Institut für Pharmazie der Freien Universität Berlin, Germany

Hemmung der Arachidonsäurekaskade durch Aza-2-aryl-1,4-naphthochinon-Derivate

Untersuchungen an 1,4-Naphthochinonen, 30. Mitt.

A. RICHWIEN, G. WURM

Meinem akademischen Lehrer Prof. Dr. Helmut Loth in Verbundenheit gewidmet

Eingegangen am 2. Januar, 2004, angenommen am 11. März 2004

Prof. Dr. Gotthard Wurm, Institut für Pharmazie, Freie Universität, Königin-Luise-Str. 2 + 4, 14195 Berlin, Germany. rehiwer@zedat.ju-berlin.de

Pharmazie 59: 906-912 (2004)

Auf der Suche nach 5-Lipoxygenase(LO)-Inhibitoren, die potenter als die bisher untersuchten 2-(3,5-Di-*tert*-butyl-4-hydroxyphenyl)-3-hydroxy-1,4-naphthochinon-Derivate sind, wurden die analogen Aza-1,4-naphthochinone **14**, **15**, **16/17** sowie die 3-Bromvorstufen **7**, **8**, **9/10** und **11** synthetisiert. In die Untersuchungen wurde das Naphtho[2,1-*b*][1,4]thiazin-Derivat **21** als zyklisches Chinonimin einbezogen. Neben der 5-LO-Inhibition wurde auch die Hemmung der 12-LO, COX-1 und cPLA₂ untersucht, um die Selektivität der Verbindungen innerhalb der Arachidonsäurekaskade zu ermitteln. Für die biochemischen Tests wurden humane Granulozyten (5-LO) und humane Thrombozyten (12-LO/COX-1 und cPLA₂) verwendet. Alle 3-Bromverbindungen hemmen die gesamte Arachidonsäurekaskade durch die Blockierung der cPLA₂. Selektivität zeigen die 3-Methoxy-Derivate der Chinolinchinone **12** und **13** und das 3-Hydroxyisochinolinchinon-Gemisch **16/17**. **13** ist ein selektiver 5-LO-, **12** ein dualer 5-LO/COX-1-Hemmstoff und **16/17** sind duale 12-LO/COX-1-Inhibitoren. Zur Überprüfung der Hypothese, dass das hydroxylierte 2-Aryl-1,4-benzochinon-Segment in der Klasse der 2-Aryl-1,4-naphthound -aza-naphthochinone das für die 5-LO-Hemmung verantwortliche Pharmakophor ist, wurden die 2-(3,5-Di-*tert*-butyl-4-hydroxyphenyl)-1,4-benzochinone **24–28** synthetisiert. Es zeigte sich, dass die 5-Methoxy- und 5-Hydroxyverbindungen **24** und **27** hochselektive und potente 5-LO-Inhibitoren sind.

Inhibition of the arachidonic acid cascade by aza-2-aryl-1,4-naphthoquinone derivatives

To find more potent 5-lipoxygenase(LO)-inhibitors than the up to now studied 2-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-hydroxy-1,4-naphthoquinone derivatives the analogous aza-1,4-naphthoquinones **14**, **15**, **16/17** as well as the 3-bromo precursors **7**, **8**, **9/10** and **11** were synthesized. The naphtho[2,1*b*][1,4]thiazin derivative **21** was included in this investigation as a quinone imine. Beside 5-LO inhibition the influence on 12-LO, COX-1 and cPLA₂ was determined to investigate the selectivity of the compounds within the arachidonic acid cascade. To test the biochemical properties human granulocytes (5-LO) and human platelets (12-LO/COX-1 and cPLA₂) were used. All 3-bromo compounds inhibit completely the arachidonic acid cascade by blocking the cPLA₂. The 3-methoxy derivatives of the quinoline quinones **12** and **13** and the 3-hydroxyisoquinoline mixture **16/17** show 5-LO selectivity. **13** inhibits 5-LO selectively, **12** is a dual 5-LO/COX-1-inhibitor and **16/17** are dual 12-LO/COX-1-inhibitors. To verify the hypothesis that the hydroxylated 2-aryl-1,4-benzoquinone structure is the pharmacophore for 5-LO-inhibition within the class of 2-aryl-1,4-naphtho- and -aza-naphthoquinones the 2-(3,5di-*tert*-butyl-4-hydroxyphenyl)-1,4-benzoquinones **24**–**28** were synthesized. It was shown that the 5methoxy and 5-hydroxy compounds **24** and **27** are highly selective and potent 5-LO-inhibitors.

1. Einleitung

2-(3,5-Di-*tert*-butyl-4-hydroxyphenyl)-3-hydroxy-1,4-naphthochinon (Typ A: n = 0) (Wurm 1991) ist ein selektiver 5-Lipoxygenase (LO)-Inhibitor (IC₅₀ = 3.9 μ M). Durch variable Methylierung des benzoiden Molekülteils (Typ A: n = 1-2) konnte der IC₅₀-Wert geringfügig um den Faktor drei verringert werden (Wurm und Schwand 2003). Auch durch Variation des 3,5-Di-*tert*-butyl-4-hydroxyphenylrests unter Austausch einer Alkylgruppe gegen polare

Funktionen gelang es nicht, die Hemmaktivität in den submikromolekularen Bereich zu verschieben. Es konnte jedoch das Hemmspektrum innerhalb der Arachidonsäurekaskade erweitert werden (Richwien 2003). Eine Reihe dieser Verbindungen hemmt sowohl die 12-LO als auch die COX-1. Duale Hemmstoffe (5-LO/COX-1 und 12-LO/COX-1) wurden ebenfalls gefunden.

Bekannte 2-Aryl-1,4-naphthochinone (Typ A) und neue Aza-2-aryl-1,4-naphthochinone (Typ B)

In der vorliegenden Arbeit berichten wir über weitere Ansätze, durch Einbau von Stickstoff in den benzoiden Molekülteil des Standardinhibitors vom Typ A (n = 0) die Hemmung der 5- und 12-LO sowie COX-1 um eine Größenordnung zu verschieben und besonders hohe 12-LO Selektivität zu erreichen. Unter diesem Aspekt wurden die Aza-1,4-naphthochinon-Derivate vom Typ B synthetisiert. Auch das Auffinden von dualen 5-LO/12-LO-Hemmstoffen war von Interesse.

Als Enzymquelle für die biochemischen Testverfahren dienten humane Granulozyten (5-LO) und humane Thrombozyten (12-LO/COX-1 und cPLA₂).

2. Untersuchungen, Ergebnisse und Diskussion

2.1 Synthese der Verbindungen

Die Synthese der Testverbindungen vom Typ B erfolgte auf folgenden Wegen:

Die für den Synthesestart erforderlichen Aza-1,4-naphthochinone 1, 2 und 3 wurden nach literaturbekannten Verfahren gewonnen, 1 aus 8-Hydroxychinolin durch Singulettsauerstoffreaktion (Amareska 1999). 2 aus 5-Hydroxyisochinolin durch Teuber-Reaktion mit Kaliumnitrosodisulfonat (Wurm und Geres 1985) und 3 aus 3,6-

Schema 1

Dimethoxybenzol-1,2-diamin durch Chinoxalin-Ringschluss mit Glyoxal-Hydrogensulfit-Addukt und nachfolgender Cer(IV)-Oxidation (Billmann und Rendall 1944).

