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Cyclooxygenase-2 (COX-2) is an enzyme induced by inflammatory and mitogenic stimuli and results
in enhanced synthesis of PGs in inflamed and neoplastic tissues. It is associated with cell proliferation
and growth, in various cancerous conditions. We review the potential mechanisms of cancer reduction
with COX-2 inhibitors and the preclinical evidence suggesting their effectiveness. Results of our study
show that COX-2 is a regulatory factor for a number of pathways that can result in cancer. COX-2
makes cells resistant to apoptosis and promote angiogenesis, metastasis and cancer cell cycle by
controlling number of targets. We found that, COX-2 selective inhibitors (like celecoxib and NS-398)
can suppress the cancer both by COX-2 dependent and COX-2 independent pathways. COX-2 inhibi-
tors can also produce synergic effects when used with other anti-cancer therapies. Thus, it is concluded
that COX-2 selective inhibitors may be promising agents for prevention and treatment of cancer.

1. Introduction

Cyclooxygenase or prostaglandin endoperoxidase synthase
(COX) is an enzyme that catalyzes two sequential reac-
tions involved in the formation of prostaglandins (PGs)
from arachidonic acid and is an important chemical med-
iator for inflammation. COX in its initial reaction cata-
lyses the insertion of molecular oxygen into arachidonic
acid to form the unstable intermediate PGG2, which is
rapidly converted to PGH2 by the peroxidase activity of
COX. Specific isomerases then convert PGH2 into a series
of biologically active PGs and thromboxane-A2. COX is
found in two isoforms: COX-1 and COX-2. COX-1 is ex-
pressed constitutively in most tissues and appears to be
responsible for the production of PGs that control normal
physiological functions such as regulation of renal blood
flow and maintenance of the gastric mucosa (Smith et al.
2000). By contrast, COX-2 is not detected in most normal
tissues. However, it is induced by mitogenic and inflam-
matory stimuli, which results in enhanced synthesis of
PGs in inflamed and neoplastic tissues (Subbaramaiah
et al. 1996; Wadleigh et al. 2000; Zweifel et al. 2002).
COX-2 is a dimeric molecule which consists of three do-
mains: an N-terminal epidermal growth factor (EGF) do-
main, a membrane binding domain, the C-terminal cataly-
tic domain with haem, containing the cyclooxygenase and
peroxidase active sites.
A variety of preclinical studies have investigated the role
of COX-2 in carcinogenesis (Hu et al. 2004; Wun et al.
2004). Tumor formation and growth are reduced in ani-
mals that are treated with COX-2 inhibitors or genetically
engineered to be COX-2-deficient. COX-2 inhibitors di-
minish the metastatic potential of tumor cells. The combi-

nation of nonselective nonsteroidal anti-inflammatory drugs
or selective COX-2 inhibitors with drugs that target the
oncogenic pathways may also boost antitumor activity.
Moreover, selective COX-2 inhibitors can augment the ef-
ficacy of traditional cytotoxic chemotherapy or radiother-
apy. Based on these findings many clinical trials (Altorki
et al. 2004; Pruthi et al. 2004) assess the potential efficacy
of COX-2 inhibitor as anticancer agents. Here we focus
on the rationale for using selective COX-2 inhibitors as
useful addition to the arsenal of anticancer therapies.

