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A simple two-descriptor model to predict blood-brain barrier penetration is derived from a training set
of 79 compounds: log BB ¼ � 13.31V2 þ 9.601V � 2.231PSA � 0.5290 (n ¼ 79, r2 ¼ 0.83) where
log BB is the logarithm of the ratio of the steady-state concentration of the compound in the brain to in
the blood, V (nm3) is the molecular volume, PSA (nm2) is the polar surface area which is defined as
the sum of the van der Waals surface areas of oxygen atoms, nitrogen atoms, and attached hydrogen
atoms in a molecule, n is the number of compounds, and r is the correlation coefficient. The model is
validated by a leave-one-out procedure and an external test set (25 compounds). The results indicate
that the model developed is statistically sound and is sufficiently reliable and robust for predictive use.
The descriptors in the model can be easily computed and it is suitable for the rapid prediction of the
blood-brain barrier penetration for a wide range of drug candidates.

1. Introduction

In drug design it is important to determine whether a
candidate molecule is capable of penetrating the blood-
brain barrier (BBB). Drugs that act in the central nervous
system (CNS) need to cross the BBB to reach their mole-
cular target. By contrast, for drugs with a peripheral tar-
get, little or no BBB penetration might be required in
order to avoid or minimize CNS side effects. A common
measure of the degree of BBB penetration is the ratio of
the steady-state concentration of the drug molecule in the
brain to in the blood, usually expressed as log(Cbrain/blood)
or log BB. The experimental determination of log BB is a
time-consuming, expensive, and difficult technique, re-
quiring animal experiments and the synthesis of the test
compounds, usually in radiolabeled form (Pardridrge and
Mietus 1979; Young et al. 1988; Chikhale et al. 1994;
Sveigaard and Dalgaard 2000). It is of considerable value
to predict log BB values of compounds from their physi-
cochemical parameters or, ideally, from their molecular
structures.
Young et al. (1988) showed that log BB values of 20 H2 re-
ceptor histamine antagonists were correlated with Dlog P
(octanol-cyclohexane). van de Waterbeemd and Kansy
(1992) examined the same series of 20 compounds and
found a significant correlation between log BB and the cy-
clohexane-water partition coefficient when the molecular vo-
lume was included in the parameterization. They also found
that log BB was correlated with polar surface area (PSA, de-
fined as the sum of the van der Waals surface areas of oxygen
atoms, nitrogen atoms, and attached hydrogen atoms in a
molecule), but the model showed it to be poorly predictive
when tested with compounds outside its training set (Calder
and Ganellin 1994), suggesting that the structural diversity

of the 20 H2 receptor histamine antagonists might be insuffi-
cient to develop a generally applicable model for predicting
log BB. Thus Abraham et al. (1994) constructed a larger
training set of 65 compounds and derived a correlation be-
tween log BB and solvato-chromatic parameters for 57 com-
pounds (8 compounds were excluded as outliers). With a set
of 57 compounds drawn from the Abraham training set men-
tioned above, Lombardo (1996), Norinder (1998), Clark
(1999), and their co-workers developed the models for
log BB prediction using calculated molecular structural para-
meters such as free energy of solvation in water, DG0

w (Lom-
bardo et al. 1996), Molsurf parameters (Norinder et al.
1998), PSA, and calculated octanol-water partition coeffi-
cient, C log P or M log P (Clark 1999), respectively. More
recently, a variety of models to predict BBB penetration for
larger dataset has been developed (Luco 1999; Feher et al.
2000; Crivori et al. 2000; Kaznessis et al. 2001; Rose and
Hall 2002; Ooms et al. 2002) using different descriptors
such as the three-dimensional molecular field descriptors,
electropological state indices, and so on. In summary, the
BBB penetration of a compound is thought to be dependent
on its hydrogen-bonding potential, lipophilicity and size.
Weak hydrogen-bonding potential, high lipophilicity, and
small size are favorable to BBB penetration.
In this paper, we derive a simple model for the prediction
of log BB from a dataset of 79 compounds.