Die Azanaphthochinone 1-3 werden nach Standardmethode mit Brom in Eisessig bei RT mit nachfolgendem Erhitzen unter Zugabe von NaOAc in die Dibrom-Derivate 4-6überführt. Diese werden mit 2,6-Di-*tert*-butylphenol und K₂CO₃ in DMSO zu den 2-(3,5-Di-*tert*-butyl-4-hydroxyphenyl)-Derivaten 7–11 monoaryliert. Dabei fallen 7/8 und 9/10 als Regioisomeren-Gemische an, von denen nur das Verbindungspaar 7/8 sc trennbar ist (Schema 1).

Aus 7/8 entstehen mit 1-molarer KOH in Methanol die 3-Methoxyverbindungen 12 und 13 und mit wässrig-methanolischer KOH die 3-Hydroxyderivate 14 und 15. Auf gleichem Wege entsteht aus dem Isomerengemisch 9/10 das Gemisch der Hydroxyisochinolindione 16/17 (Schema 2).

Aus einem parallelen Synthesevorhaben stand mit dem zyklischen Chinonimin **21** eine weitere heterozyklische Testverbindung zur Verfügung. Die Synthese des Naphtho[2,1b][1,4]thiazincarbonsäure-Derivats erfolgt in drei Stufen. Als Ausgangsverbindung dient das bekannte 2-Aryl-3chlor-1,4-naphthochinon **18** (Wurm 1991), das mit N-Acetylcysteinethylester in einer 1,4-Addition mit nachfolgender Chlorwasserstoffeliminierung in den Thioether **19** überführt wird. Bei der sauren Acetamidspaltung erfolgt Zyklisierung zum [1,4]Thiazinderivat **20**, das durch CAN-Oxidation die Zielverbindung **21** liefert (Schema 3).

Alle bisherigen Versuche, die Hemmstärke des Standard-5-LO-Inhibitors 2-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-hydroxy-1,4-naphthochinon (Typ A, n = 0) durch systematische Strukturvariation in allen Segmenten des Moleküls in den submikromolaren Bereich zu verschieben, müssen - mit Ausnahme von 11 (siehe Tabelle 1 und Diskussion) – als nicht gelungen angesehen werden. 11 ist allerdings ein völlig unselektiver Hemmstoff der gesamten Kaskade. Die Erweiterung des Naphthochinonsystems durch lineare Annelierung von Benzol und Cyclohexan [Probst und Wurm 1998) führte zur Reduktion der 5-LO-Hemmaktivität. Aus diesen Befunden ergab sich die Frage, ob das Pharmakophor für die 5-LO-Inhibition das kleinste, gemeinsame Strukturfragment, das 2-(3,5-Di-tert-butyl-4-hydroxyphenyl)-1,4hydroxylierte benzochinon, ist. Eine entsprechende Synthese ist in Schema 4 dargestellt.

Startverbindung 22 entsteht aus Anisol durch Teuber-Reaktion im Zweiphasensystem CH_2Cl_2/H_2O . Die Arylierung zu 24 als Hauptprodukt mit 2,6-Di-tert-butylphenol erfolgte in siedendem Eisessig mit Palladium(II)acetat (Oliveira, et al. 2000). Das Regioisomer 25 und das Bis-

A: 1. Br₂/AcOH/RT, 2. NaOAc/ Δ , B: 1. 2,6-Di-*tert*-butylphenol/K₂CO₃/DMSO, 2. SC/CH₂Cl₂

ORIGINAL ARTICLES

Schema 2

A: N-Acetylcysteinethylester/DABCO/DMSO, B: $H_2SO_4/H_2O/ACOH/\Delta$, C: CAN/MeCN/RT

Schema 4

arylderivat **26** wurden als sc abtrennbare Nebenprodukte erhalten. Die Etherspaltung mit KOH/MeOH, HBr und BBr₃ führte ausschließlich zu Zersetzungsprodukten. Die Demethylierung gelang mit Me₃SiI in CH₂Cl₂ bei RT. Dabei war allerdings die gleichzeitig ablaufende Monodebutylierung zu **27** nicht zu verhindern. Für die entsprechende Arylierung von 1,4-Benzochinon **23** war der Zusatz von Pd(OAc)₂ kontraproduktiv. Hier gelang die Reaktion zu **28** mit Hilfe von NaOAc, allerdings nur in schlechter Ausbeute. Neben Bis- und Trisarylderivaten, die für diese Untersuchungen nicht isoliert wurden, entsteht hauptsächlich 3,3',5,5'-Tetra-*tert*-butyldiphenochinon durch oxidative Dimerisierung von 2,6-Di-tert-butylphenol durch das Substrat 1,4-Benzochinon selbst.

2.2 Pharmakologische Untersuchungen

Alle 3-Bromverbindungen 7-11 hemmen die cPLA₂ im niedrigmikromolekularen Konzentrationsbereich. Es handelt sich daher um unselektive Inhibitoren der Arachidonsäurekaskade. Aus diesem gemeinsamen Aktivitätsprofil hebt sich die besonders potente Hemmung der 12-LO

A: 2,6-Di-tert-butylphenol (DTBP)/Pd(OAc)2/AcOH/A, B: DTBP/NaOAc/AcOH/A, C: Me3SiI/CH2Cl2

ORIGINAL ARTICLES

Nr.	5-LO IC ₅₀ (µM)	12-LO IC ₅₀ (µM)	COX-1 IC ₅₀ (µM)	cPLA2 IC ₅₀ (µM)
7	2.9 (2.5-3.2)	2.1 (1.3-3.5)	2.4 (1.8-3.1)	3.1 (2.6-3.7)
8	2.8 (2.5-3.2)	1.1 (0.58 - 2.1)	2.3 (1.2-4.3)	2.6 (2.4-2.9)
9/10	2.6 (2.3-2.9)	1.5 (1.1-2.1)	1.6 (0.80-3.2)	3.3 (2.6-4.2)
11	0.47 (0.21-0.81)	3.3 (2.6-4.1)	3.5 (2.0-6.2)	3.6 (2.0-6.4)
12	6.6 (3.8–11)	>100	1.0 (0.53-1.9)	n.b.
13	3.1 (2.9–3.3)	≫100	35 (30-41)	n.b.
14	≫100	12 (6.2–23)	3.5 (2.6-4.7)	n.b.
15	35 (31-40)	43 (34–54)	19 (13-28)	n.b.
16/17	19 (7.5–48)	1.2(1.0-1.4)	0.99 (0.84–1.2)	n.b.
19	3.5 (3.0-4.1)	12 (8.2–18)	3.7 (2.6-5.3)	n.b.
20	9.0 (5.5–15)	≫10	5.2 (4.3-6.3)	≫10
21	3.0 (2.5-3.6)	≫10	>10	n.b.
24	2.3 (1.6-3.2)	>10	>10	n.b.
25	2.8 (2.1-3.6)	5.1 (3.7-7.0)	1.9 (0.77-4.7)	4.1 (2.7-6.2)
26	≫10	≫10	8.7 (5.6–13)	n.b.
27	1.7 (0.94-3.1)	$\gg 10$	>10	n.b.
28	2.5 (1.9-3.3)	6.1 (4.3-8.7)	5.1 (3.7-7.0)	>10

Tabelle: Ergebnisse zur Hemmung der 5-LO, 12-LO, COX-1 und cPLA₂ durch die Testverbindungen

(n.b. = nicht bestimmt, () = 95%-Vertrauensintervall)

durch **8** und der 5-LO durch das Chinoxalinderivat **11** heraus. Diese potente Hemmung aller vier Enzyme deutet darauf hin, dass 2-Aryl-3-halogen-1,4-naphthochinone aufgrund ihrer Reaktivität (1,4-Addition von Nukleophilen mit nachfolgender Halogenwasserstoff-Eliminierung) grundsätzlich mit Proteinen kovalente Bindungen ausbilden und damit zytotoxisch wirken.

