Institut für Pharmazeutische Chemie¹ der Technischen Universität Braunschweig und Institut für Pharmazeutische Chemie² der Martin-Luther-Universität Halle-Wittenberg, Germany

Benzo[*c*][2,7]naphthyridine aus 2,6-Dinor-nifedipin und dessen 2,5-Dicarbonsäuredimethylester-Isomer

K. GÖRLITZER¹, M. BODE¹, P. FROHBERG², G. DRUTKOWSKI²

Herrn Prof. Dr. B. Unterhalt mit den besten Wünschen zum 70. Geburtstag gewidmet

Eingegangen am 18. Mai 2003, angenommen am 2. Juni 2003

Prof. Dr. K. Görlitzer, Institut für Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig k.goerlitzer@tu-bs.de

Pharmazie 59: 15-20 (2004)

Bei der Umsetzung von 2-Nitrobenzaldehyd mit Propiolsäuremethylester und Ammoniumacetat in Eisessig werden 2,6-Dinor-nifedipin (1a) und das isomere rac. 1,4-Dihydropyridin (DHP) 1b gebildet. Die DHP 1 werden sowohl chemisch als auch durch anodische Oxidation an der rotierenden Platinelektrode (RPE) mittels Differenz-Puls-Voltammetrie (DPV) zu den korrespondierenden Pyridinen 2a, b dehydriert. 1a ist stabiler, 1b labiler als Nifedipin. Bei der Bestrahlung der DHP 1 mit UV-A-Licht werden die Nitrosophenylpyridine 3 gebildet, die mit konz. Salzsäure zu den Chlor-substituierten Hydroxamsäuren 4a, b cyclisieren. Die Hydroxamsäuren 4c, d werden durch Reduktion von 2a, b mit Zink in Acetatpuffer pH 4.6 erhalten. Die Hydroxamsäuren 4b, d zeigen im Vergleich mit der Referenzsubstanz Zileuton eine schwache Hemmung der 5-Lipoxygenase (5-LOX) menschlichen Vollblutes. Zusätzlich wird die Bildung von 15-HETE inhibiert. 4a vermindert die Cyclooxygenase-Aktivität. Die Desoxygenierung der Hydroxamsäuren 6 liefert, welche als Edukte für potenzielle Antimalariamittel dienen.

Benzo[*c*][2,7]naphthyridines from 2,6-dinor-nifedipine and its dimethyl 2,5-dicarboxylate isomer

The reaction of 2-nitrobenzaldehyde with methyl propiolate and ammonium acetate in acetic acid yields 2,6-dinor-nifedipine (1a) and the isomeric rac. 1,4-dihydropyridine (DHP) 1b. The DHP 1 are dehydrogenated both chemically and by anodic oxidation using a rotating platinum electrode (RPE) by means of differential pulse voltammetry (DPV) affording the corresponding pyridines 2a, b. Compound 1a is more stable, while compound 1b is less stable than nifedipine. Irradiation of the DHP 1 with UV-A light forms the nitrosophenyl-pyridines 3, which cyclize after addition of conc. hydrochloric acid to yield the chloro substituted hydroxamic acids 4a, b. The hydroxamic acids 4c, d are obtained treating 2a, b with zinc in acetate buffer pH 4.6. The hydroxamic acids 4b, d demonstrate only a moderate inhibition of 5-lipoxygenase (5-LOX) of human whole blood compared with the activity of the reference compound zileutone. The formation of 15-HETE is also inhibited. Compound 4a reduces the activity of cyclooxygenase. The lactames 5, obtained from the hydroxamic acids 4 by desoxygenation with phosphorus trichloride, react with phosphoryl chloride to give compounds 6, representing educts for potential agents against malaria.

1. Einleitung

Chennat und Eisner (1975) beschrieben eine neue Synthese von 1,4-Dihydropyridinen (DHP), die in 1-, 2- und 6-Position unsubstituiert sind, aus Propiolsäuremethylester, aromatischen Aldehyden und Ammoniumacetat in Eisessig. Es wurden aber keine DHP gebildet, wenn Nitrobenzaldehyde oder Salicylaldehyd eingesetzt wurden. Carbateas und Williams (1974) konnten jedoch zeigen, dass mit 3-Nitrobenzaldehyd unter Verlängerung der Reaktionszeit das erwartete DHP entsteht. Uns interessierte, ob unter Verwendung von 2-Nitrobenzaldehyd auch die dem Nifedipin entsprechende 2,6-Dinor-Verbindung zugänglich ist.

2. Untersuchungen, Ergebnisse und Diskussion

2.1. 1,4-Dihydropyridine

Wird 2-Nitrobenzaldehyd mit zwei Äquivalenten Propiolsäuremethylester und Ammoniumacetat in Eisessig mehrere Stunden erhitzt, so lassen sich nach Aufarbeitung durch Flash-Chromatographie (FC) zwei Produkte im Verhältnis

ORIGINAL ARTICLES

von etwa 4:1 isolieren. Aufgrund der spektroskopischen und analytischen Daten muss es sich um zwei isomere DHP handeln. Das Hauptprodukt **1a** ist das gewünschte 2,6-Dinor-nifedipin. Wie für ein symmetrisches Molekül zu erwarten, treten die Methylester-Protonen im ¹H-NMR-Spektrum als Singulett auf. Das isomere Nebenprodukt **1b** zeigt dagegen zwei Singuletts für die magnetisch inäquivalenten Methyl-Protonen. Wahrscheinlich setzt sich der durch Addition von Ammoniak an die C–C-Dreifachbindung des Propiolsäuresters gebildete β -Aminoacrylsäureester mit dem 2-Nitrobenzaldehyd zur Iminobenzyliden-Verbindung **A** um, die in einer Aza-Diels-Alder-Reaktion durch [4 + 2]-Cycloaddition zu den DHP **1a** und **b** mit stellungsisomeren 3,5bzw. 2,5-Dicarbonsäureestern führt (Schema 1).

Im ¹H NMR-Spektrum des symmetrischen DHP **1a** werden die 2,6-Protonen durch vicinale Kopplung als Dublett registriert, und das NH-Proton tritt als Triplett auf. Beim isomeren DHP **1b** erscheint das NH-Proton durch Kopplungen mit den Protonen in 4- und 6-Stellung als Dublett vom Dublett. 4-H koppelt mit NH, aber nicht mit 3-H und 6-H, da der Torsionswinkel zwischen 3-H und 4-H sowie 4-H und 6-H 90° beträgt.

Durch anodische Oxidation an der rotierenden Platinelektrode (RPE) wurden mittels Differenz-Puls-Voltammetrie (DPV) die Halbstufenpotentiale $E_{\frac{1}{2}}$ für **1a**, **b** ermittelt. Verglichen mit Nifedipin als Referenzsubstanz erwies sich das symmetrische DHP **1a** als stabiler, während sich das asymmetrische DHP **1b** als oxidationsempfindlicher erwies (Tabelle 1). Der elektrochemischen Dehydrierung liegt ein ECE-Mechanismus (elektrochemische, chemische und elektrochemische Reaktion) zugrunde (Ludvik et al. 1986; Ludvik et al. 1987; Skala et al. 1977).