2. Investigations and results

The dataset of 111 compounds and their corresponding
log BB values is taken from the literature (Young et al.
1988; Abraham et al. 1994; Salminen et al. 1997; Greig
et al. 1995; Abraham et al. 1995; Calder and Ganellin
1994; Kelder et al. 1999; Lombardo et al. 1996; von Spre-
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Table 1: Experimental and calculated log BB values for the
training set compounds and their computed descrip-
tors

Compound V
(nm3)

PSA
(nm2)

log BB

Exp.a Calc.b Pred.c

1 0.3097 0.9784 �1.42 �1.02 �0.99

2 0.1735 0.7807 �0.04 � �

3 0.5088 0.8774 �1.06 �1.05 �1.05

4 0.3812 0.3011 0.49 0.52 0.53

5 0.3828 0.0540 0.83 1.08 1.10

6 0.3488 1.4402 �0.82 � �

7 0.3424 0.8425 �0.67 �0.68 �0.68

8 0.3169 0.8517 �0.66 �0.72 �0.73

9 0.4313 0.8171 �0.12 �0.69 �0.71

10 0.2418 0.7636 �0.18 �0.69 �0.71

11 0.2516 1.0403 �1.15 �1.28 �1.29

12 0.3016 1.0698 �1.57 �1.23 �1.20

13 0.3420 1.3859 �1.54 �1.89 �1.95

14 0.3902 0.9170 �0.27 �0.86 �0.88

15 0.3897 0.9412 �0.28 �0.91 �0.93

16 0.3941 0.4831 �0.46 0.11 0.13

17 0.4633 0.4442 �0.24 0.07 0.09

18 0.3383 0.3815 �0.02 0.34 0.36

19 0.4327 0.3664 0.69 0.32 0.30

20 0.4219 0.3753 0.44 0.32 0.31

Table 1 (continued)

Compound V
(nm3)

PSA
(nm2)

log BB

Exp.a Calc.b Pred.c

21 0.4773 0.3608 0.14 0.22 0.22

22 0.4654 0.5428 0.22 �0.15 �0.18

23 0.4736 0.9747 �2.00 �1.14 �1.08

24 0.5482 0.7260 �1.30 �0.89 �0.77

25 0.2404 0.4206 0.11 0.07 0.07

26 0.3875 0.8629 �1.12 �0.73 �0.72

27 0.5010 0.8539 �0.73 �0.97 �0.99

28 0.2415 0.9040 �1.17 �1.00 �0.99

29 0.3882 0.8955 �1.23 �0.81 �0.79

30 0.3562 0.7315 �2.15 � �

31 Butanone 0.1164 0.1998 �0.08 �0.04 �0.04

32 Benzene 0.1147 0.0000 0.37 0.40 0.40

33 3-Methylpentane 0.1597 0.0000 1.01 0.67 0.65

34 3-Methylhexane 0.1828 0.0000 0.90 0.78 0.78

35 2-Propanol 0.0989 0.2311 �0.15 �0.23 �0.23

36 2-Methylpropanol 0.1223 0.2201 �0.17 �0.05 �0.04

37 2-Methylpentane 0.1608 0.0000 0.97 0.67 0.66

38 2,2-Dimethylbutane 0.1587 0.0000 1.04 0.66 0.65

39 1,1,1-Trifluoro-2-chloroethane 0.1009 0.0000 0.08 0.30 0.32

40 1,1,1-Trichloroethane 0.1237 0.0000 0.40 0.46 0.46

41 Diethyl ether 0.1272 0.1052 0.00 0.24 0.25

42 Enflurane 0.1446 0.0918 0.24 0.38 0.38

43 Ethanol 0.0760 0.2421 �0.16 �0.42 �0.45

44 Fluroxene 0.1311 0.1104 0.13 0.25 0.26

45 Halothane 0.1273 0.0000 0.35 0.48 0.48

46 Heptane 0.1857 0.0000 0.81 0.80 0.79

47 Hexane 0.1630 0.0000 0.80 0.68 0.68

48 Isoflurane 0.1444 0.1003 0.42 0.36 0.35

49 Methylcyclopentane 0.1460 0.0000 0.93 0.59 0.58

50 Pentane 0.1388 0.0000 0.76 0.55 0.54

51 Propanol 0.0995 0.2417 �0.16 �0.24 �0.25

52 Propanone 0.0932 0.2201 �0.15 �0.24 �0.25

53 Teflurane 0.1141 0.0000 0.27 0.39 0.40

54 Toluene 0.1389 0.0000 0.37 0.55 0.55

55 Trichloroethene 0.1136 0.0000 0.34 0.39 0.39

56 Acetylsalicylic acid 0.2048 0.6940 �0.50 �0.67 �0.68

57 Valproic acid 0.2155 0.4233 �0.22 �0.02 �0.02

58 Salicylic acid 0.1522 0.6312 �1.10 �0.78 �0.77

59 p-Acetamidophenol 0.1817 0.5959 �0.31 �0.55 �0.56

60 Chlorambucil 0.3575 0.4884 �1.70 � �



cher, et al. 1998; Yazdanian and Glynn 1998). These com-
pounds are divided into a training set (86 compounds) and
a test set (25 compounds). Molecular volumes and polar
surface areas are selected as the structural descriptors to
develop a predictive model for BBB penetration. These
structural descriptors are obtained from the molecular con-
formations optimized using the semiempirical self-consis-
tent field molecular orbital calculation AM1 method (De-
war et al. 1985) and the atomic radii used by Clark
(1999). The model to predict blood-brain barrier penetra-
tion is derived on the training set using the stepwise multi-
ple regression analysis and then cross-validated using
leave-one-out procedure (Wold 1978) in which one com-
pound is left out from the training set and predicted from
the model based on the remaining data and tested on the
external prediction.
The 86 compounds of the training set are listed in Table 1
along with their experimental log BB values.
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Table 1 (continued)