In der Reihe der Chinolin- und Isochinolinchinone 12-17 mit Sauerstofffunktion in 3-Position zeigten sich neue Effekte. Abweichend von den Hemmaktivitäten der analogen Naphthochinone (Typ A), bei denen die 3-Hydroxyverbindungen im Vergleich mit den 3-Methoxyderivaten die stärkeren 5-LO-Inhibitoren sind, kehren sich die Verhältnisse bei den entsprechenden Azanaphthochinonen um: Hier sind die 3-Methoxyverbindungen 12 und 13 die potenten 5-LO-Hemmer und 12 ein dualer 5-LO/COX-1-Inhibitor. Dagegen geht bei den 3-Hydroxyazanaphthochinonen die 5-LO-Hemmaktivität vollständig (14) bzw. weitgehend (15 und 16/17) verloren. Es kann vermutet werden, dass zwei polare Funktionen im Naphthochinonsystem (3-OH und Stickstoff) nachteilig für die Interaktion mit dem aktiven Zentrum sind. Während 14 ein selektiver COX-1-Hemmer ist, ist das Isomerengemisch 16/17 ein potenter dualer 12-LO/COX-1-Inhibitor.

Die Naphthothiazin-Derivate **20** und **21** zeichnen sich durch folgende Aktivitäten aus: Die Vorstufe, das 2-Aryl-1,4-naphthochinon-Cysteinkonjugat **19** ist ein unselektiver Hemmstoff, sein phenolisches Zyklisierungsprodukt **20** ist ein dualer mäßig potenter 5-LO/COX-1-Hemmer und das chinoide Oxidationsprodukt, das zyklische Chinonimin **21**, hemmt selektiv die 5-LO.

Die Ergebnisse der 2-Arylnaphthochinon-Reihe bestätigen die aufgestellte Hypothese, dass das Pharmakophor für die 5-LO-Hemmung in den Stoffklassen der 2-Aryl-1,4-anthra-, -naphtho- und -azanaphthochinone durch das 2-Aryl-1,4benzochinonsystem repräsentiert wird. Bereits die 5-Methoxyverbindung **24** ist ein stärkerer selektiver 5-LO-Hemmer als der Standardinhibitor 2-(3,5-Di-*tert*-butyl-4-hydroxyphenyl)-3-hydroxy-1,4-naphthochinon (Typ A: n = 0). Wird das Methoxyderivat demethyliert, so liegt mit **27** einer der potentesten selektiven 5-LO-Inhibitoren vor, obgleich der Verbindung synthesebedingt eine *tert*-Butylgruppe fehlt, was erfahrungsgemäß zu einem Aktivitätsverlust führt (Wurm und Schwandt 1999). Es kann davon ausgegangen werden, dass das entsprechende Di-tert-butylderivat ein im submikromolekularen Bereich aktiver selektiver 5-LO-Inhibitor sein würde.

Die 6-Methoxyverbindung **25** ist bemerkenswerterweise ein unselektiver Hemmstoff, der auch die cPLA₂ hemmt, während das Bis-(3,5-Di-*tert*-butyl-4-hydroxyphenyl)-Derivat **26** nur noch ein schwacher selektiver COX-1-Hemmer ist. 2-(3,5-Di-*tert*-butyl-4-hydroxyphenyl)-1,4-benzochinon (**28**) ohne Sauerstofffunktion im chinoiden System hemmt alle drei Enzyme der Arachidonsäurekaskade ohne die cPLA₂ zu beeinflussen.

Ein weiteres wesentliches Ergebnis der Untersuchung der 2-Aryl-1,4-benzochinon-Klasse ist der Befund, dass für die Selektivität der Enzyminhibition innerhalb der Arachidonsäurekaskade nicht nur die Anwesenheit, sondern auch die Position einer Sauerstofffunktion im chinoiden System von ausschlaggebender Bedeutung ist.

3. Experimenteller Teil

3.1. Allgemeine Angaben

Schmelzpunkte: MELT-TEMP II, Laboratory Devices, USA. Elementaranalysen: Elemental Analyzer 240 B und C, Perkin-Elmer. Die Ergebnisse der C-H-Werte entsprachen in den Grenzen \pm 0.4% absolut den berechneten Werten. Massenspektren: CH-7A-Varian MAT. EI-MS: Ionisierungsenergie 70 eV. IR-Spektren: Spektralphotometer 297 und 1420 Ratio Recording Infrared Spectrometer, Perkin-Elmer. ¹H NMR-Spektren: Bruker AC-300 (300 MHz) und Bruker AVANCE-TM-DPX (400 MHz), TMS als innerer Standard. Die Interpretation der Spektren erfolgte nach den Regeln für Spektren erster Ordnung. Hieraus resultieren die teilweise nicht identischen J-Werte. SC: Kieselgel 60 Machery & Nagel, 0.063–0.2 mm, Art.-Nr. 81533. HPLC: Merck Hitachi (L-6200 Intelligent Pump, D-4250 UV-Vis Detector, D-2500 Chromato Integrator), Säule (ET 250/4 Nucleosil 100–5 C₁₈, Machery & Nagel). Festphasenextraktion: RP-18 Säulen (Ba-ker), Zellisolierung: Polymorphprep Nycomed (Lieferfirma Life Technologies GmbH, 76131 Karlsruhe).

3.2. Ausgangsverbindungen

2-Methoxy-1,4-benzochinon (22),1,4-Benzochinon (23)

3.3. Bekannte Verbindungen

Chinolin-5,8-dion (Amareska 1999) (1), Isochinolin-5,8-dion (Barret und Daudon 1990) (2), Chinoxalin-5,8-dion (Adachi 1955) (3), 6,7-Dibromchinoxalin-5,8-dion (Boutherin-Falson und Desquand-Billiald 1997) (6), 2-(3,5-Di-tert-butyl-4-hydroxyphenyl)-3-chlor-1,4-naphthochinon (Wurm 1991) (18)

3.4 Synthese der heterozyklisch anellierten Dibrom-1,4-benzochinone

Zu einer Lösung von 1 mmol 1,4-Benzochinonderivat in Eisessig wird die doppelte molare Menge einer Bromlösung (1 mmol/mL) gegeben und bei

RT 30 min gerührt. Zur HBr-Abspaltung wird 5 min mit 2 mmol Natriumacetat zum Sieden erhitzt und beim Abkühlen auf 80–90 °C wird H₂O hinzugegeben. Der auskristallisierende Niederschlag wird abgesaugt und getrocknet oder die wässrige Phase wird mehrmals mit CH₂Cl₂ extrahiert, mit Na₂SO₄ getrocknet und zur Trockene eingeengt.