2.2. Benzo[c][2,7]naphthyridine

Die DHP 1 ließen sich mit Ammoniumcer(IV)-nitrat (CAN) zu den korrespondierenden Pyridinen (Py) 2 dehydrieren. Bessere Ausbeuten wurden erhalten, wenn 1a mit 20% Sal-

Tabelle 1: Halbstufenpotentiale der 1,4-Dihydropyridine 1

Substanz	$E_{\nu_2}\left(V ight)$
Nifedipin	1,15
1a	1,27
1b	1,08

petersäure und **1b** mit Iod und Natriumacetat oxidiert wurde. Die Bestrahlung der DHP **1** mit UV-A-Licht führte zu den grün gefärbten Nitrosophenylpyridinen 3^3 , die bei der Behandlung mit konz. Salzsäure zu den chlorsubstituierten Hydroxamsäuren **4a**, **b**⁴ cyclisierten (Schema 2).

Durch Reduktion der Nitrogruppe der Pyridine 2a, b mit aktiviertem Zink im Acetatpuffer pH 4,6 ließen sich die

Schema 3

Schema 4

Hydroxamsäuren **4c**, **d** isolieren. Das intermediär gebildete Phenylhydroxylamin konnte nicht gefasst werden, da es spontan mit dem Ester zur Hydroxamsäure cyclisierte. Durch Umsetzung der Nitrosophenylpyridine **3a**, **b** mit konz. Bromwasserstoffsäure wurden die cyclischen Hydroxamsäuren **4c**, **d** erhalten. Bromsubstitution wurde hier nicht beobachtet. Überraschenderweise führte auch die Einwirkung von Natronlauge auf die Lösung der Photoprodukte **3** in Aceton zu den Hydroxamsäuren **4c**, **d**, welche ebenfalls als Nebenprodukte infolge intermolekularer Redoxreaktionen der Bestrahlungsansätze von **1a**, **b** isoliert werden konnten. Zusätzlich konnte die Bildung der Lactame **5c**, **d** dc nachgewiesen werden (Schema 3).

Durch Reduktion der Nitrogruppe des Pyridins **2a** mit Eisen/Essigsäure oder Zinn(II)-chlorid in Salzsäure wurde das Lactam **5c** erhalten. Die besten Ausbeuten für die Lactame **5a-d** wurden durch Desoxygenierung der Hydroxamsäuren **4a-d** mit Phosphortrichlorid erzielt. Die Reaktion verläuft vermutlich über das tautomere 5-Hydroxybenzo[c][2,7]naphthyridin-6-oxid. Die Lactame **5** reagierten mit Phosphorylchlorid zu den 5-Chlor-Derivaten **6**, die als Ausgangsverbindungen für die Synthese potenzieller Antimalariamittel benötigt werden (Schema 4).

2.3. Biologische Prüfung der Hydroxamsäuren

Die synthetisierten cyclischen Hydroxamsäuren 4a-d wurden in Fortführung vorangegangener Arbeiten auf ihre Wirkung gegenüber der Icosanoidbiosynthese überprüft (Görlitzer et al. 2002b). Als Icosanoide werden Metabolite der Arachidonsäure bezeichnet, die ein sehr breites Wirkspektrum aufweisen und unter anderem als hochaktive Mediatoren allergischer und entzündlicher Prozesse wirken (Funk 2001).

In Voruntersuchungen an der Sojabohnen-Lipoxygenase-1 (15-LOX) (Clemens et al. 2001) zeigten die ausgewählten Substanzen **4a** und **4c** bei einer Konzentration von 100 μ M keine Hemmung.

In Tabelle 2 sind die Ergebnisse der Testung an humanem Vollblut zusammengefasst. Es wurde die Beeinflussung der Bildung der Icosanoide LTB₄, 5-, 12- und 15-HETE sowie 12-HHT erfasst (Görlitzer et al. 2002a). LTB₄ und 5-HETE werden zur Bestimmung der 5-Lipoxygenase-Aktivität herangezogen. Die 12- und 15-HETE sind Metabo-

Tabelle 2:	Hemmung	(%) de	r Bildung	der	Arachidonsäure-
	metabolite	in hum	anem Voll	blut,	Inhibitorkonzen-
	tration: 10	uΜ			

Verbindung	LTB_4	5-HETE	12-HETE	15-HETE	12-HHT
4a 4b 4c 4d Zileuton	$\begin{array}{c} 12 \pm 35 \\ 29^* \pm 14 \\ 8 \pm 6 \\ 26^* \pm 2 \\ 99^* \pm 2 \end{array}$	$\begin{array}{c} -5 \pm 1 \\ 16 \pm 11 \\ -30 \pm 9 \\ 36 \pm 15 \\ 84^* \pm 10 \end{array}$	$9 \pm 13 \\ 24 \pm 8 \\ -16 \pm 8 \\ 12 \pm 6 \\ 16 \pm 7$	$\begin{array}{c} 30\pm18\\ 44^{*}\pm10\\ 40^{*}\pm10\\ 50^{*}\pm14\\ 27^{*}\pm1 \end{array}$	$\begin{array}{c} 42^* \pm 2 \\ 13 \pm 5 \\ -10 \pm 12 \\ 22 \pm 23 \\ -26 \pm 5 \end{array}$

Signifikanz: p < 0,05

lite, die auf dem 12- bzw. 15-Lipoxygenaseweg entstehen, wobei die Quantifizierung der 12-HHT zur Erfassung der Cyclooxygenase-Aktivität dient.

Die prozentualen Hemmwerte stellen Mittelwerte von Dreifachbestimmungen \pm Standardabweichung dar. Negative Werte bedeuten Stimulation der Metaboliten. Die Inhibitoren wurden in einer 10 μ M Konzentration eingesetzt.

Im Vergleich zur Referenzsubstanz Zileuton hemmen die Verbindungen **4b** und **4d** die Biosynthese von LTB₄ und 5-HETE nur schwach. Darüber hinaus wird durch die cyclischen Hydroxamsäuren **4b**–**d** die Bildung der 15-HETE mit etwa 50% gehemmt. **4a** beeinflusst als einzige Substanz bei der angegebenen Konzentration von 10 μ M signifikant die Biosynthese der 12-HHT. Die geringen und häufig gleichzeitig unselektiven Hemmaktivitäten, die IC₅₀-Werte von über 10 μ M erwarten lassen, geben keinen Anlass zu weiterführenden Testungen.

