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An artificial neural network model is developed to predict the ratios of the steady-state concentrations of
drugs in the brain to those in the blood (log BB) from their molecular structural parameters. These mole-
cular structural parameters are the molecular volume (V), the sum of the absolute values of the net atom-
ic charges of oxygen and nitrogen atoms which are hydrogen-bond acceptors (QO,N), and the sum of the
net atomic charges of hydrogen atoms attached to oxygen or nitrogen atoms (QH). For a training set of
56 compounds and a test set of 5 compounds, root mean squared errors (RMSE) between experimental
log BB values and calculated/predicted log BB values were 0.236 and 0.258, respectively. These mole-
cular structural parameters can be obtained easily from quantum chemical calculations. The model is
suitable for the rapid prediction of the blood-brain barrier penetration of drugs.

1. Introduction

It is important in drug design to determine whether a can-
didate molecule is capable of penetrating the blood-brain
barrier (BBB). High penetration is needed for drugs tar-
geted at the central nervous system (CNS), while low pe-
netration may be desirable for drugs aimed at other sites
of action in order to minimize CNS-related side effects. A
common measure of the degree of BBB penetration is the
ratio of the steady-state concentration of the drug mole-
cule in the brain to that in the blood, usually expressed as
log (Cbrain/blood) or log BB. However, the experimental de-
termination of log BB is a time-consuming, expensive,
and difficult technique, requiring animal experiments and
the synthesis of the test compounds, often in radiolabeled
form (Pardridrge and Mietus 1979; Young et al. 1988;
Chikhale et al. 1994; Sveigaard and Dalgaard 2000). It is
of very considerable value to predict the log BB of drugs
from their physicochemical parameters or, ideally, from
their molecular structural parameters.
Young et al. (1988) showed that the log BB values of
20 H2 receptor histamine antagonists were correlated with
D log P (octanol-cyclohexane). van de Waterbeemd et al.
(1992) examined the same series of 20 compounds and
found a significant correlation between log BB and the
cyclohexane-water partition coefficient when the molecu-
lar volume was included in the parameterization. They
also found that log BB was correlated with the polar mo-
lecular surface area (PSA, defined as the area of the van
de Waals surface arising from oxygen or nitrogen atoms
or hydrogen atoms attached to oxygen or nitrogen
atoms), but the model was shown to be poorly predictive
when tested with compounds outside its training set
(Calder and Ganellin 1994), suggesting that the structural

diversity of the 20 H2 receptor histamine antagonists
might be insufficient to develop a generally applicable
model for predicting log BB. Abraham et al. (1994) there-
fore constructed a larger training set of 65 compounds
and derived a correlation between log BB and solvato-
chromatic parameters for 57 compounds (8 compounds
were excluded as outliers). Using a set of 57 compounds
drawn from the Abraham training set (1994) mentioned
above, Lombardo (1996), Norinder (1998), Clark (1999),
and their co-workers developed models for log BB predic-
tion using calculated molecular structural parameters such
as free energy of solvation in water (DG0

w) (Lombardo
et al. 1996), Molsurf parameters (Norinder et al. 1998),
PSA, and octanol-water partition coefficient (C log P or
M log P) (Clark 1999) respectively. Some researchers
have also derived prediction models for blood-brain bar-
rier penetration with other data sets (Crivori et al. 2000;
Feher et al. 2000).
We have reported that the permeability coefficients of
b-adrenoreceptor antagonists in Caco-2 cell monolayers,
excised rat ileum and excised rat colon are all well corre-
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lated with certain net atomic charge parameters (Fu et al.
2001). In this paper, such parameters are selected to devel-
op new models for the prediction of log BB.
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2. Investigations and results

The sum of the absolute values of the net atomic charges
of oxygen and nitrogen atoms which are hydrogen-bond
acceptors (QO,N), and the sum of the net atomic charges
of hydrogen atoms attached to oxygen or nitrogen atoms
(QH) are calculated by the semiempirical self-consistent

field molecular orbital calculation CNDO/2 method, using
the minimum energy conformation obtained from the opti-
mization of the standard molecular geometry with the mo-
lecular mechanics MMþ method. The atomic radii used to
calculate molecular volumes (V, nm3) are those used by
Clark (1999).
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Table 1: log BB values of 57 compounds and their molecular structural parameters