3.4.1. 6,7-Dibromchinolin-5,8-dion (4)

Aus 1 (Ausbeute: 75%). Es kristallisieren orange Nadeln, Schmp. 242 °C (H₂O). Die Substanz wurde sofort weiter zu 7 und 8 umgesetzt. ¹H NMR (CDCl₃, ppm): $\delta = 7.75$ (dd, J = 4.6/7.8 Hz, 1H, 3-H), 8.52 (dd, J = 1.4/7.8 Hz, 1H, 4-H), 9.09 (dd, J = 1.4/4.4 Hz, 1H, 2-H). MS: m/z (%) = 319/317/315 (M^{+, 79/81}Br, 48/100/50), 291/289/287 ([M-CO]⁺, 9/20/11) 238/236 ([M-Br]⁺, 77/79), 210/208 ([M-Br-CO]⁺, 27/25), 182/180 ([M-Br-2 CO]⁺, 64/68), 131 ([M-2 Br-CO]⁺, 24), 100 ([M-2 Br-2 CO]⁺, 56).

C₉H₃NO₂ (316.9)

3.4.2. 6,7-Dibromisochinolin-5,8-dion (5)

Aus **2** (Ausbeute: 40%). Schmp. 210 °C (Zers.). Die Verbindung wurde sofort zu **9/10** umgesetzt. ¹H NMR (CDCl₃, ppm): $\delta = 7.97$ (d, J = 5.0 Hz, 1 H, 4-H), 9.09 (d, J = 5.0 Hz, 1H, 3-H), 9.44 (s, 1H, 1-H). MS: m/z (%) = 319/317/315 (M⁺⁺, ^{79/81}Br, 48/100/48), 238/236 ([M-Br]⁺, 89/97), 210/208 ([M-Br-CO]⁺, 34/36), 182/180 ([M-Br-2 CO]⁺, 39/38), 155/153 ([M-2 Br]⁺, 18/18), 133/131 ([M-2 Br-CO]⁺, 33/34). C₉H₃Br₂NO₂ (316.9)

3.5. Synthese der heterozyklisch anellierten Brom-2-arylbenzochinone

6.3 mmol des 2,3-Dibrom-1,4-benzochinonderivats werden in 50 mL DMSO gelöst und mit 1.3 g 2,6-Di-*tert*-butylphenol sowie 1.7 g fein gemahlenem Kaliumcarbonat versetzt. Es wird 30 min bei RT gerührt und die Reaktion anschließend durch Zugabe von 150 mL H₂O beendet. Nach vorsichtigem Ansäuern mit HCl cc. wird mit CH₂Cl₂ extrahiert. Die Reinigung und Trennung erfolgt dann durch SC mit CH₂Cl₂.

3.5.1. 7-Brom-6-(3,5-di-tert-butyl-4-hydroxyphenyl)-chinolin-5,8-dion (7)

Aus **4** (Ausbeute: 30%). Die Isomerentrennung erfolgte durch SC mit CH₂Cl₂. 2. Fraktion: Goldgelbe Kristalle, Schmp. 233 °C (Ligroin). IR (KBr, cm⁻¹): 3621 (OH), 3061 (CH: aromatisch), 2957, 2923, 2872 (CH: t-Bu), 1686 (C=O), 1590 (C=C: aromatisch). ¹H NMR (CDCl₃, ppm): $\delta = 1.48$ (s, 18 H, 2 t-Bu), 5.52 (s, 1 H, OH), 7.22 (s, 2 H, 2'- u. 6'-H), 7.74 (dd, J = 4.6/7.9 Hz, 1 H, 3-H), 8.49 (dd, J = 1.1/7.7 Hz, 1H, 4-H), 8.95–9.19 (m, 1 H, 2-H). MS: m/z (%) = 443/441 (M^{+, 79/81}Br, 43/41), 428/426 ([M-Me]⁺, 100/92), 387/385 ([M-t-Bu]⁺, 11/11), 57 ([t-Bu]⁺, 89). C₂₃H₂₄BrNO₃ (442.3)

3.5.2. 6-Brom-7-(3,5-di-tert-butyl-4-hydroxyphenyl)-chinolin-5,8-dion (8)

Aus **4** (Ausbeute: 50%). Die Isomerentrennung erfolgte durch SC mit CH₂Cl₂. 1. Fraktion: Dunkelrote Nadeln, Schmp. 217 °C (Ligroin). IR (KBr, cm⁻¹): 3624, 3415 (OH), 3096 (CH: aromatisch), 2959, 2872 (CH: t-Bu), 1681 (C=O), 1591 (C=C: aromatisch). ¹H NMR (CDCl₃, ppm): $\delta = 1.47$ (s, 18 H, 2 t-Bu), 5.54 (s, 1 H, OH), 7.27 (s, 2 H, 2'- u. 6'-H), 7.76 (dd, J = 4.5/7.8 Hz, 1 H, 3-H), 8.57 (d, J = 7.9 Hz, 1 H, 4-H), 9.09 (d, J = 4.3 Hz, 1 H, 2-H). MS: m/z (%) = 443/441 (M^{+-, 79/81}Br, 26/23), 428/426 ([M-Me]⁺, 68/66), 387/385 ([M-t-Bu]⁺, 63/63), 372/370 ([M-t-Bu]⁺, 22/23), 57 ([t-Bu]⁺, 100). C₂₃H₂₄BrNO₃ (442.3)

3.5.3 6/7-Brom-7/6-(3,5-di-tert-butyl-4-hydroxyphenyl)-isochinolin-5,8-dion (9/10)

Aus **5** (Ausbeute: 36%). Eine sc Trennung des Gemisches ist nicht möglich. Das Verhältnis der Isomere **9/10** lässt sich dem ¹H NMR-Spektrum entnehmen und beträgt 5:1. Dunkelrote Kristalle (CH₂Cl₂). IR (KBr, cm⁻¹): 3619, 3449 (OH), 3093, 3067 (CH: aromatisch), 2959, 2913, 2873 (CH: t-Bu), 1676 (C=O), 1586 (C=C: aromatisch). ¹H NMR ([D₆] DMSO, ppm): $\delta = 1.41$ (s, 18 H, 2 t-Bu), 7.20 (s, 2H, 2'- u. 6'-H), 7.37 (s, 1 H, OH), 7.90 (d, J = 5.0 Hz, 1 H, 4-H, **10**), 7.95 (d, J = 5.0 Hz, 1 H, 3-H), 9.23 (s, 1 H, 1-H, **9**), 9.27 (s, 1 H, 1-H, **10**). MS: m/z (%) = 443/441 (M⁺, ⁷⁹⁸¹Br, 37/34), 428/426 ([M-Me]⁺, 85/83), 387/385 ([M-t-Bu]⁺, 17/17), 57 ([t-Bu]⁺, 100). C₂₃H₂₄BrNO₃ (442.3)

3.5.4. 6-Brom-7-(3,5-di-tert-butyl-4-hydroxyphenyl)-chinoxalin-5,8-dion (11)