3. Experimenteller Teil

3.1. Allgemeine Angaben

Schmp.: Linström-Gerät (SPA-1, Fa. Bühler), nicht korrigiert. Elementaranalysen: C-H-N-O Elemental Analyzer 1106, Carlo Erba und CE Instruments FlashEA® 1112 Elemental Analyzer, Fa. Thermo Quest. Die Ergebnisse lagen bei den verschiedenen Verbindungen innerhalb der üblichen analytischen Grenzen. IR-Spektren: ATI Mattson Genesis Series FT-IR-Spektrometer. UV-Spektren: Philips PU 8730 und Analytik Jena Specord 200 UV/VIS-Spektrometer. MS: Finnigan-MAT 8430, Finnigan-MAT 8400-MSS I und Finnigan MAT 90 (Institut für Organische Chemie der TU Braunschweig); Elektronenstoß-Ionisation (EI)-MS: Ionisationsenergie 70 eV chemische Ionisation (CI)-MS (Reaktandgas). ¹H-NMR (400.13 MHz)- und ¹³C NMR (100.61 MHz)-Spektren: Bruker AM-400 und Bruker Avance DRX-400 (NMR-Laboratorien der Chemischen Instithe der TU Brausschweig; einschließlich der NOESY- und DEPT-Messun-gen, ¹³C, ¹H-COSY-, HSQC- und ¹³C, ¹H-COLOC-, HMBC-Spektren). Die chemischen Verschlebungen sind in ppm nach der $\delta_{\text{TMS}-}$ Skala angegeben. HPLC: LiChrograph[®] L-6200 Gradientenpumpe, LiChrograph[®] L-4750 Dioden-Array-Detektor, LiChroCART[®] Auto-fix, PC 486 DX, D 6500 DAD System Manager Software; Trennsäule: LiChroCART® 125-4, LiChrospher[®] 100 RP-18 (5 μm); Vorsäule: LiChroCART[®] 4-4, Select B; Eluenten: $(1) = \text{Acetonitril/Puffer pH 2} (40:60), (2) = \text{Acetonitril/Puf$ fer pH 2 (80:20). Flußrate: 1.000 ml/min, isokratisch: Injektionsvolumen: 20 μ l; Detektion (DAD): (1,2) = 254 nm; Nettoretentionszeit (t_s) in min; Totzeit des Systems ermittelt mit Thioharnstoff.

Lipoxygenase-Assays vgl. Görlitzer et al. (2002a).

3.2. Dimethyl-1,4-dihydro-4-(2-nitrophenyl)pyridin-3,5-dicarboxylat (1a)

5,0 ml (56.20 mmol) Methylpropiolat, 5,0 g (33.10 mmol) 2-Nitrobenzaldehyd und 5,0 g (64.85 mmol) NH₄OAc werden mit 5,0 ml wasserfreier AcOH versetzt und solange unter Rückfluss erhitzt bis keine Edukte mehr nachweisbar sind (dc-Kontrolle). Anschließend wird mit 5,0 ml EtOAc versetzt und der entstehende Kristallbrei abgesaugt. Ausbeute: 3,65 g (41%). Gelber Feststoff, Schmp. 212 °C (EtOAc). IR (KBr): \tilde{v} (cm⁻¹) = 3325 (NH), 1714 (C=O), 1677 (C=C), 1609 (C=C), Aromat), 1533, 1362 (NO₂). UV (MeOH): λ_{max} (lg ε) = 204 nm (4,32), 223 (4,27), 368 (3,77). ¹H NMR ([D₆]DMSO): δ (ppm) = 3,48 (s, 6H, CH₃), 5,62 (s, 1H, 4-H), 7,37 (dt, J = 1 Hz, J = 8 Hz, 1H, 4'-H), 7,63 (dt, J = 1 Hz, J=8 Hz, 1H, 5'-H), 7,78 (dd, J = 1 Hz, J = 8 Hz, 1H, 6'-H), 9,33 (t, J = 5 Hz, 1H, S'-H), 7,78 (dd, J = 1 Hz, J = 8 Hz, 1H, 3'-H), 9,33 (t, J = 5 Hz, 1H, NH). ¹³C NMR ([D₆]DMSO): δ (ppm) = 31,76 (C-4), 50,95 (CH₃), 105,33 (C-3, C-5), 123,69 (CH-arom), 127,43 (CH-arom), 131,13 (CH-arom), 136,11 (C-2, C-6), 141,56 (C-1)', 147,42 (C-2'),

166,33 (C=O). MS(EI): m/z (%) = 318 $[M]^{+\, \bullet}$ (7), 256 (100). HPLC (1): $t_s=3,42$ min. $C_{15}H_{14}N_2O_6$ (318,3)

3.3. Dimethyl-1,4-dihydro-4-(2-nitrophenyl)pyridin-2,5-dicarboxylat (1b)

Das EtOAc-Filtrat von **1a** wird einer FC unterworfen, Eluent: Petroläther/ EtOAc (2:1). Ausbeute: 1,16 g (13%). Orange Kristalle, Schmp. 192 °C (EtOAc). IR (KBr): $\bar{\nu}$ (cm⁻¹) = 3258 (NH), 1690 (C=O), 1658 (C=C), 1641 (C=C, Aromat), 1521, 1347 (NO₂). UV (MeOH): λ_{max} (lg ϵ) = 204 nm (4,36), 219 (4,25), 277 (4,28), 349 (3,50), 388 (3,45). ¹H NMR ([D₆]DMSO): δ (ppm) = 3,51 (s, 3 H, C-5-COOCH₃), 3,65 (s, 3 H, C-2-COOCH₃), 6,13 (d, J = 2,8 Hz, 1 H, 4-H), 7,58 (dt, J = 1,5 Hz, J = 8 Hz, 1 H, 4'-H), 7,62 (dd, J = 1,5 Hz, J = 7 Hz, 1 H, 6-H), 7,68 (dd, J = 1 Hz, J = 8 Hz, 1 H, 5'-H), 7,98 (dd, J = 1 Hz, J = 8 Hz, 1 H, 5'-H), 7,98 (dd, J = 1 Hz, J = 8 Hz, 1 H, 5'-H), 7,98 (dd, J = 1 Hz, J = 8 Hz, 1 H, 5'-H), 7,98 (dd, J = 1 Hz, J = 8 Hz, 1 H, 5'-H), 1H, NH). ¹³C NMR ([D₆]DMSO): δ (ppm) = 49,33 (C-4), 50,63 (C-2-COOCH₃), 51,30 (C-5-COOCH₃), 94,33 (C-5), 109,84 (C-2), 124,16 (C-3'), 129,59 (C-4'), 130,10 (C-6'), 134,07 (C-3), 134,68 (C-5'), 136,70 (C-1'), 146,30 (C-2'), 148,05 (C-6'), 164,94 (C-5-COOCH₃), 165,01 (C-2-COOCH₃). Zuordnungen durch HSQC und HMBC gesichert. MS(EI): m/z (%) = 318 [M]⁺⁺ (6), 241 (100). HPLC (1): t_s = 5,43 min. C₁₅H₁₄M₂O₆ (318,3

3.4. Dimethyl-4-(2-nitrophenyl)pyridin-3,5-dicarboxylat (2a)

3.4.1. Methode A

0,79 g (2,5 mmol) **1a** werden in 50 ml Me₂CO gelöst. 3,84 g (7,0 mmol) Ce(NH₄)₂(NO₃)₆ werden in 10 ml H₂O gelöst und tropfenweise unter Rühren hinzugefügt. Nach Beendigung der Zugabe wird noch 1 h weitergerührt bis kein Edukt mehr nachweisbar ist (dc-Kontrolle). Anschließend werden 50 ml H₂O hinzugegeben und es wird 3 mal mit je 30 ml CH₂Cl₂ extrahiert. Die organische Phase wird mit ges. NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Das Lösungsmittel wird i. Vak. abgezogen. Ausbeute: 0,51 g (65%).