2. Regulation of COX-2 expression

From a very beginning, COX enzyme has found its role in
inflammation. In recent years, overexpression of COX-2 has
been implicated in the progression of cancer (Hussain et al.
2003; Miguel et al. 1999). Aberrant or increased expression
of COX-2 has been found in most of the cancers of the body
sites like colorectal, lungs, breast, gastric, pancreatic and
esophageal cancer. This over expression of COX-2 appears
to be a consequence of both increased transcription and en-
hanced mRNA stability (Shao 2000; Dixon et al. 2000).
Number of factors can regulate the COX-2 expression
by regulating COX promoter. These include oncogenes,
growth factors, cytokines and tumor promoters that may
stimulate COX-2 transcription via protein kinase C (PKC)
and RAS mediated signaling (Subbaramaiah et al. 2000,
2002; Mestre et al. 1997) (Fig. 1). In colorectal cancer
COX-2 expression is found to be upregulated by interleu-
kin-1b (IL-1b) via multiple pathways. These pathways in-
clude the Erk 1/2 (extracellular regulated kinase), JNK
(cJun NH2 terminal kinases) and p38 MAPK (mitogen ac-
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tivating protein kinases). In addition, IL-1b also activates
PI3k/AKt and NF-kB pathways regulating the COX-2 ex-
pression (Liu et al. 2003). It is demonstrated that NF-kB
is involved in COX-2 induction by IL-1b. Depending on
the stimulus and cell types, a variety of transcription fac-
tors including activator protein-1 (AP1), Nuclear factor in-
terleukin-6 (NF-IL6), Nuclear Factor-Kappa B (NF-kB),
NF of activated T-cells (NFAT) and polymavirus enhancer
activator 3 (PEA3) can modulate the transcription of
COX-2 (Subbaramaiah et al. 2002; Smith et al. 2000).
Binding of AP-1 and PEA3 on COX-2 promotor is en-
hanced by HER-2/neu (a transmembrane receptor for epi-
dermal growth factor) by stimulation of Ras-Raf-MAPK
signaling transduction pathway (Subbaramaiah et al.
2002). HER-2/neu also uses Akt to increase COX-2 ex-
pression (Simeone et al. 2004). NF-kB mediated induction
of COX-2 is down regulated by an intestine specific tumor
suppressor gene CDX2 (Kim et al. 2004). Recently, the
histone acetyl transferase activity of CREB-binding pro-
tein/p300 co activator complex was found to be important
for AP1 mediated induction of COX-2 (Deng et al. 2004;
Subbaramaiah et al. 2002).
There is growing evidence that posttranscriptional mechan-
isms also determine COX-2 levels in neoplastic tissues.
The 30-untranslated region (UTR) of COX-2 in mRNA
contains a series of shaw-kamen sequences (AUUUA, also
known as AU-enriched elements) that confers a message
of instability (Cok et al. 2001; Sheng et al. 2000). Onco-
genes, cytokines, growth factors and tumor promoters also
induce COX-2 by enhancing mRNA stability in addition
to stimulating transcription. HuR (an RNA binding pro-
tein) binding to 30UTR was also found to increase mes-
sage stability in colon cancer.

3. Contribution of COX-2 in cancer

In recent years, overexpression of COX-2 has been asso-
ciated with the progression of cancer and has been found
in most of the cancers of the body sites. Compelling evi-
dence from various studies indicate that COX-2 upregula-
tion is one of the key steps in carcinogenesis (Ferrandina
et al. 2002; Subbarayan et al. 2001; Joo et al. 2002). Numer-
ous pharmacological studies indicate that COX-2 is a ther-

apeutic target, which supports the concept that selective
COX-2 inhibitors might be useful for preventing cancer
(Reddy et al. 2000; Evans et al. 2003; Gupta et al. 2004).
The major regulatory effect of COX-2 in carcinogenesis is
produced via increased levels of prostaglandin E2 (PGE2)
(Zweifel et al. 2002). Thus, various studies have confirmed
the contribution of the COX-2 enzyme to tumorigenesis
through regulation of angiogenesis, induction of metasta-
sis, inhibition of apoptosis, and regulation of cell cycle.

3.1. Regulation of angiogenesis

Angiogenesis is an important factor in tumor develop-
ment. For exponential tumor growth, tissues must receive
increased nutrient and oxygen supply. But blood vessels
do not proliferate beyond 1–2 mm3 tissue layer. This is
made possible by neovascularization thereby increasing
vascular supply to the newly forming tissues (Folkman
1990). The onset of angiogenesis also contributes to me-
tastasis. It is found that COX-2 is involved in regulation
of angiogenesis in cancer cells (Wang and Dubois 2004;
Chu et al. 2003; Yu et al. 2003; Tsuji et al. 1998). Various
studies explain that increased COX-2 expression in cancer
cells stimulates angiogenesis through prostaglandin E2

(PGE2) production. PGE2 production results in induction
of Vascular Endothelial Growth Factor (VEGF) and basic
Fibroblast Growth Factor (bFGF) mRNA expression
(Fig. 2). The induction of VEGF seems to occur through
activation PKA pathway and bFGF is induced by PKA
and PKC activation (Cheng et al. 1998).
Selective COX-2 inhibitors are found to inhibit angiogen-
esis by decreasing the VEGF expression (O’Donoghue
et al. 2003). An investigation (Chu et al. 2003) conducted
to test the potential involvement of COX-2 pathway in
regulation of angiogenesis and growth in pancreatic cancer
shows that pretreatment of BxPC-3 cells (a COX-2 posi-
tive) with NS-398 dramatically decreases angiogenic re-
sponses of endothelial cells. NS398 had no effect on
AsPC 1 (a COX-2 negative human pancreatic cell line)
cell growth. A pervious study (Molina et al. 1999) also
shows the very similar result suggesting the use of sulin-
dac sulfide and NS398 in the chemoprevention and ther-
apy of pancreatic carcinoma.
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Transcriptional and post transcriptional regulation of COX-2
enzyme



