).

3.8. α -Amyrin (5)

Colorless needles (petroleum ether-EtOAc); m.p. 182–184 °C; EIMS m/z(rel int): 426 [M]⁺ (6), 411 (2), 257 (2), 218 (100), 203 (26), 189 (17), 119 (14), 95 (18), 55 (22), 43 (19); ¹H NMR δ ppm (CDCl₃, 400 MHz): 0.79 (3 H, s, H-23), 0.80 (3 H, s, H-24), 0.87 (3 H, s, H-25), 1.00 (3 H, s, H-26), 1.01 (3 H, s, H-27), 1.03 (3 H, s, H-28), 0.95 (3 H, d, 6.2 Hz, H-30), 3.22 (1 H, dd, 10.7 Hz, 5.2 Hz, H-3), 5.13 (1 H, dd, 4.2 Hz, 3.2 Hz, H-6); ¹³C NMR and DEPT δ ppm (CDCl₃, 100 MHz): 38.8 (C-1, CH₂), 27.3 (C-2, CH₂), 79.0 (C-3, CH), 40.0 (C-4, C), 55.2 (C-5, CH), 18.4 (C-6, CH₂), 33.0 (C-7, CH₂), 40.0 (C-8, C), 47.7 (C-9, CH), 36.9 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 124.4 (C-12, CH), 139.6 (C-10, C), 23.4 (C-11, CH₂), 24.4 (C-12, CH₂), 2 13, C), 42.1 (C-14, C), 29.7 (C-15, CH₂), 26.6 (C-16, CH₂), 33.8 (C-17, C), 59.1 (C-18, CH), 39.6 (C-19, CH), 39.7 (C-20, CH), 31.3 (C-21, CH₂), 41.5 (C-22, CH₂), 28.1 (C-23, CH₃), 15.6 (C-24, CH₃), 15.7 (C-25, CH₃), 16.9 (C-26, CH₃), 23.3 (C-27, CH₃), 28.8 (C-28, CH₃), 17.5 (C-29, CH₃), 21.4 (C-30, CH₃).

3.9. Lupeol (6)

Colorless needles (petroleum ether-EtOAc); m.p. 210-212 °C; The TLC was identical to that of an authentic sample.

3.10. β-Sitosterol (7)

Colorless needles (petroleum ether-EtOAc); m.p. 139-140 °C; The TLC was identical to that of an authentic sample.

3.11. Daucosterol (8)

White powder (EtOH); m.p. 289-290 °C; The TLC was identical to that of an authentic sample.

3.12. Caffeic acid (9)

Pale yellow crystals; m.p. 220-222 °C; EIMS m/z (rel int): 180 [M]⁺ (2), 154 (6), 137 (6), 100 (78), 74 (66), 45 (100).

3.13. Tyrosol (10)

Colorless needles; m.p. 90–92 °C; EIMS m/z (rel int): 138 [M]⁺ (45), 120 (100), 106 (7), 92 (92), 77 (5), 64 (29), 53 (12), 39 (20).

3.14. Esculetin (11)

Pale yellow needles; m.p. 271-272 °C; EIMS m/z (rel int): 178 [M]+ (100), 150 (77), 121 (5), 79 (5), 69 (8).

3.15. Scopoletin (12)

Colorless needles (MeOH); m.p. 203–205 °C; EIMS mlz (rel int): 192 [M]+ (100), 177 (60), 164 (21), 149 (38), 121 (13), 79 (12), 69 (20); $^1\mathrm{H}$ NMR δ ppm (CDCl₃, 200 MHz): 3.89 (3 H, s, OCH₃), 6.17 (1 H, d, 9.4 Hz, H-3), 7.85 (1 H, d, 9.4 Hz, H-4), 7.35 (1 H, s, H-5), 6.79 (1 H, s, H-8), 10.15 (1 H, brs, OH).