3.4.2. Methode B

3,18 g (10 mmol) 1a werden in kleinen Portionen zu einer auf dem Wasserbad (65-70 °C) erhitzten 20% HNO3-Lösung gegeben. Nach Beendigung der Zugabe läßt man noch weitere 20 min auf dem Wasserbad bei 65-70 °C weiterrühren bis kein Edukt mehr nachweisbar ist (dc-Kontrolle). Anschließend alkalisiert man vorsichtig mit NaHCO3, filtriert den entstehenden Niederschlag ab und wäscht mit H2O. Ausbeute: 2,52 g (80%). Hellgelbe Kristalle, Schmp. 118 °C (EtOH). IR (KBr): \tilde{v} (cm⁻¹) = 1722 (C=O), 1612 (C=C, Aromat), 1530, 1349 (NO₂). UV (MeOH): λ_{max} $(\lg \varepsilon) = 205 \text{ nm} (4,62), 264 (3,93).$ ¹H NMR ([D₆]DMSO): δ (ppm) = 3,60 $(s, 6 H, CH_3), 7,29 (dd, J = 1,5 Hz, J = 8 Hz, 1 H, 6'-H), 7,71 (dt, J = 1,5 Hz, J = 1,$ J = 8 Hz, 1 H, 4'-H), 7,79 (dt, J = 1,5 Hz, J = 8 Hz, 1 H, 5'-H), 8,31 (dd, J = 1 Hz, J = 8 Hz, 1 H, 3'-H), 9,27 (s, 2 H, 2-H, 6-H). ¹³C NMR $([D_6]DMSO): \delta (ppm) = 52,56 (CH_3), 123,86 (CH-arom), 125,14 (C-3, C-5),$ (129,58 (CH-arom), 129,58 (CH-arom), 132,60 (C-1'), 134,08 (CH-arom), 146,82 (C-4), 148,80 (C-2'), 153,30 (C-2, C-6), 164,46 (C=O). MS(CI,NH₃): m/z (%) = 317 [M + H]⁺ (24), 255 (100). HPLC (1): t_s = 4,63 min. $C_{15}H_{12}N_2O_6(316,3)$

3.5. Dimethyl-4-(2-nitrophenyl)pyridin-2,5-dicarboxylat (2b)

3.5.1. Methode A

300 mg (0,95 mmol) **1b** werden in 50 ml Me₂CO gelöst. Anschließend werden 1,9 g Ce(NH₄)₂(NO₃)₆, gelöst in 20 ml H₂O, tropfenweise unter Rühren hinzugefügt. Nach Beendigung der Zugabe wird noch für 1 h weitergerührt und das Lösungsmittel i. Vak. abgezogen. Ausbeute: 140 mg (47%).

3.5.2. Methode B

318 mg (1 mmol) **1b** werden in 50 ml MeOH gelöst. Anschließend werden 761 mg (3 mmol) I₂ und 1231 mg (15 mmol) NaOAc hinzugefügt und bei RT rühren gelassen. Sollte nach längerem Rühren keine Reaktion eingetreten sein, erhitzt man unter Rückfluss bis nur noch ein Produkt nachweisbar ist (dc-Kontrolle). Das Lösungsmittel wird i. Vak. abgezogen und man versetzt mit 20 ml EtOAc und mit 50 ml H₂O. Das überschüssige I₂ wird mit 5% Na₂S₂O₃-Lösung eliminiert. Die EtOAc-Phase wird über Na₂SO₄ getrocknet und i. Vak. einrotiert. Ausbeute: 250 mg (79%).

Heligelbe Kristalle, Schmp. 115 °C (EtOH). IR (KBr): \tilde{v} (cm⁻¹) = 1729 (C=O), 1598 (C=C, Aromat), 1525, 1352 (NO₂). UV (MeOH): λ_{max} (Ig ε) = 205 nm (4,58), 239 (4,21), 271 (3,94). ¹H NMR ([D₆]DMSO): δ (ppm) = 3,69 (s, 3 H, C-5-COOCH₃), 3,96 (s, 3 H, C-2-COOCH₃), 7,50 (dd, J = 1 Hz, J = 8 Hz, 1 H, 6'-H), 7,76 (dt, J = 1 Hz, J = 8 Hz, 1 H, 4'-H), 7,85 (dt, J = 1 Hz, J = 8 Hz, 1 H, 5'-H), 8,23 (dd, J = 1 Hz, J = 8 Hz, 1 H, 3'-H), 8,78 (d, J = 2 Hz, 1 H, 3-H), 9,27 (d, J = 2 Hz, 1 H, 6-H). ¹³C NMR ([D₆]DMSO): δ (ppm) = 52,71 (C-5-COOCH₃), 52,81 (C-2-COOCH₃), 124,06 (C-3), 124,74 (C-5), 124,86 (C-4), 130,00 (CH-arom), 131,00 (CH-arom), 133,78 (CH-arom), 135,05 (C-1'), 138,70 (CH-arom), 147,04 (C-2'),

152,09 (C-6), 160,50 (C-2), 164,18 (C-5-COOCH₃), 164,38 (C-2-COOCH₃), MS(CI,NH₃): m/z (%) = 317 $[M + H]^+$ (8), 255 (100). HPLC (1): t_s = 7,05 min. $C_{15}H_{12}N_2O_6$ (316,3)