Preclinical studies have shown that celecoxib is a potent
antiangiogenic agent in vitro and in vivo (Leahy et al.
2002). Oral celecoxib (30 mg/kg/day) inhibited angiogen-
esis by 79% in a rat model of bFGF-induced corneal an-
giogenesis, and reduced corneal levels of PGE2 and TXB2

by 79% and 68%, respectively. Celecoxib can also inhibit
angiogenesis via a COX-2 independent mechanism. Im-
paired VEGF gene expression and decreased angiogenesis
result from celecoxib induced interference with DNA
binding of the Sp1 transcription factor (Wei et al. 2003).
Celecoxib also has been reported to increase serum levels
of the endogenous angiogenesis inhibitor endostatin while
decreasing the release of VEGF by platelets (Ma et al.
2002), thus altering the balance of angiogenesis regulation
in favour of inhibition.
Rofecoxib also has been shown to inhibit angiogenesis
in a number of in vivo systems. Administration of rofe-
coxib blocks the production of bFGF and reduces
wound-healing angiogenesis in experimental gastric ul-
cers (Guo et al. 2002). In a mouse model of retinopathy,
rofecoxib inhibited neovascularisation in COX-2 expres-
sing retinal vessels (Wilkinson et al. 2003). In preclinical
studies, celecoxib and rofecoxib have shown to generate
additive or synergistic benefit in combination with stan-
dard chemotherapy agents (Gately and Kerbel 2001) or
radiation therapy (Kishi et al. 2000; Petersen et al.
2000).

3.2. Inhibition of metastasis

Metastasis is the process of migration of tumor cells to
other parts of the body. Highly aggressive tumors rapidly
outgrow their blood supply, leaving the cells starved of
oxygen – a condition known as hypoxia. Tumor cells adapt
to hypoxia by increasing their synthesis of a protein named
HIF (Hypoxia Induced Factor) which in turn binds to and
activates several genes like VEGF, EPO, c-Met and CXCR4
(Fig. 2). VEGF and erythropoietin (EPO) increase oxygen
supply to the tissues. c-Met enhances cell motility and inva-
sion and therefore tumor cells are stimulated to move away
from site of hypoxia. CXCR4, a chemokine receptor gov-
erns organ-specific metastasis by interacting with matching
chemokines in target organs. The von Hippel-Lindau tumor
suppressor gene (pVHL) negatively regulates CXCR4 ex-
pression owing to its capacity to target the hypoxia-induci-
ble factor for degradation under normoxic conditions. This
process is suppressed under hypoxic conditions and in tu-
mor derived mutants of pVHL resulting in HIF. CXCR4
stimulates migration and enables tumor cells to home in on
specific distant organs (Bernards 2003; Staller 2003).
In many conditions, COX-2 expression is correlated with
HIF-1 activation (Liu et al. 2002). It is stated that in can-
cerous conditions, increased COX-2 expression induces
translocation of HIF-1a protein to the nucleus through
PGE2 mediated activation of EP2 and EP4 receptors. EP
receptor activation results in phosphorylation of HIF-1a
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protein through MAP kinase pathway. This results in nu-
cleus translocation and stabilization of the protein. Selec-
tive COX-2 inhibitors like meloxicam and NS-398 and
other non selective NSAIDs are found to inhibit hypoxia
induced VEGF expression and HIF-1a accumulation and
upregulated VHL expression (Jones et al. 2002; Palayoor
2003). All these studies shows that PGE2 production via
COX-2 catalyzed pathway plays a critical role in HIF-1a
regulation by hypoxia and imply that COX-2 inhibitors
can prevent hypoxic induction of HIF-mediated gene tran-
scription in cancerous cells. Recent studies by Yao et al.
(Yao et al. 2004) have shown that the expression and ac-
tivity of COX-2 appears to be associated with the prolif-
erative and invasive properties of colorectal cancer (CRC).
Cyclooxigenase inhibition by NS-398 suppresses tumor
cell growth and invasion/migration, and retards the forma-
tion of liver metastasis in a mouse CRC model, via multi-
ple cellular and molecular mechanisms.