Aus **6** (Ausbeute: 43%). Rostrote Kristalle, Schmp. 237 °C (Cyclohexan). IR (KBr, cm⁻¹): 3619, 3434 (OH), 2957, 2913, 2873 (CH: t-Bu), 1687 (C=O), 1596 (C=C: aromatisch). ¹H NMR (CDCl₃, ppm): $\delta = 1.48$ (s, 18 H, 2 t-Bu), 5.59 (s, 1 H, OH), 7.26 (s, 2 H, 2'- u. 6'-H), 9.08 (s, 2 H, 2-

u. 3-H). MS: m/z (%) = 444/442 ([M^{+-, 79/81}Br], 48/40), 429/427 ([M-Me]⁺, 97/100), 401/399 ([M-Me-CO]⁺, 8/7), 388/386 ([M-t-Bu]⁺, 34/33), 373/371 ([M-Me-t-Bu]⁺, 20/22), 57 ([t-Bu]⁺, 86). $C_{22}H_{23}BrN_{2}O_{3}$ (443.3)

3.6. Synthese der heterozyklisch anellierten Methoxy-2-arylbenzochinone

Eine 50 °C warme Lösung von 2 mmol der Halogenverbindung in 100 mL Methanol wird unter starkem Rühren und Argonatmosphäre tropfenweise mit einer Lösung von 2 mmol NaOH in 10 mL Methanol versetzt. Der Ansatz wird 12 h bei RT weitergerührt, anschließend in 200 mL Eiswasser gegossen und mit HCl angesäuert. Die rote Suspension wird mit CH₂Cl₂ extrahiert und die organische Phase mit Na₂SO₄ getrocknet. Nach Einengen wird der Rückstand sc mit CH₂Cl₂ gereinigt.

3.6.1. 6-(3,5-Di-tert-butyl-4-hydroxyphenyl)-7-methoxychinolin-5,8-dion (12)

Aus 7 (Ausbeute: 84%). Orange-rote Kristalle, Schmp.: 196 °C (Ligroin). IR (KBr, cm⁻¹): 3596, 3438 (OH), 3077, 3055 (CH: aromatisch), 2956, 2873 (CH: t-Bu), 1680, 1656 (C=O), 1592 (C=C: aromatisch). ¹H NMR (CDCl₃, ppm): $\delta = 1.47$ (s, 18 H, 2 t-Bu), 3.97 (s, 3 H, OMe), 5.44 (s, 1 H, OH), 7.23 (s, 2 H, 2'- u. 6'-H), 7.67 (dd, J = 4.6/ 7.8 Hz, 1 H, 3-H), 8.46 (dd, J = 1.3/7.9 Hz, 1 H, 4-H), 9.02 (dd, J = 1.2/ 4.5 Hz, 1 H, 2-H). MS: m/z (%) = 393 (M⁺⁻, 82), 378 ([M-Me]⁺, 100), 57 ([t-Bu]⁺, 24), 28 ([CO]⁺, 100). C₂₄H₂₇NO₄ (393.5)

3.6.2. 7-(3,5-Di-tert-butyl-4-hydroxyphenyl)-6-methoxychinolin-5,8-dion (13)

Aus **8** (Ausbeute: 47%). Gelb-orange Kristalle, Schmp. 182 °C (Ligroin). IR (KBr, cm⁻¹): 3603, 3497, 3439, 3386 (OH), 2955, 2914, 2874 (CH: t-Bu), 1670 (C=O), 1597, 1578 (C=C: aromatisch). ¹H NMR (CDCl₃, ppm): $\delta = 1.47$ (s, 18 H, 2 t-Bu), 3.92 (s, 3 H, OMe), 5.44 (s, 1 H, OH), 7.28 (s, 2 H, 2'- u. 6'-H), 7.65 (dd, J = 4.6/7.8 Hz, 1 H, 3-H), 8.46 (dd, J = 1.6/7.8 Hz, 1 H, 4-H), 9.02 (dd, J = 1.6/4.6 Hz, 1 H, 2-H). MS: m/ z (%) = 393 (M⁺, 48), 378 ([M-Me]⁺, 73), 322 ([M-Me-t-Bu]⁺, 46), C₂₄H₂₇NO₄ (393.5)

3.7. Synthese der heterozyklisch anellierten Hydroxy-2-arylbenzochinone

2 mmol der Halogenverbindung werden in 100 mL NaOH-Lsg. (1 mol/L, Methanol/ $H_2O = 1 + 1$) 90 min unter Argonatmosphäre zum Sieden erhitzt. Nach dem Erkalten wird der Ansatz mit 200 mL H_2O verdünnt und vorsichtig mit HCl angesäuert. Die vereinigten CH₂Cl₂-Extrakte werden mit Na₂SO₄ getrocknet und nach dem Einengen mit Toluol sc gereinigt.

3.7.1. 6-(3,5-Di-tert-butyl-4-hydroxyphenyl)-7-hydroxychinolin-5,8-dion (14)

Aus 7, sc Reinigung abweichend mit Ethylacetat (Ausbeute: 35%). Violette Kristalle, Schmp. 260 °C (Ligroin). IR (KBr, cm⁻¹): 3440, 3399 (OH), 2958, 2919, 2875 (CH: t-Bu), 1673, 1650 (C=O), 1596, 1580 (C=C: aromatisch). ¹H NMR (CDCl₃, ppm): $\delta = 1.48$ (s, 18H, 2 t-Bu), 5.45 (s, 1 H, 4'-OH), 7.41 (s, 2 H, 2'- u. 6'-H), 7.65 (s, 1 H, 7-OH), 7.71 (dd, J = 4.6' 7.8 Hz, 1 H, 3-H), 8.53 (dd, J = 1.5/ 7.9 Hz, 1 H, 4-H), 9.00 (dd, J = 1.4' 4.5 Hz, 1 H, 2-H). MS: m/z (%) = 379 (M⁺, 33), 364 ([M-Me]⁺, 35), 323 ([M-t-Bu]⁺, 100), 308 ([M-Me-t-Bu]⁺, 21), 57 ([t-Bu]⁺, 48). C_{23H25}NO₄ (379.4)

3.7.2 7-(3,5-Di-tert-butyl-4-hydroxyphenyl)-6-hydroxychinolin-5,8-dion (15)

Aus **8**, sc Reinigung abweichend mit Ethylacetat (Ausbeute: 60%). Rote Kristalle. IR (KBr, cm⁻¹): 3612, 3442, 3399 (OH), 2958, 2917, 2874 (CH: t-Bu), 1661, 1629 (C=O), 1580 (C=C: aromatisch). ¹H NMR ([D₆] DMSO, ppm): $\delta = 1.40$ (s, 18 H, 2 t-Bu), 7.11 (s, 1H, 4'-OH), 7.17 (s, 2 H, 2'- u. 6'-H), 7.80 (dd, J = 4.8/7.8 Hz, 1H, 3-H), 8.35–8.44 (m, 1 H, 4-H), 8.94–9.05 (m, 1H, 2-H), 10.92 (s, 1H, 6-OH). MS: m/z (%) = 379 (M⁺, 47), 364 ([M-Me]⁺, 69), 323 ([M-t-Bu]⁺, 100), 267 ([M-2 t-Bu]⁺, 21), 57 ([t-Bu]⁺, 62). C₂₃H₂₅NO₄ (379.4)