3.6. Dimethyl-4-(2-nitrosophenyl)pyridin-3,5-dicarboxylat (3a)

0,95 g (3 mmol) **1a** werden in 50 ml EtOAc gelöst und solange dem direkten Sonnenlicht ausgesetzt oder unter eine UV-Lampe (315–400 nm) gestellt, bis kein Edukt mehr nachweisbar ist (dc-Kontrolle). Anschließend wird das Lösungsmittel i. Vak. abgezogen. Ausbeute: 0,70 g (78%). Grüne Kristalle, Schmp. 102 °C (EtOH). IR (KBr): \tilde{v} (cm⁻¹) = 1725 (C=O), 1604 (C=C, Aromat), 1500 (NO). UV (MeOH): λ_{max} (Ig ε) = 221 nm (4,21), 288 (3,89), 315 (3,83), 770 (1,52). ¹H NMR ([D₆]DMSO): δ (ppm) = 3,52 (s, 6 H, CH₃), 6,94 (dd, J = 1 Hz, J = 8 Hz, 1 H, 3'-H), 7,55 (dd, J = 1 Hz, J = 8 Hz, 1 H, 4'-H), 7,88 (dt, J = 1 Hz, J = 8 Hz, 1 H, 6'-H), 7,63 (dt, J = 1 Hz, J = 8 Hz, 1 H, 4'-H), 7,88 (dt, J = 1 Hz, J = 8 Hz, 1 H, 5'-H), 9,29 (s, 2 H, 2-H, 6-H). ¹³C NMR ([D₆]DMSO): δ (ppm) = 52,45 (CH₃), 110,57 (C-3'), 127,52 (C-3, C-5), 128,96 (C-4'), 129,89 (C-6'), 136,20 (C-5'), 138,55 (C-1'), 147,70 (C-4), 152,81 (C-2, C-6), 163,04 (C-2'), 164,79 (C=O). MS(EI): m/z (%) = 300 [M]⁺⁺ (37), 241 (100). HPLC (1): t_s = 7,03 min. C₁₅H₁₂N₂O₅ (300,3)

3.7. Dimethyl-4-(2-nitrosophenyl)pyridin-2,5-dicarboxylat (3b)

Darstellung analog 3.6. aus **1b**. Ausbeute: 0,75 g (83%). Grüne Kristalle, Schmp. 108 °C (EtOH). IR (KBr): $\bar{\mathbf{v}}$ (cm⁻¹) = 1728 (C=O), 1595 (C=C, Aromat), 1493 (NO). UV (MeOH): λ_{max} (lg ε) = 204 nm (4,50), 252 (4,14), 287 (4,01), 312 (3,84), 770 (1,68). ¹H NMR ([D₆]DMSO): δ (ppm) = 3,53 (s, 3 H, C-5-COOCH₃), 3,97 (s, 3 H, C-2-COOCH₃), 6,60 (dd, J = 1 Hz, J = 8 Hz, 1H, 3'-H), 7,64 (dt, J = 1 Hz, J = 8 Hz, 1H, 4'-H), 7,90 (dd, J = 1 Hz, J = 8 Hz, 1 H, 4'-H), 7,90 (dd, J = 1 Hz, J = 8 Hz, 1 H, 3'-H), 8,01 (dt, J = 1 Hz, J = 8 Hz, 1 H, 5'-H), 8,76 (d, J = 2 Hz, 1 H, 3-H), 9,38 (d, J = 2 Hz, 1 H, 6-H). ¹³C NMR ([D₆]DMSO): δ (ppm) = 52,50 (C-5-COOCH₃), 52,78 (C-2-COOCH₃), 107,18 (C-3'), 124,87 (C-5), 128,26 (C-2), 129,44 (C-4'), 131,32 (C6'), 136,69 (C-5'), 137,96 (C-3), 142,21 (C-1'), 151,75 (C-6), 159,88 (C-4), 162,50 (C-2'), 164,24 (C-2-COOCH₃), 164,99 (C-5-COOCH₃). MS(EI): m/z (%) = 300 [M]⁺ (67), 241 (100). HPLC (1): t_s = 4,84 min. C₁₅H₁₂N₂O₅ (300,3)

3.8. Methyl-9-chlor-6-hydroxy-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridin-1-carboxylat (4a)

300 mg (1 mmol) **3a** werden in 30 ml Me₂CO gelöst. Anschließend gibt man 6 ml konz. HCl hinzu und läßt bei RT für 3 h rühren. Man versetzt mit 30 ml H₂O, neutralisiert mit NaHCO₃ und saugt den entstandenen Niederschlag ab. Dieser wird mit H₂O halogen- und alkalifrei gewaschen. Ausbeute: 290 mg (95%). Farblose Kristalle, Schmp. 205 °C (EtOH); + Fe³⁺: violett. IR (KBr): $\tilde{\nu}$ (cm⁻¹) = 3381 (NOH), 1726 (C=O, Ester), 1673 (C=O, Hydroxamsäure), 1655 (C=C), 1605 (C=C, arom). UV (MeOH): λ_{max} (lg ε) = 202 nm (4,46), 237 (4,53), 356 (3,70). ¹H NMR ([D6] DMSO): δ (ppm) = 4,02 (s, 3H, CH₃), 7,75 (d, J = 2 Hz, 1 H, 10-H), 7,84 (dd, J=2 Hz, J = 9 Hz, 1 H, 8-H), 7,89 (d, J = 9 Hz, 1 H, 7-H), 9,06 (s, 1 H, 2-H), 9,64 (s, 1 H, 4-H), 11,87 (s, 1 H, OH). ¹³C NMR ([D6]DMSO): δ (ppm) = 53,30 (CH₃), 115,05 (C-1), 118,87 (CH-arom), 121,10 (C-4a), 123,33 (C-10a), 125,28 (CH-arom), 126,74 (C-9), 132,53 (CH-arom), 134,21 (C-6a), 138,01 (C-10b), 151,03 (C-2), 152,22 (C-4), 155,32 (C-5), 168,42 (COOCH₃). MS(EI): m/z (%) = 304 [M]⁺⁺ (100). HPLC (2): t_x = 0,40 min.

 $C_{14}H_9ClN_2O_4 \cdot H_2O$ (322,7)

3.9. Methyl-9-chlor-6-hydroxy-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridin-2-carboxylat (4b)

Darstellung analog 3.8. aus **3b** mit 50 ml Me₂CO. Ausbeute: 228 mg (75%). Farblose Kristalle, Schmp. 242 °C (Zers.) (EtOH); $+ Fe^{3+}$: rot. IR (KBr): \hat{v} (cm⁻¹) = 3437 (NOH), 1728 (C=O, Ester), 1658 (C=O, Hydro-xamsäure), 1624 (C=C), 1605 (C=C, arom). UV (MeOH): λ_{max} (lg ϵ) = 207 nm (4,50), 239 (4,44), 252 (4,35), 281 (4,43), 354 (3,67). ¹H NMR ([D₃]Pyridin): δ (ppm) = 3,89 (s, 3 H, CH₃), 7,77 (dd, J = 2 Hz, 1 H, 10-H), 9,44 (d, J = 2 Hz, 1 H, 1-H), 9,64 (d, J = 2 Hz, 1 H, 10-H), 9,44 (d, J = 2 Hz, 1 H, 1-H), 9,64 (d, J = 2 Hz, 1 H, 4-H). ¹³C NMR ([D₃]Pyridin): δ (ppm) = 52,56 (CH₃), 115,75 (CH-arom), 120,36 (C-10a), 121,97 (C-4a), 125,04 (CH-arom), 125,66 (C-9), 128,55 (C-6a), 132,74 (CH-arom), 137,65 (C-1), 138,84 (C-10b), 150,95 (C-2), 153,77 (C-4), 156,95 (C-5), 165,00 (<u>C</u>OOCH₃). MS(EI): m/z (%) = 304 [M]⁺ (100). HPLC (2): t_s = 1,00 min. C₁₄H₉ClN₂O₄ (304,7)

3.10. Methyl-6-hydroxy-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridin-1-carboxylat (4c)

3.10.1. Methode A

0,32 g (1 mmol) **2a** werden in 20 ml MeOH gelöst. Anschließend gibt man 4 ml Acetat-Pufferlösung pH 4,6 und 4 Granalien aktiviertes Zn hinzu und

lässt unter starkem Rühren unter Rückfluss erhitzen. Die Zn-Granalien werden anschließend entfernt und die Hydroxamsäure durch Zugabe von 5% HCl ausgefällt. Der entstandene Niederschlag wird abgetrennt und mit H_2O nachgewaschen. Ausbeute: 210 mg (78%).