3.16. Syringaldehyde (13)

Pale yellow needles; m.p. 106-108 °C; EIMS m/z (rel int): 182 [M]+ (100), 181 (65), 167 (10), 139 (8), 111 (10), 96 (8), 79 (5), 53 (4). ¹H NMR δ ppm (CDCl₃, 200 MHz): 4.01 (6 H, s, 2 OCH₃), 7.19 (2 H, s), 9.86 (1 H, s, CHO), 6.08 (1 H, brs, OH).

3.17. (E)-Cinnamic acid (14)

Colorless needles; m.p. $130-132\,^{\circ}\mathrm{C}$; IR $(v^{\mathrm{KBr}},\,\mathrm{cm}^{-1})$: $3000-2500,\,1685,\,1625,\,1571,\,1444,\,1417,\,1315,\,1281,\,1217,\,978,\,935,\,704;\,\mathrm{EIMS}\,\mathit{mlz}\,$ (rel int): $148\,$ [M] $^+$ (78), $147\,$ (100), $131\,$ (17), $103\,$ (27), $91\,$ (12), $77\,$ (17), $51\,$ (10); ¹H NMR δ ppm (CDCl₃, 200 MHz): 6.48 (1 H, d, 16.0 Hz), 7.81 (1 H, d, 16.0 Hz), 7.43 (3 H, m), 7.57 (2 H, dt, 9.5 Hz, 2.2 Hz); ¹³C NMR and DEPT δ ppm (CDCl₃, 50 MHz): 117.3 (CH), 128.4 (CH), 128.4 (CH), 129.0 (CH), 129.0 (CH), 130.8 (CH), 134.0 (C), 147.1 (CH), 172.5 (C=O).

Acknowledgement: This work was financially supported by the National Natural Science Foundation of China (No. 29972017).

References

- 1 Xue, Z. W.; Yu, Y. Q.: Index Florae of Chenesis Medicinal Herbs,
- p. 754, People's Health Press, Beijing, 1996 2 Zhang, S. M.; Zhao, G. L.; Li, R.; Lin, G. Q.: Phytochemistry 48, 519 (1998)
- 3 Kuroyanagi, M.; Naito, H.; Noro, T.; Ueno, A.; Fukushima, S.: Chem. Pharm. Bull. **33**, 4792 (1985)
- 4 Casares, A.; Maldonado, L. A.: Tetrahedron Lett. 29, 2485 (1976)
- 5 Yuste, F.; Diaz, E.; Walls, F.: J. Org. Chem. 41, 4103 (1976)
- 6 Soriano-Garcia, M.; Walls, F.; Barrios, H.; Sanchez-Obregon, R.; Ortiz, B.; Diaz, E.; Toscano, R. A.; Yuste, F.: Acta Cryst. C44, 1092 (1988)
- 7 Terabe, M.; Tada, M.; Takahashi, T.: Bull. Chem. Soc. Jpn. 51, 661 (1978)
- 8 Inouye, Y.; Uchida, Y.; Kakisawa H.: Bull. Chem. Soc. Jpn. 50, 961 (1977)
- 9 Gu, Y. C.; Tu, A. A.: Zhongguo Zhongyao Zazhi (in Chinese) 17, 489 (1992)
- 10 Mahato, S. B.; Kundo, A. P.: Phytochemistry 37, 1517 (1994)
- 11 Ayer, W. A.; Browne, L. M.; Feng, M. C.; Orszanska, H.; Saeedi-Ghomi, H.: Can. J. Chem. 64, 904 (1986)
- 12 Tsukamoto, H.; Hisada, S.; Nishibe, S.; Roux, D. G.; Rourke, J. P.: Phytochemistry 23, 699 (1984)
- 13 Manchand, P. S.; Belica, P. S.; Wong, H. S.: Syn. Commun. 20, 2659

598 Pharmazie **58** (2003) 8

Obtained on a 100 MHz spectra recorder;

^c Obtained on a 50 MHz spectra recorder