3.7.3. 7/6-(3,5-Di-tert-butyl-4-hydroxyphenyl)-6/7-hydroxyisochinolin-5,8dion (16/17)

Aus **9/10** (Ausbeute: 11%). Die Isomere lassen sich sc nicht trennen. Anhand des ¹H NMR-Spektrums konnte ein Isomerenverhältnis **16/17** von 10:1 ermittelt werden. Rot-braune Kristalle (Cyclohexan). IR (KBr, cm⁻¹): 3630, 3396 (OH), 2957, 2915, 2873 (CH: t-Bu), 1665, 1655 (C=O), 1595 (C=C: aromatisch). ¹H NMR ([D₆] DMSO, ppm): $\delta = 1.40$ (s, 18H, 2 t-Bu), 7.10 (s, 11H, 4'-OH), 7.18 (s, 2H, 2'-u. 6'-H), 7.84 (d, J = 4.9 Hz, 1 H, 4-H, **16**), 7.94 (d, J = 4.9 Hz, 1 H, 4-H **17**), 9.04 (d, J = 4.8 Hz, 1 H,

3-H, **16**), 9.10 (d, 4.8 Hz, 1 H, 3-H, **17**), 9.18 (s, 1H, 1-H, **16**), 9.23 (s, 1 H, 1-H, **17**), 11.09 (s, 1 H, 6/7-OH). MS: m/z (%) = 379 (M⁺, 63), 364 ([M-Me]⁺, 100), 323 ([M-t-Bu]⁺, 36), 57 ([t-Bu]⁺, 40). C₂₃H₂₅NO₄H₂O (397.5)

3.8. Synthese der Thiazine

3.8.1. Ethyl-2-acetylamino-3[3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1,4-dioxo-1,4-dihydro-2-naphthylsulfanyl]-propionat (19)

l mmol 2-Brom-3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1,4-naphthochinon wird in 20 mL DMSO gelöst und unter Zusatz je einer äquimolaren Menge N-Acctylcysteinethylester und DABCO 30 min bei RT gerührt. Nach Abschluss der Reaktion wird mit 100 mL H₂O versetzt und vorsichtig mit HCl cc. angesäuert. Nach Extraktion mit CH₂Cl und Trocknen mit Na₂SO₄ wird eingeengt und der Rückstand sc mit Toluol/Ether (9 + 1) gereinigt. (Ausbeute: 50%). Orange Kristalle, Schmp. 92 °C (Zers.) (Cyclohexan). IR (KBr, cm⁻¹): 3629, 3596 (OH), 3383 (NH), 3072 (CH), 2958, 2913, 2873 (t-Bu), 1742, 1666 (C=O), 1594 (C=C). ¹H NMR (CDCl₃, ppm): $\delta = 1.12$ (t, J = 7.1 Hz, 3H, CH₂<u>CH₃</u>), 1.43 (s, 18 H, 2 t-Bu), 1.80 (s, 3H, COMe), 3.22–3.41 (m, 2H, -S-CH₂-), 3.82–4.05 (m, 2 H, <u>CH₂</u>CH₃), 4.56–4.70 (m, 1 H, CH), 5.50 (s, 1 H, OH), 6.19 (d, J = 7.1 Hz, 1H, NH), 7.10 (d, J = 2.0 Hz, 2 H, 2'- u. 6'-H), 7.67–7.83 (m, 2 H, 6- u. 7-H), 8.08–8.20 (m, 2 H, 5- u. 8-H). MS: m/z (%) = 551 (M⁺⁺, 28), 492 ([M-NHCOMe]⁺, 13), 436 ([M-NHCOMe-t-Bu]⁺, 17), 407 ([M-NHCOMe-t-Bu-E1]⁺, 83), 158 ([C₁₀H₆O₂]⁺, 63), 57 ([t-Bu]⁺, 100), 43 ([CH₃CO]⁺, 52). C₃₁H₃₇NO₆S (551.7)

3.8.2. Ethyl-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-hydroxy-3H-naphtho[2,1-b][1,4]thiazin-2-carboxylat (20)

l mmol **19** wird in 20 mL Ethanol gelöst und mit 5 mL H₂SO₄ (50%) zum Sieden erhitzt. Nach beendeter Reaktion wird der Ansatz mit 50 mL H₂O verdünnt und mit CH₂Cl₂ extrahiert. Der nach Trocknen mit Na₂SO₄ und Einengen verbleibende Rückstand wird mit CH₂Cl₂ sc gereinigt (Ausbeute: 60%). Ockerfarbene Kristalle, Schmp. 206 °C (Cyclohexan). IR (KBr, cm⁻¹): 3628, 3509 (OH), 3069 (CH), 2959, 2911, 2872 (t-Bu), 1710 (C=O), 1617 (C=N), 1601 (C=C). ¹H NMR (CDCl₃, ppm): $\delta = 1.38 - 1.54$ (m, 21 H, 2 t-Bu u. CH₂CH₃), 3.50 (s, 2 H, 3-CH₂), 4.38–4.56 (m, 2 H, <u>CH₂CH₃</u>), 5.45 (s, 1 H, 4'-OH), 5.93 (s, 1 H, 6-OH), 7.19 (s, 2H, 2'- u. 6'-H), 7.44-7.55 (m, 1 H, 8-H), 7.55-7.65 (m, 1 H, 9-H), 8.11–8.27 (m, 1 H, 10-H), 8.43-8.57 (m, 1 H, 7-H). MS: m/z (%) = 491 (M⁺, 100), 435 ([M-t-Bu]⁺, 11), 57 ([t-Bu]⁺, 13). C₂₉H₃₃NO₄S (491.6)

3.8.3. Ethyl-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-6-oxo-6H-naphtho[2,1-b]-[1,4]thiazin-2-carboxylat (21)

l mmol Ammoniumcer(IV)-nitrat wird in 5 mL Acetonitril mit wenig H₂O gelöst. Parallel wird eine Lösung von **20** in 10 mL DMF unter Erwärmen zubereitet. Nach dem Abkühlen werden beide Lösungen vereint und 10 min bei RT gerührt. Danach wird der Ansatz in 50 mL H₂O gegeben, mit CH₂Cl₂ extrahiert und nach Trocknen mit Na₂SO₄ und Einengen mit Toluol/Ether (9 + 1) sc gereinigt (Ausbeute: 50%). Rot-violette Kristalle, Schmp. 142 °C (Cyclohexan). IR (KBr, cm⁻¹): 3630, 3440 (OH), 3067 (CH: aromatisch), 2957, 2872 (CH: t-Bu), 1733 (C=O: Ester), 1711 (C=O: Keton), 1628 (C=N), 1596 (C=C: aromatisch). ¹H NMR (CDCl₃, ppm): $\delta = 1.44-1.49$ (m, 21 H, 2 t-Bu u. CH₂<u>CH₃</u>), 4.44 (q, J = 7.1/14.2 Hz, 2H, <u>CH₂CH₃</u>), 5.39 (s, 1 H, OH), 7.11 (s, 2H, 2'-u. 6'-H), 7.75-7.87 (m, 2H, 8- u. 9-H), 8.00 (s, 1 H, 3-H), 8.33-8.42 (m, 1 H, 7-H), 8.91-9.03 (m, 1 H, 10-H). MS: m/z (%) = 489 (M⁺⁺, 65), 474 ([M-Me]⁺, 16), 433 ([M-t-Bu]⁺, 100), 57 ([t-Bu]⁺, 43), 29 ([Et]⁺, 18). C₂₉H₃₁NO₄S (489.0)