3.10.2. Methode B

0,30 g (1 mmol) **3a** werden in 25 ml Me₂CO gelöst. Anschließend gibt man 6 ml konz. HBr hinzu und lässt bei RT für 3 h rühren. Man versetzt mit 30 ml H₂O, neutralisiert mit NaHCO₃ und saugt den entstandenen Niederschlag ab. Dieser wird mit H₂O halogen- und alkalifrei gewaschen. Ausbeute: 216 mg (80%).

3.10.3. Methode C

0,30g (1 mmol) 3a werden in 50 ml Me_2CO gelöst. Anschließend werden 10 ml 40% NaOH und 20 ml H_2O hinzugefügt. Dieses Reaktionsgemisch lässt man bei RT 5 h rühren. Danach wird solange mit 10% HCl versetzt, bis sich ein weißlicher Niederschlag bildet. Dieser wird abgesaugt und mit H_2O halogen- und alkalifrei gewaschen. Ausbeute: 140 mg (47%).

Farblose Kristalle, Schmp. 175 °C (EtOH); + Fe³⁺: rot. IR (KBr): $\tilde{v} \, (cm^{-1}) = 3336$ (NOH), 1725 (C=O, Ester), 1648 (C=O, Hydroxamsäure), 1607 (C=C, arom). UV (MeOH): $\lambda_{max} (lg \epsilon) = 202 nm (4,49), 233 (4,50), 266 (4,25), 348 (3,73). ¹H NMR (ID₆] DMSO): <math>\delta$ (ppm) = 4,03 (s, 3 H, CH₃), 7,42 (dt, J = 8,5 Hz, J = 1 Hz, 1 H, 9-H), 7,81 (dt, J = 1 Hz, J = 8,5 Hz, 1 H, 8-H), 7,87 (dd, J = 1 Hz, J = 8,5 Hz, 1 H, 10-H), 7,90 (dd, J = 1 Hz, J = 8,5 Hz, 1 H, 7-H), 9,01 (s, 1 H, 2-H), 9,64 (s, 1 H, 4-H), 11,73 (s, 1 H, OH). ¹³C NMR (ID₆]DMSO): δ (ppm) = 53,49 (CH₃), 113,75 (C-7), 113,77 (C-10a), 120,77 (C-4a), 123,03 (C-9), 123,58 (C-1), 126,15 (C-10), 132,90 (C-8), 135,35 (C-10b), 139,08 (C-6a), 150,71 (C-2), 152,03 (C-4), 155,46 (C-5), 168,70 (COOCH₃). Zuordnungen durch HMBC und HSQC gesichert. MS(EI): m/z (%) = 270 [M]⁺⁺ (100). HPLC (2): t_s = 0,17 min. C₁₄H₁₀N₂O₄ · H₂O (288,3)

3.11. Methyl-6-hydroxy-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridin-2-carboxylat (4d)

3.11.1. Methode A

Darstellung analog *3.10.1.* aus **2b** mit 20 ml EtOH. Ausbeute: 180 mg (67%).

3.11.2. Methode B

Darstellung analog 3.10.2. aus **3b** mit 50 ml Me₂CO. Ausbeute: 180 mg (60%).

3.11.3. Methode C

Darstellung analog 3.10.3. aus 3b. Ausbeute: 125 mg (46%).

Farbloser Feststoff, Schmp. 233 °C (Zers.) (EtOH); + Fe³⁺: rotviolett. IR (KBr): \hat{v} (cm⁻¹) = 3196 (NOH), 1719 (C=O, Ester), 1643 (C=O, Hydro-xamsäure), 1603 (C=C, arom). UV (MeOH): λ_{max} (lg ϵ) = 206 nm (4,49), 233 (4,38), 250 (4,19), 282 (4,42), 348 (3,64). ¹H NMR ([D₆]DMSO): δ (ppm) = 3,97 (s, 3H, CH₃), 7,45 (m_c, 1 H, 8-H), 7,80–7,82 (m, 2 H, 9-H, 10-H), 8,74 (d, J = 8 Hz, 1 H, 7-H), 9,04 (d, J = 2 Hz, 1 H, 1-H), 9,45 (d, J = 2 Hz, 1 H, 4-H), 11,69 (s, 1 H, OH). ¹³C NMR ([D₆]DMSO): δ (ppm) = 52,70 (CH₃), 113,19 (CH-arom), 117,96 (C-4a), 120,45 (C-10a), 123,26 (CH-arom), 124,51 (C-10b), 124,85 (CH-arom), 132,98 (CH-arom), 136,78 (C-1), 139,08 (C-6a), 151,19 (C-2), 153,30 (C-4), 156,18 (C-5), 164,43 (COOCH₃). MS(EI): m/z (%) = 270 [M]⁺⁺ (100). HPLC (2): t_x = 0,42 min.

 $C_{14}H_{10}N_2O_4 \cdot H_2O$ (288,3)