Compound V
(nm3)

PSA
(nm2)

log BB

Exp.a Calc.b Pred.c

61 0.2477 0.4004 �1.30 � �

62 0.2051 0.4765 �1.40 � �

63 0.3696 0.6736 �0.43 �0.30 �0.30

64 0.3624 0.4342 0.25 0.23 0.23

65 0.1936 0.2813 �0.30 0.20 0.22

66 0.2164 0.1880 �0.06 0.51 0.52

67 0.1560 0.4216 �0.42 �0.30 �0.29

68 0.3755 0.4031 �0.16 0.30 0.32

69 0.2763 0.4667 0.00 0.07 0.07

70 0.2858 0.6592 �0.34 �0.34 �0.34

71 0.3981 0.7959 �0.30 �0.59 �0.60

72 0.4053 1.0088 �1.34 �1.07 �1.06

73 0.4124 1.2201 �1.82 �1.56 �1.53

74 0.3774 0.0560 0.89 1.07 1.09

75 0.3425 0.0839 0.99 1.01 1.01

76 0.3619 0.3054 0.82 0.52 0.51

77 0.3435 0.3384 1.03 0.44 0.42

Table 1 (continued)

Compound V
(nm3)

PSA
(nm2)

log BB

Exp.a Calc.b Pred.c

78 0.2698 0.2965 1.64 � �

79 0.3373 0.4139 0.52 0.27 0.26

80 0.3184 0.4533 0.39 0.17 0.16

81 0.3379 0.2052 0.53 0.74 0.75

82 0.4110 0.4138 0.40 0.25 0.24

83 0.4774 0.8300 �0.78 �0.83 �0.83

84 0.3254 0.5289 0.00 0.01 0.01

85 0.4932 0.6306 �0.02 �0.44 �0.47

86 0.5010 0.8453 �0.67 �0.95 �0.98

a From references (Young et al. 1988; Abraham et al. 1994; Salminen et al. 1997; Greig
et al. 1995; Abraham et al. 1995; Calder and Ganellin 1994; Kelder et al. 1999; Lom-
bardo et al. 1996)

b Calculated from eq. (1)
c Predicted using the leave-one-out cross validation procedure



Using PSA and V as regression variables, the following
regression equation is obtained from the stepwise multiple
regression analysis (including quadratic terms) for the 86
compounds,

log BB ¼ �13:31V2 þ 9:601V� 2:231PSA� 0:5290 ð1Þ
n ¼ 79 r2 ¼ 0:83 q2 ¼ 0:82

s ¼ 0:31 F ¼ 126

where n is the number of compounds, r is the correlation
coefficient, q is the cross validation coefficient, s is the
standard deviation, F is the Fisher F-statistic. Compounds
2, 6, 30, 60, 61, 62 and 78 are removed from above equa-
tion as outliers. The calculated log BB values for the train-
ing set are presented in Table 1 and the experimental and
calculated log BB values are plotted in Fig. 1.

3. Discussion

3.1 The predictive model of blood-brain barrier penetra-
tion including only molecular volume and polar surface
area

Eq. (1) displays good statistical significance. As shown in
Table 1 and Fig. 1, the calculated log BB values are in good
agreement with the respective experimental ones. The
log BB value of a compound is correlated with its molecu-
lar size parabolically and its polar surface area inversely.
Because the polar surface area is a descriptor of hydro-
gen-bonding potential (Stenberg et al. 2001), eq. (1) indi-
cates that the log BB of a compound is inversely corre-
lated with its hydrogen-bonding capacity.
Eq. (1) shows the parabolic relation between log BB and
molecular volume. The explicit descriptor for lipophilicity
is absent from eq. (1) and the molecular volume terms in
the equation represent a combination of the impacts of
molecular size and lipophilicity on BBB penetration. In-
creasing molecular volume decreases molecular diffusion
through a lipid membrane and therefore decreases log BB
value. On the other hand, a bigger molecular volume also
means higher lipophilicity which facilitates BBB penetra-
tion.
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Fig. 1: Relationship between experimental and calculated log BB values
for the training set

Table 2: Experimental and calculated logBB values for the test set compounds and their computed descriptors