Compound V QH QO,N log BB

Exp.a Calc.b Calc.c

1 0.3093 0.3709 1.2967 �1.42 �0.91 �1.27
2 0.1736 0.6227 1.1982 �0.04 �0.95 �0.06
3 0.4725 0.2276 1.5952 �2.00 �1.42 �1.99
4 0.5475 0.2449 1.3313 �1.30 �0.96 �1.22
5 0.5080 0.2029 1.3053 �1.06 �0.87 �0.93
6 0.2422 0.1798 0.5911 0.11 0.10 �0.10
7 0.3853 0.0000 0.7541 0.49 0.16 0.37
8 0.3838 0.0000 0.3258 0.83 1.03 1.05
9 0.3881 0.1786 1.2937 �1.23 �0.88 �0.84
10 0.3505 0.8205 1.8516 �0.82 �1.09 �1.26
11 0.2403 0.3722 1.2155 �1.17 �1.01 �0.85
12 0.3579 0.1637 0.7661 �2.15 � �
13 0.3426 0.2585 1.1114 �0.67 �0.55 �0.58
14 0.3168 0.2609 1.1241 �0.66 �0.64 �0.61
15 0.4338 0.2537 1.1199 �0.12 �0.43 �0.52
16 0.2419 0.6253 1.2059 �0.18 �0.59 �0.29
17 0.2516 0.8584 1.4510 �1.15 �0.51 �0.96
18 0.3015 0.7313 1.7177 �1.57 �1.17 �1.46
19 0.3420 0.8366 2.1687 �1.54 �1.72 �1.34
20 0.3876 0.2569 1.1996 �1.12 �0.64 �0.78
21 0.5025 0.2451 1.1802 �0.73 �0.58 �0.57
22 0.3826 0.2429 1.1589 �0.27 �0.57 �0.65
23 0.3988 0.1537 1.3636 �0.28 �1.02 �0.95
24 0.3975 0.1087 0.9410 �0.46 �0.18 �0.09
25 0.4664 0.1074 0.9775 �0.24 �0.22 0.14
26 0.3433 0.1388 0.6428 �0.02 0.34 0.22
27 0.4373 0.1033 0.8036 0.69 0.13 0.41
28 0.4257 0.1257 0.8125 0.44 0.11 0.30
29 0.4793 0.1220 0.8409 0.14 0.06 0.54
30 0.4673 0.1222 1.1082 0.22 �0.48 �0.19
Butanone 0.1165 0.0000 0.2609 �0.08 �0.04 �0.01
Benzene 0.1145 0.0000 0.0000 0.37 0.48 0.50
3-Methylpentane 0.1597 0.0000 0.0000 1.01 0.80 0.74
3-Methylhexane 0.1827 0.0000 0.0000 0.90 0.94 0.84
2-Propanol 0.0993 0.1373 0.2659 �0.15 �0.15 �0.12
2-Methylpropanol 0.1221 0.1357 0.2749 �0.17 0.01 �0.07
2-Methylpentane 0.1612 0.0000 0.0000 0.97 0.81 0.74
2,2-dimethylbutane 0.1590 0.0000 0.0000 1.04 0.79 0.73
CF3CH2Cl 0.1009 0.0000 0.0000 0.08 0.38 0.42
CH3CCl3 0.1238 0.0000 0.0000 0.40 0.55 0.55
Diethyl ether 0.1276 0.0000 0.2248 0.00 0.12 0.10
CHF2OCF2CHFCl 0.1449 0.0000 0.2512 0.24 0.19 0.13
Ethanol 0.0760 0.1385 0.2559 �0.16 �0.32 �0.17
CF3CH2OCH¼CH2 0.1311 0.0000 0.1794 0.13 0.24 0.20
CF3CHClBr 0.1272 0.0000 0.0000 0.35 0.57 0.57
Heptane 0.1858 0.0000 0.0000 0.81 0.96 0.85
Hexane 0.1624 0.0000 0.0000 0.80 0.81 0.75
CHF2OCHClCF3 0.1442 0.0000 0.2084 0.42 0.27 0.21
Methane 0.0442 0.0000 0.0000 0.04 �0.10 0.12
Methylcyclopentane 0.1459 0.0000 0.0000 0.93 0.70 0.67
Nitrogen 0.0394 0.0000 0.0000 0.03 �0.14 0.09
Pentane 0.1387 0.0000 0.0000 0.76 0.66 0.63
Propanol 0.0994 0.1375 0.2594 �0.16 �0.13 �0.12
Propanone 0.0931 0.0000 0.2616 �0.15 �0.22 �0.10
CF3CHFBr 0.1141 0.0000 0.0000 0.27 0.48 0.49
Toluene 0.1375 0.0000 0.0000 0.37 0.65 0.62
Trichloroethene 0.1135 0.0000 0.0000 0.34 0.47 0.49

a From reference (Lombardo et al. 1996)
b From eq. (1)
c From neural network model