3.12. Methyl-9-chlor-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridin-1-carboxylat (5a)

0,31 g (1 mmol) **4a** werden in 60 ml CHCl₃ in der Wärme gelöst. Anschließend werden 10 ml PCl₃ hinzugefügt und der Reaktionsansatz wird für 12 h rückfließend erhitzt. Nach dem Abkühlen auf RT wird der Ansatz auf Eiswasser gegossen und mit NaHCO₃ neutralisiert. Die organische Phase wird i. Vak. abgezogen und der sich abscheidende Niederschlag wird abgesaugt und mehrmals mit H₂O halogen- und alkalifrei gewaschen. Ausbeute: 210 mg (73%). Fast farbloser Feststoff, Schmb. 180–190 °C (Zers.) (EtOH). IR (KBr): $\bar{\nu}$ (cm⁻¹) = 3433 (NH), 1728 (C=O, Ester), 1695 (C=O, Lactam), 1608, 1592 (C=C, C=N). UV (MeOH): λ_{max} (lg ϵ) = 204 nm (4,34), 234 (4,55), 267 (4,16), 352 (3,69). ¹H NMR ([D₆]DMSO): δ (ppm) = 4,01 (s, 3H, CH₃), 7,43 (d, J = 8,8 Hz, 1 H, 7-H), 7,64 (d, J = 2,2 Hz, 1 H, 10-H), 7,70 (dd, J = 2,2 Hz, J = 8,8 Hz, 1 H, 8-H), 9,02 (s, 1 H, 2-H), 9,55 (s, 1 H, 4-H), 12,23 (s, 1 H, NH). ¹³C NMR ([D₆]DMSO): δ (ppm) = 53,38 (CH₃), 114,91 (C-9), 118,80 (C-7), 120,98 (C-1), 123,47 (C-4a), 125,07 (C-10), 126,04 (C-10a), 132,09 (C-8), 136,15 (C-10b), 137,68 (C-6a), 151,27 (C-2), 152,21 (C-4), 159,23 (C-5), 168,48 (COCCH₃). MS(EI): m/z (%) = 288 [M]^{+ +} (100). HPLC (1): t_s = 2,32 min. C₁₄H₂CIN₂O₃ (288,7)

3.13. Methyl-9-chlor-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridin-2-carboxylat (5b)

Darstellung analog 3.12. aus **4b**. Ausbeute: 210 mg (73%). Farbloser Feststoff, Schmp. 260 °C (Zers.) (EtOAc). IR (KBr): $\tilde{\nu}$ (cm⁻¹) = 3424 (NH), 1721 (C=O, Ester), 1671 (C=O, Lactam), 1603, 1550 (C=C, C=N). UV (Dioxan): λ_{max} (lg ϵ) = 252 nm (4,15), 283 (4,30), 351 (3,74). ¹H NMR ([D₆]DMSO): δ (ppm) = 3,97 (s, 3 H, CH₃), 7,42 (d, J = 8,75 Hz, 1H, 7-H), 7,70 (dd, J = 2,5 Hz, J = 8,75 Hz, 1H, 8-H), 8,53 (d, J = 2,5 Hz, 1 H, 10-H), 8,91 (d, J = 2,2 Hz, 1 H, 1-H), 9,45 (d, J=2,2 Hz, 1 H, 4-H), 12,16 (s, 1 H, NH). MS(EI): m/z (%) = 288 [M]^+ (100). HPLC (1): t_s = 9,30 min. C_{14}H_9ClN_2O_3 (288,7)

3.14. Methyl-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridin-1-carboxylat (5c)

3.14.1. Methode A

0,32 g (1 mmol) **2a** werden gelöst in 40 ml einer Mischung aus 10 Teilen Me₂CO/1 Teil H₂O/1 Teil AcOH. Diese Lösung wird mit 0,5 g Fe-Spänen versetzt und unter Rückfluss erhitzt, bis kein Edukt mehr nachweisbar ist (dc-Kontrolle). Anschließend wird das Me₂CO i. Vak. abgezogen und mit 30 ml H₂O versetzt. Um die anorganischen Bestandteile abzutrennen wird filtriert. Der entstehende Niederschlag wird nach Zugabe von 4% HCl abfiltriert und mit H₂O nachgewaschen und getrocknet. Ausbeute: 114 mg (45%).

3.14.2. Methode B

0,32 g (1 mmol) **2a** werden in 5 ml konz. HCl gelöst und unter Eiskühlung 1g (5,3 mmol) SnCl₂ hinzugefügt. Auf dem Wasserbad wird für 3 h erhitzt. Es wird anschließend solange mit 40% NaOH versetzt, bis sich die Sn-Salze auflösen und das Lactam ausfällt. Der entstehende Niederschlag wird abfiltriert, mit H₂O nachgewaschen und getrocknet. Ausbeute: 125 mg (49%).

3.14.3. Methode C

Darstellung analog 3.12. aus 4c mit 10 ml PCl₃. Ausbeute: 150 mg (59%).

Gelblicher Feststoff, Schmb. 200–210 °C (Zers.) (EtOAc). IR (KBr): $\bar{\nu}$ (cm⁻¹) = 3435 (NH), 1728 (C=O, Ester), 1678 (C=O, Lactam), 1613, 1595 (C=C, C=N). UV (MeOH): λ_{max} (lg ϵ) = 202 nm (4,40), 228 (4,51), 269 (4,15), 341 (3,70). ¹H NMR ([D₆]DMSO): δ (ppm) = 4.02 (s, 3H, CH₃), 7,30 (dt, J = 1 Hz, J = 8 Hz, 1 H, 9-H), 7,46 (dd, J = 1 Hz, J = 8 Hz, 1 H, 7-H), 7,65 (dt, J = 1 Hz, J=8 Hz, 1 H, 8-H), 7,76 (dd, J = 1 Hz, J = 8 Hz, 1 H, 7-H), 7,65 (dt, J = 1 Hz, J=8 Hz, 1 H, 8-H), 7,76 (dd, J = 1 Hz, J=8 Hz, 1 H, 10-H), 8,98 (s, 1 H, 2-H), 9,56 (s, 1 H, 4-H), 12,14 (s, 1 H, NH). ¹³C NMR ([D₆]DMSO): δ (ppm) = 53,41 (CH₃), 113,72 (C-1), 117,02 (CH-arom), 120,92 (C-4a), 122,53 (CH-arom), 123,78 (C-10a), 125,92 (CH-arom), 132,36 (CH-arom), 137,35 (C-6a), 138,89 (C-10b), 150,97 (C-2), 152,08 (C-4), 159,48 (C-5), 168,82 (COOCH₃). MS(EI): m/z (%) = 254 [M]⁺ (100). HPLC (1): t_s = 0,99 min. C₁₄H₁₀N₂O₃ · 0,5 H₂O (263,2)

3.15. Methyl-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridin-2-carboxylat (5d)

Darstellung analog 3.12. aus **4d**. Ausbeute: 140 mg (55%). Farbloser Feststoff, Schmp. 275 °C (Zers.) (EtOAc). IR (KBr): $\tilde{\nu}$ (cm⁻¹) = 3432 (NH), 1730 (C=O, Ester), 1670 (C=O, Lactam), 1600, 1547 (C=C, C=N). UV (Dioxan): λ_{max} (lg ϵ) = 249 nm (4,06), 283 (4,30), 342 (3,80). 1 H NMR ([D₆]DMSO): δ (ppm) = 3.97 (s, 3 H, CH₃), 7,35 (dt, J = 1 Hz, J = 8 Hz, 1 H, 9-H), 7,42 (dd, J = 8 Hz, 1 H, 7-H), 7,66 (dt, J = 1 Hz, J = 8 Hz, 1 H, 8-H), 8,64 (dd, J = 1 Hz, 1 H, 10-H), 8,99 (d, J = 2 Hz, 1 H, 1-H), 9,46 (d, J = 2 Hz, 1 H, 4-H), 12.06 (s, 1 H, NH). MS(EI): m/z (%) = 254 [M]^+ (100). HPLC (1): t_8 = 3.12 min. $C_{14}H_{10}N_2O_3$ (254,2)