Compound V
(nm3)

PSA
(nm2)

log BB

Exp.a Pred.b Pred.c Pred.d

87 Theophylline 0.1993 0.7688 �0.29 �0.86 �1.43 �0.512
88 Caffeine 0.2253 0.6075 �0.06 �0.40 �1.03 �0.219
89 Antipyrine 0.2357 0.2728 �0.10 0.39 �0.03 0.474
90 Ibuprofen 0.2816 0.4133 �0.18 0.20 �0.09 �0.555
91 Codeine 0.3596 0.4836 0.55 0.12 �0.75 0.271
92 Pentobarbital 0.2822 0.8646 0.12 �0.81 �0.77 �0.191
93 Alprazolam 0.3467 0.4675 0.04 0.16 �0.58 0.332
94 Indomethacin 0.3988 0.7630 �1.26 �0.52 �1.07 �1.032
95 Oxazepam 0.3072 0.6951 0.61 �0.39 �0.70 �0.476
96 Hydroxyzine 0.4674 0.4264 0.39 0.10 �0.20 0.128
97 Desipramine 0.3769 0.0932 1.20 0.99 0.77 0.426
98 Midazolam 0.3677 0.3206 0.36 0.49 �0.02 0.400
99 Verapamil 0.5994 0.6787 �0.70 �1.07 �1.32 �1.111
100 Promazine 0.3607 0.0834 1.23 1.02 0.78 0.832
101 Chlorpromazine 0.3788 0.0831 1.06 1.01 0.86 0.710
102 Trifluoroperazine 0.3944 0.0948 1.44 0.98 0.70 0.459
103 Thioridazine 0.4579 0.0698 0.24 0.92 0.89 1.062
104 BCNU 0.2258 0.6703 �0.52 �0.54 �0.56 �0.570
105 Phenserine 0.4191 0.4825 1.00 0.08 �0.23 0.230
106 Physostigmine 0.3514 0.5167 0.08 0.05 �0.50 0.007
107 Terbutylchlorambucil 0.4528 0.2624 1.00 0.50 0.28 �0.227
108 Didanosine 0.2625 1.0139 �1.30 �1.19 �1.95 �0.816
109 Zidovudine 0.2941 1.3735 �0.72 �1.92 �2.37 �1.024
110 Nevirapine 0.3132 0.5732 0.00 �0.11 �0.95 0.285
111 SB-222200 0.4817 0.4306 0.30 0.05 0.19 0.426

a From references (Salminen et al. 1997; Greig et al. 1995; von Sprecher, et al. 1998; Yazdanian and Glynn 1998)
b Predicted from eq. (1)
c Predicted from the model developed by Feher et al. (2000)
d Predicted from the model developed by Luco (1999)



3.2 Model validation using the leave-one-out procedure

The predictive model, eq. (1), is validated using leave-one-
out procedure. Its cross validation coefficient (q2 ¼ 0.82)
is almost the same as its correlation coefficient (r2 ¼ 0.83).
The predicted values using the leave-one-out cross valida-
tion procedure (shown in Table 1) are also very close to
the respective calculated values from eq. (1). The predic-
tive model appears to be reliable and robust.

3.3 Model validation using test set outside the training set

In order to further assess the predictive power of eq. (1), a
test set of log BB values are predicted. The experimental
and predicted log BB values are listed in Table 2 and
plotted in Fig. 2.
As may be seen from Table 2 and Fig. 2, the predicted
log BB values from eq. (1) are in good agreement with the
respective experimental ones and only four compounds
(92, 95, 105, and 109) are predicted above or near three
standard deviations. The RMSE value calculated on the 25
validation compounds is 0.53. Considering the experimen-
tal difficulties and the varied experimental conditions un-
der which the log BB values have been obtained, the pre-
dictive model for BBB penetration containing only
molecular volume and polar surface area performs reason-
ably well.
As shown in Table 2, these prediction results are superior to
the one obtained by the model reported by Feher et al. (2000)
(RMSE ¼ 0.79) and as good as the three-component model
based on 25 descriptors using the multivariate partial least-
squares procedure (Luco 1999) (RMSE ¼ 0.54). However,
our model is much simpler than the three-component mod-
el (Luco 1999), and thus more suitable for the rapid pre-
diction of the BBB penetration for a wide range of drug
candidates.

3.4. Conclusion

The model derived in this paper for the prediction of BBB
penetration shows a good predictive power. It contains only

two descriptors, namely molecular volume and polar sur-
face area which are easy to interpret and compute. The mod-
el appears to be very simple but robust and effective for
predictive use, so it is suitable for the rapid prediction of the
BBB penetration for a wide range of drug candidates.
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