3.3. Induction of apoptosis

Apoptosis or programmed cell death is a group of events
that proceed in a systematic order and selectively removes
unwanted extra or damaged cells. Apoptosis allows the
organism to tightly control cell number and tissue size and
to protect itself from rogue cells that threaten homeostasis
(Hengartner 2000).
Selective COX-2 inhibitors have been demonstrated to in-
duce apoptosis in variety of cancers cells, including those
of colon (Li et al. 2001a), stomach (Li et al. 2001b), pros-
tate (Song et al. 2002) and breast (Haris et al. 2000).
These observations are consistent with the COX-2 inhibi-

tor being a chemopreventive agent that increases the sus-
ceptibility of cancer cells to apoptosis. It is well documen-
ted that COX-2 is constitutively overexpressed in many
types of human cancers and that decreased prostaglandin
E2 production as a result of COX-2 inhibition is associated
with the modulation of various pro- and anti-apoptotic fac-
tors, such as Bcl2 (Sheng et al. 1998) prostrate apoptosis-
response gene (Par-4) (Zhang 2000) and caspase-3
(McGinty et al. 2000) (Fig. 3).
In addition, knockout of the COX-2 gene suppresses tu-
merigenisis in mice that have a genetic predisposition to
form polyps (Oshima et al. 1996). Recently, the U.S. Food
and Drug Administration approved the use of the COX-2
inhibitor celecoxib for the adjuvant treatment of familial
adenomatous polyposis, an inherited syndrome that predis-
poses individuals to colon cancer.
In addition, celecoxib has also been tested in numerous clin-
ical trials (Hawk et al. 2002) for its chemopreventive effect
on a variety of epithelial malignancies including colon, eso-
phagous, skin and bladder cancers. However, an expanding
body of evidence suggests that COX-2 inhibition may not
play a role in NSAID mediated apoptic cell death (Marx
2001). For example, sulindac sulfide and sulindac sulfone,
which are metabolites of the NSAID sulindac, have been
reported to mediate apotosis in cancer cells via the inhibi-
tion of cyclic GMP phosphodiesterase (Thompson et al.
1997; Lim et al. 1999), which is a COX-2 independent me-
chanism (Hann 2001). A tetracycline-inducible antisense
COX-2 expression plasmid demonstrated that the sensitivity
of prostate cancer cells to COX-2 inhibitor-induced apopto-
sis is independent of the expression status of COX-2 (Song
2002). It has also been reported that celocoxib induces apop-
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Regulation of apoptosis by COX-2 and its inhibitors



tosis in prostate cancer cells by interacting with multiple
signaling targets, including the serine/threonine kinase Akt,
extracellular signal-regulated kinase 2 (ERK2), and endo-
plasmic reticulum Ca2þ-ATPases (Hsu et al. 2000; Johnson
et al. 2001). Disruption of these signaling pathways results
in the loss of regulation of cellular functions that govern cell
growth and survival, leading to rapid apoptotic death.
COX-2 overexpression has been shown to upregulate
Bcl2 expression with an associated decrease in apoptosis
(Tsuji and Dubois 1995). The human prostrate carcinoma
LNCaP cells, which overexpress COX-2, exhibit apoptosis
induction and Bcl2 downmodulation when treated with NS
398, a selective COX-2 inhibitor (Liu 1998). Inhibition of
COX-2 by celecoxib has been shown to induce apoptosis
in both androgen-responsive LNCaP and androgen-unre-
sponsive PC-3 cells by blocking Akt phosphorylation,
which is independent of Bcl2 (Hsu et al. 2000). Further-
more a recent study by Lai et al. (2003) has shown that
P185neu tyrosine kinase inhibitor emodin (Zhang et al. 1999)
in combination with the COX-2 inhibitor celecoxib (Reddy
et al. 2000) acts synergistically to suppress the growth of
both rat C611B cholarogiocarcinoma (chc) cells and neu-
transformed rat liver epithelial stem-like cells (WBneu
cells) in culture. They indicated that this effect is the re-
sult of a synergistic action to enhance apoptosis through a
mechanism involving inhibition of Akt activation leading
to increased activation of caspase-mediated apoptosis.
Thus the results show that celecoxib is acting indepen-
dently of its ability to inhibit COX-2 activity in suppres-
sing growth of C611B and WBnew cells in vitro.