3.16. Methyl-5,9-dichlorbenzo[c][2,7]naphthyridin-1-carboxylat (6a)

144,4 mg (0.5 mmol) **5a** werden in 20 ml POCl₃ gelöst. Der Ansatz wird 1 d rückfließend erhitzt, wobei nach 12 h nochmals 5 ml POCl₃ hinzugefügt werden. Nach dem Abkühlen auf RT wird der Ansatz vorsichtig in 300 ml Eiswasser eingerührt. Es wird mit NaOH neutralisiert, der sich abscheidende Niederschlag wird abfiltriert und mit H₂O halogen- und alkalifrei gewaschen. Zur Abtrennung von evtl. noch vorhandenem Edukt oder anderen Verunreinigungen wird mittels FC (Petroläther:EtOAc 2 : 1) gereinigt. Ausbeute: 100 mg (66%). Farbloser Feststoff, Schmp. 164 °C (EtOAc). IR (KBr): \tilde{v} (cm⁻¹) = 1729 (C=O, Ester), 1605, 1584 (C=C, C=N). UV (CHCl₃): λ_{max} (Ig ε) = 257 nm (4.47), 309 (3,87), 334 (3,43). ¹H-NMR (CDCl₃): δ (ppm) = 4,13 (s, 3 H, CH₃), 7,82 (dd, J = 2,2 Hz, J = 8,8 Hz, 1 H, 8-H), 8,08 (d, J = 8.8 Hz, 1 H, 7-H), 8,12 (d, J = 2,2 Hz, 1 H, 10-H), 9.08 (s, 1 H, 2-H), 9.90 (s, 1 H, 4-H). ¹³C-NMR (CDCl₃): δ (ppm) = 53,58 (CH₃), 119,90 (C-4a), 121,54 (C-10a), 123,70 (C-1), 125,41 (C-10), 131,22 (C-7), 132,47 (C-8), 133,82 (C-9), 135,58 (C-10b), 143,788 (C-6a), 149,90 (C-2), 150,52 (C-5), 153,20 (C-4), 168,64

(COOCH₃). MS(EI): m/z (%) = 306 [M]^{+•} (100). HPLC (1): $t_s = 8.11 \text{ min}$; HPLC (2): $t_s = 0.88 \text{ min}$. $C_{14}H_8Cl_2N_2O_2$ (307,1)

3.17. Methyl-5-chlorbenzo[c][2,7]naphthyridin-1-carboxylat (6c)

Darstellung analog 3.16. aus **5c**. Ausbeute: 90 mg (71%). Farbloser Feststoff, Schmp. 132 °C (EtOAc). IR (KBr): $\tilde{\mathbf{v}}$ (cm⁻¹) = 1731 (C=O, Ester), 1585, 1561 (C=C, C=N). UV (CHCl₃): λ_{max} (lg ε) = 257 nm (4,39), 308 (3,73). ¹H NMR ([D₆]DMSO): δ (ppm) = 4,09 (s, 3H, CH₃), 7,85 (dt, J = 1,4 Hz, J = 8,4 Hz, 1 H, 8-H), 8,01 (dt, J = 1,2 Hz, J = 8,3 Hz, 1 H, 9-H), 8,14 (dd, J = 1,1 Hz, J = 8,3 Hz, 1 H, 10-H), 8,17 (dd, J = 1,1 Hz, J = 8,4 Hz, 1 H, 7-H), 9,17 (s, 1 H, 2-H), 9.83 (s, 1 H, 4-H). ¹³C NMR ([D₆]DMSO): δ (ppm) = 53,63 (CH₃), 119,25 (C-4a), 119,89 (C-10a), 123,99 (C-1), 125,40 (CH-arom), 128,53 (CH-arom), 129,42 (CH-arom), 132,40 (CH-arom), 144,69 (C-10b), 149,33 (C-2), 149,54 (C-6a), 152,40 (C-4), 168,46 (C-5), 178,01 (<u>C</u>OOCH₃). MS(EI): m/z (%) = 272 [M]⁺ (100). HPLC (1): t_s = 20.70 min; HPLC (2): t_s = 1.55 min. C₁₄H₉ClN₂O₂ (272,7)

3.18. Biologische Methoden

Vgl. Görlitzer et al. (2002a)

³ Zum Reaktionsmechanismus der intramolekularen photochemischen Redoxreaktion unter Eliminierung von Wasser vgl. Görlitzer et al. (1996) et. loc. cit.

cit. ⁴ Zum Reaktionsmechanismus der Cyclisierungsreaktion vgl. Görlitzer et al. (1996)

Literatur

- Carbateas PM, Williams GL (1974) Two methods for conversion of an aromatic aldehyde to a 4-arylpyridine. A method for preparation of 3-alkyl-4-arylpyridines. J Heterocycl Chem 11: 819–821.
- Chennat T, Eisner U (1975) A new synthesis of 1,4-dihydropyridines. J Chem Soc Perkin Trans 1: 926–929.
- Clemens F, Drutkowski G, Wiese M, Frohberg P (2001) The inactivation of lipoxygenase-1 from soybeans by amidrazones. Biochim Biophys Acta 1549: 88–98.
- Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294: 1871–1875.
- Görlitzer K, Dobberkau P-M, Jones PG (1996) Fünfring-Analoga von Nifedipin. 2. Mitteilung: Zur Photochemie von 2,6-Dimethyl-1,4-dihydropyridin-3,5-dicarbonsäure-dimethylestern mit 4-(2-Nitro-3-furyl)- und 4-(2-Nitro-3-thienyl)-Substituenten. Pharmazie 51: 392–396.
- Görlitzer K, Fabian J, Jones PG, Frohberg P, Drutkowski G (2002a) Furo[2,3-c]chinoline und Furo[3,4-c]chinoline – Synthese und Prüfung auf Lipoxygenase-Hemmung. Pharmazie 57: 159–168.
- Görlitzer K, Fabian J, Jones PG, Frohberg P, Drutkowski G (2002b) Pyridazino[3,4-c]chinoline und Pyridazino[4,5-c]chinoline – Synthese und Prüfung auf Lipoxygenase-Hemmung. Pharmazie 57: 362–371.
- Ludvik J, Volke J, Pragst F (1986) Investigation of two radical intermediates in the anodic oxidation of 1,4-dihydropyridines by electrochemiluminescence. J Electroanal Chem 215: 179–190.
- Ludvik J, Volke J, Klima J (1987) Electrochemical oxidation mechanisms of different type 1,4-dihydropyridine derivatives in acetonitrile. Electrochim Acta 32: 1063–1071.
- Skala V, Volke J, Ohanka V, Kuthan J (1977) On dihydropyridines XXXV. Electrochemical oxidation of 3,5-difunctional 1,4-dihydropyridine derivatives. Collect Czech Chem Commun 42: 292–305.