3.9 Synthese der Methoxyaryl-1,4-benzochinone

Eine Lösung von 1 mmol **22**, einer äquimolaren Menge Palladiumacetat und 2,6-Di-*tert*-butylphenol in 25 mL Essigsäure wird unter Argonatmosphäre zum Sieden erhitzt. Nach beendeter Reaktion wird das Gemisch abgekühlt, filtriert und in eine gesättigte Kochsalzlösung gegeben. Nach Extraktion mit Chloroform werden die vereinigten organischen Phasen mit Na₂SO₄ getrocknet und eingeengt. Die Trennung und Aufarbeitung der entstandenen Produkte erfolgt mittels SC mit Toluol/Ether (9 + 1).

3.9.1. 2-(3,5-Di-tert-butyl-4-hydroxyphenyl)-5-methoxy-1,4-benzochinon (24)

Ausbeute: 40% nach sc Trennung mit Toluol/ Ether (9 + 1), 2. Fraktion. Leuchtend rote Kristalle, Schmp. 267–269 °C (Cyclohexan). IR (KBr, cm⁻¹): 3607 (OH), 3075, 3050 (CH), 2955, 2912, 2876 (t-Bu), 1662, 1624 (C=O), 1596 (C=C). ¹H NMR (CDCl₃, ppm): $\delta=1.46$ (s, 18 H, 2 t-Bu), 3.87 (s, 3 H, OMe), 5.54 (s, 1 H, OH), 6.00 (s, 1 H, 6-H), 6.76 (s, 1 H, 3-H), 7.35 (s, 2 H, 2'- u. 6'-H). MS: m/z (%) = 342 (M⁺, 54), 327 ([M-Me]⁺, 100), 286 ([M-t-Bu]⁺, 31), 57 ([t-Bu]⁺, 30). C_{21}H_{26}O_4 (342.4)

3.9.2. 2-(3,5-Di-tert-butyl-4-hydroxyphenyl)-6-methoxy-1,4-benzochinon (25)

Ausbeute: 7.5% nach sc Trennung mit Toluol/Ether (9 + 1), 1. Fraktion. Orange Kristalle, Schmp. 185–186 °C (Cyclohexan). IR (KBr, cm⁻¹): 3621, 3453 (OH), 3061 (CH), 2959 (t-Bu), 1677, 1641 (C=O), 1586 (C=C). ¹H NMR (CDCl₃, ppm): $\delta = 1.46$ (s, 18 H, 2 t-Bu), 3.87 (s, 3 H, OMe), 5.52 (s, 1 H, OH), 6.74 (d, J = 2.4 Hz, 1H, 5-H), 7.26 (s, 1 H, 3-H), 7.34 (s, 2 H, 2'- u. 6'-H). MS: m/z (%) = 342 (M⁺, 54), 327 ([M-Me]⁺, 100), 57 ([t-Bu]⁺, 31). C₂₁H₂₆O₄ (342.4)

3.9.3. 2,3-Bis-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-methoxy-1,4-benzochinon (26)

Ausbeute: 2.5% nach sc Trennung mit Toluol/Ether (9 + 1), 3. Fraktion. Tiefviolette Kristalle, Schmp. 267–268 °C (Cyclohexan). IR (KBr, cm⁻¹): 3637 (OH), 2957, 2914, 2874 (CH: t-Bu), 1670, 1637 (C=O), 1599 (C=C: aromatisch). ¹H NMR (CDCl₃, ppm): $\delta = 1.26/1.27$ (2s, 36H, 4 t-Bu), 3.89 (s, 3 H, OMe), 5.18 (s, 1 H, 4'-OH), 5.20 (s, 1 H, 4''-OH), 6.07 (s, 1 H, 6-H), 6.76 (s, 2 H, 2'-u. 6'-H), 6.77 (s, 2 H, 2''-u. 6''-H). MS: m/z (%) = 546 (M⁺, 68), 518 ([M-CO]⁺, 15), 490 ([M-t-Bu]⁺, 16), 57 ([t-Bu]⁺, 100). C₃₅H₄O₅ (546.7)

3.10. Synthese des Aryl- (28) und des Hydroxyaryl-1,4-benzochinons (27)

3.10.1. 2-(3-tert-Butyl-4-hydroxyphenyl)-5-hydroxy-1,4-benzochinon (27)

Die Lösung von 1 mmol **24** in 10 mL CH₂Cl₂ wird unter Eiskühlung mit 1 mL Me₃SiI 3 h unter Argon gerührt. Danach werden unter weiterer Eiskühlung 5 mL MeOH tropfenweise zum Ansatz hinzugegeben, der dann bei RT im Vakuum zur Trockene eingeengt wird. Der Rückstand wird abschließend sc mit CH₂Cl₂ gereinigt (Ausbeute: 20%). Schwarz-rote, metallisch glänzende Kristalle, Schmp. 182–184 °C (Cyclohexan/Toluol = 2 + 1). ¹H NMR (CDCl₃, ppm): δ = 1.42 (s, 9 H, t-Bu), 5.15 (s, 1 H, 4'-OH), 6.18 (s, 1 H, 3-H), 6.72 (d, J = 8.3 Hz, 1 H, 5'-H), 6.83 (s, 1 H, 6-H), 7.01 (s, 1 H, 5-OH), 7.30 (dd, J = 2.2/8.3 Hz, 1 H, 6'-H), 7.41 (d, J = 2.1 Hz, 1 H, 2'-H).– MS: m/z (%) = 272 (M⁺⁻, 20), 257 ([M-Me]⁺, 48), 216 ([M-t-Bu]⁺, 100), 57 ([t-Bu]⁺, 69). C₁₆H₁₆O₄ (272.3)

3.10.2. 2-(3,5-Di-tert-butyl-4-hydroxyphenyl)-1,4-benzochinon (28)

0.1 mmol 23, 0.05 mmol 2,6-Di-tert-butylphenol und 10 g Natriumacetat werden in 100 mL Eisessig 12 h zum Sieden erhitzt. Anschließend wird der Ansatz in 2 L Eiswasser gegeben und es wird mit 500 mL CH₂Cl₂ extrahiert. Danach wird dreimal mit 1 L H₂O neutral gewaschen, mit Na₂SO₄ getrocknet und abschließend sc mit Toluol/Ether (9 + 1) gereinigt (Ausbeute: 10%). Schmp. 139 °C (Cyclohexan). IR (KBr, cm⁻¹): 3629 (OH), 2960, 2913, 2874 (CH: t-Bu), 1655 (C=O), 1595 (C=C). ¹H NMR (CDCl₃, ppm): $\delta = 1.46$ (s, 18 H, 2 t-Bu), 5.53 (s, 1 H, OH), 6.79–6.83 (m, 3 H, 3-, 5- u. 6-H), 7.34 (s, 2 H, 2'u.6'-H). MS: m/z (%) = 312 (M⁺, 46), 297 ([M-Me]⁺, 100), 57 ([I-Bu]⁺, 37). C₂₀H₂₄O₃ (312.4)