Using V, QO,N, and QH as regression variables, the follow-
ing regression equation is obtained from a stepwise multiple
regression analysis for the training set of 57 compounds
(Table 1) studied by other researchers (Lombardo et al,
1996; Norinder et al, 1998; Clark 1999),

log BB ¼� 0:5088� 10:98 V2 þ 9:991 Vþ 1:554 Q2
H

� 2:037QO;N ð1Þ
n ¼ 56 r ¼ 0:9044 s ¼ 0:3300 F ¼ 57:28

where n is the number of compounds, r is the correlation
coefficient, s is the standard error, and F is the Fisher
value. As other investigators (Abraham et al. 1994; Lom-
bardo et al. 1996; Norinder et al. 1998; Clark, 1999) have
found, compound 12 is an outlier which was omitted from
the original set of 57.

Artificial neural networks were established to predict
log BB. The back-propagation algorithm with a modified
learning rule and normalized cumulative delta was used to
train the network. A than function was used as the trans-
fer function. The neural network model is a four-layer net-
work that includes an input layer, two hidden layers, and
an output layer. The initial learning coefficients are 0.3,
0.25, and 0.15 for the first hidden layer, second hidden
layer, and output layer, respectively. The initial momen-
tum is 0.4. Epoch size is 16. F0 offset is 0.1. Transition
point is 10000 and learning coefficient ratio is 0.5. Inputs
to the neural network consist of V, QO,N, and QH. The
hidden layers consist of three neurons and four neurons,
respectively. The output layer consists of a single neuron,
log BB. The network architecture is shown in the Fig.
The calculated log BB values for the training set of 56
compounds from eq. (1) and from the neural network
model obtained after 50000 training cycles are also listed
in Table 1 along with experimental log BB values taken
from the reference (Lombardo et al. 1996).

3. Discussion

Equation (1) indicates that the log BB value of a com-
pound is correlated with its molecular structural para-
meters including V, QO,N, and QH. These molecular struc-
tural parameters strongly related to the molecular size,
lipophilicity, and hydrogen bond-forming ability of a com-
pound which were considered to be the important factors
determining its blood-brain barrier permeability (Feher
et al. 2000).
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Fig.: Structure of the neural network

Table 2: Predicted log BB values for a test set

Compound V QH QO,N log BB

Exp.a This workb This workc Lombardoa Norinderd Clark-1e Clark-2e

58 0.2768 0.2630 0.8735 0.00 �0.27 �0.30 �0.14 �0.58 �0.25 �0.01
59 0.2847 0.2625 1.1365 �0.34 �0.77 �0.63 �0.28 �1.11 �0.75 �0.37
60 0.3988 0.0000 1.2705 �0.30 �0.87 �0.47 �0.46 �0.75 �0.70 �0.38
61 0.4045 0.1442 1.5002 �1.34 �1.30 �1.34 �0.64 �0.99 �1.26 �0.83
62 0.4131 0.2992 1.7584 �1.82 �1.71 �2.18 �0.82 �1.35 �1.77 �1.28
63 0.3813 0.0000 0.1441 0.76–0.98 1.40 1.14 0.28 1.03 0.76 0.80
RMSE f 0.343 0.258 0.555 0.543 0.283 0.334
RMSE g 0.368 0.236 0.401 0.301 0.386 0.395

a From Lombardo et al. (1996)
b From eq. (1)
c From neural network model
d From Norinder et al. (1998)
e From Clark (1999)
f RMSE of compounds 58–62
g RMSE of the training set



As shown in eq. (1), there is a parabolic correlation be-
tween log BB and V. This comes from the dual effect of
molecular size on BBB penetration. Increasing V de-
creases molecular diffusion through a lipid membrane and
therefore decreases the log BB value. On the other hand,
bigger molecular volume also means higher lipophilicity
which facilitates BBB penetration when QO,N, and QH re-
main unchanged.
For the training set of 56 compounds, root mean squared
errors (RMSE) between experimental log BB values and
calculated log BB values from eq. (1) and from the trained
network are 0.368 and 0.236, respectively. The calculated
results obtained from the neural network model are better
than those obtained from eq. (1). This means that there are
more complicated nonlinear relationships between the
log BB of a compound and its V, QO,N, and QH.
To assess the predictive abilities of eq. (1) and the neural
network model further, we predicted the log BB values of
6 compounds outside the training set and compared them
with other models (Table 2).
The results in Table 2 show that the log BB values of
compounds 68–73 predicted from the neural network
model agree well with their experimental log BB values,
while the neural network model performs better than other
models. Furthermore, the parameters used in the neural
network model can be obtained very easily. It is thus sui-
table for the rapid prediction of blood-brain barrier pene-
tration of drugs.
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