3.11 Bestimmung der 5-LO-Inhibition

Das Literaturverfahren (Dannhardt und Lehr 1992) wurde in folgender Weise modifiziert: Die Isolierung der humanen Granulozyten erfolgte aus Citratvollblut mittels Polymorphprep.[®] Die in DMSO gelösten Testsubstanzen bzw. DMSO allein für die Kontrollmessung wurden mit den in PBS suspendierten Granulozyten versetzt und nach 10 min weitere 5 min lang mit CaCl₂ vorinkubiert (DMSO-EndKonzentration: 0.25% (v/v)). Danach wurde die Enzymreaktion mit Calciumionophor A23187 gestartet und nach 5 min mit Nordihydroguajaretsäure (gelöst in MeOH/MeCN) abgebrochen. Nach Festphasenextraktion wurde der Entzündungsmediator LTB₄ mittels HPLC quantifiziert. Zur Bestimmung der Enzymhemmung wurden die Mittelwerte in Anwesenheit (n = 4) und in Abwesenheit (n = 4) erfältnis gesetzt. Die Hemmung war statistisch signifikant verglichen mit den Kontrollwerten (Student t-Test, P < 0.05).

3.12 Bestimmung der 12-LO- und COX-1-Inhibition

Das Literaturverfahren (Lehr 1989) wurde in folgender Weise modifiziert: Die Isolierung der Thrombozyten erfolgte nach Zentrifugation durch Abernten des plättchenreichen Plasmas. Die in DMSO gelösten Testsubstanzen bzw. DMSO allein für die Kontrollmessung wurden der eingestellten Thrombozytensuspension zugesetzt und nach 10 min weitere 5 min lang mit CaCl₂ vorinkubiert (DMSO-Endkonzentration: 0.25% (v/v)). Danach wurde die Enzymreaktion mit Calciumionophor A23187 gestartet und nach 3 min mit Nordihydroguajaretsäure (gelöst in MeOH/MeCN) abgebrochen. Nach Festphasenextraktion wurden die Mediatoren 12-HETE und 12-HHT mittels HPLC quantifiziert. Zur Bestimmung der Enzymhemmung wurden die Mittelwerte in Anwesenheit (n = 4) und in Abwesenheit (n = 4) der Testsubstanzen ins Verhältnis gesetzt. Die Hemmung war statistisch signifikant verglichen mit den Kontrollwerten (Student t-Test, P < 0.05).

3.13 Bestimmung der cPLA₂-Inhibition

Das Literaturverfahren (Lehr, Schulze Effringhoff 2000) wurde in folgender Weise modifiziert: Die Isolierung der Thrombozyten erfolgte wie zuvor für den 12-LO/COX-1-Assay beschrieben. Die eingestellte Thrombozytensuspension wurde mit den in DMSO gelösten Testsubstanzen bzw. DMSO allein für die Kontrollmessung und ETYA-Lösung zur Hemmung der Lipoxygenasen und Cyclooxygenasen versetzt und 10 min vorinkubiert (DMSO-Endkonzentration: 0.25% (v/v)). Die Stimulierung der Zellen wurde nun durch Zugabe von Calciumionophor A23187 gestartet und nach 3 min mit Nordihydroguajaretsäure (gelöst in MeOH/MeCN) abgebrochen. Die Freisetzung der AA wurde dann nach Festphasenextraktion mittels HPLC quantifiziert. Zur Bestimmung der Enzymhemmung wurden die Mittelwerte in Anwesenheit (n = 4) und in Abwesenheit (n = 4) der Testsubstanzen ins Verhältnis gesetzt. Die Hemmung war statistisch signifikant verglichen mit den Kontrollwerten (Student t-Test, P < 0.05).

Literatur

- Adachi J (1955) 5,8-Dihydroxyquinoxaline and its derivatives. Nippon Kagaku Zasshi 76: 311–318.
- Amareska AS (1999) A new synthesis of quinoline-5,8-quinone. Synth Commun 29: 3063–3066
- Barret R, Daudon M (1990) Oxidation of phenols to quinones by bis(trifluoroacetoxy)iodobenzene. Tetrahedron Lett 31: 4871–4872.
- Billmann JH, Rendall JL (1944) Amides of nicotinic acid and related acids. J Amer Chem Soc 66: 540–541.
- Boutherin-Falson O, Desquand-Billiald S, Favrou A, Finet M, Tembo O, Torregosa J-L, Yannik-Arnoult S (1997) Preparation of 2-aryl-4,9-dioxoimidazo[4,5-g]quinolines and analogs for treatment of venous insufficiency. PCT Int. Patent. CAN 127: 121732.

- Dannhardt G, Lehr M (1992) *In vitro* evaluation of 5-lipoxygenase and cyclooxygenase inhibitors using bovine neutrophils and platelets and HPLC. J Pharm Pharmacol 44: 419–424.
- Lehr M (1989) Synthese und Testung von 5-lipoxygenase- und cyclooxygenasehemmenden mono- und diarylierten 2,3-Dihydro-1*H*-pyrrolizinen und diarylierten Pyrrolen. Dissertation Universität Regensburg.
- Lehr M, Schulze Effringhoff A (2000) Comparison of the inhibition of the cytosolic phospholipase A₂-mediated arachidonic acid release by several indole-2-carboxylic acids and 3-(pyrrol-2-yl)-propionic acids in bovine and in human platelets. Arch Pharm Med Chem 333: 312–314.
- de Oliveira RA, Carazza F, da Silva Pereira MO (2000) Palladium(II)assisted preparation of methoxyarylbenzoquinones. Synth Commun 30: 4563–4572.
- Probst R, Wurm G (1998) Arylated 1,2- and 1,4-anthraquninones with partial arotinoid structure as 5-lipoxygenase inhibitors. Pharmazie 53 (Suppl.), 30.
- Richwien A (2003) Beeinflussung der Arachidonsäurekaskade durch anellierte Aryl-1,4-benzochinon-Derivate. Dissertation, Freie Universität Berlin.
- Wurm G (1991) 1,4-Naphthoquinones. XXI. 2-(3,5-Di-tert-butyl-4-hydroxyphenyl)-1,4-naphthoquinones as 5-Lipoxygenase Inhibitors. Arch Pharm (Weinheim) 324: 491–495.
- Wurm G, Geres U (1985) 1,4-Naphthoquinones. XII: Teuber reaction of 5methoxy-2-pivaloyl-1-naphthol. Arch Pharm (Weinheim) 318; 664–667.
- Wurm G, Schwandt S (2003) Methylierte 2-Aryl-1,4-Naphthochinonderivate, 5-Lipoxygenase-Inhibitoren mit reduzierter antioxidativer Aktivität. Pharmazie 58: 531–538.
- Wurm G, Schwandt S (1999) 2-(3-Halogen-4-hydroxyphenyl)-1,4-naphthochinon-Derivate aus 2-(3,5-Di-tert-butyl-4-hydroxyphenyl)-Analoga, potentielle 5-Lipoxygenase-Inhibitoren. Pharmazie 54: 487–490.