3.4. Cell cycle regulation

In the last few years, COX-2 enzyme has shown its impor-
tance as a cell cycle regulator in various cancer cells.
COX-2 inhibitors can effectively produce cell cycle arrest
by regulating G1 and S phases of the cell cycle (Fig. 4).
Mammalian cells are controlled by a number of extracellu-
lar growth factors and intracellularly triggered controls, to
undergo proliferation. In cancer, the control of prolifera-

tion is deranged due to cell-cycle disregulation (Pardee
1989). Normally, the transition between different cell cy-
cle states is regulated at various checkpoints. These check
points are regulated by a family of protein kinases, the
cyclin dependent kinases (CDKs) and their obligate acti-
vating partners, the cyclins (Hunter and Pines 1994). Cy-
clins are the result of the transcription and translation pro-
cesses and their abundance varies during specific phases
of cell cycle (Koepp et al. 1999).
Studies by Toyoshima et al. (2002) showed that growth
inhibition of NA, a cancer cell line established from a
patient with SCC of the tongue, by NS398 a COX-2 inhi-
bitor was associated with Go/G1 cell cycle arrest. Western
blot analysis showed that NS398 upregulated p21 protein,
a specific inhibitor of CDKs, in NA cells. Moreover,
growth inhibition induced by NS398 was reduced in p21
antisense treated NA cells compared to untreated NA
cells. Thus, the accumulation in G0/G1 by NS398 might
be mediated by up-regulation of p21. Nakanishi et al.
(2001) have shown that NS398 and nabumetone sup-
pressed the proliferation of two leukemia cell lines U-937
and ML-1 cells by inducing a G0/G1 cell-cycle arrest.
Cell-cycle arrest induced by these COX-2 inhibitors was
not associated with an upregulation of the cyclin-depen-
dent kinase inhibitors. COX-2 inhibitors also inhibited the
differentiation of these cells induced by differentiation-in-
ducing factors (DIFs) such as interferon-g (IFN-g), tu-
mour necrosis factor-a (TNF-a) and retinoic acid (RA).
Treatment with NS-398 did not suppress the levels of PG
produced by these cells. Although COX-2 antisense oligo-
nucleotides showed a similar inhibitory effect on these
cells, their inhibitory effect was smaller than that of NS-
398. These results suggested that COX-2 inhibitors may
suppress the proliferation and differentiation of leukemia
cells both via COX-2 dependent and independent path-
ways.
Hang et al. (2000) have reported that the expression of
p27 is increased in lung cancer cells after treatment with
COX-2 inhibitor NS-398, suggesting that cdk inhibitors
may be potential targets for COX-2 inhibitor mediated in-
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hibition of tumor growth. Studies have shown that cele-
coxib inhibits the growth of several tumor cell types
(Steinbach 2000; Grosch 2001). Recently Han et al.
(2004) performed in vitro studies and showed a direct role
of COX-2 in cholangiocarcinoma cell growth by overex-
pression and antisense depletion of COX-2. They showed
that celecoxib treatment significantly increased the p21
and p27 protein level in a dose and time dependent fash-
ion in human cholangiocarcinoma cells whereas the pro-
tein levels of p18 and GADD45 were not altered. The
cells treated with celecoxib showed increased binding of
p21 and p27 to cdk2 kinase complex and decreased cdk2
kinase activity but no change in cdk2 and cyclin E protein
levels. Consistent with these findings, flow cytometric
analysis showed that celecoxib induced G1-S arrest with
no significant effect on G2-M transition.
These results provided a link between p21/p27 and cele-
coxib-mediated inhibition of intrahepatic cholangiocarcino-
ma cell growth. Their findings provided evidence for the
involvement of a COX-2 independent mechanism in cele-
coxib mediated inhibition of human intrahepatic cholan-
giocarcinoma cell growth. The fact that overexpression or
antisense depletion of COX-2 failed to alter the levels of
p21 and p27 indicate the existence of a COX-2 indepen-
dent effect. Thus, although celecoxib potentially inhibits
human cholangiocarcinoma cell growth, its antitumor ef-
fect is mediated, at least in part, through mechanisms in-
dependent of COX-2 inhibition.

4. Effect of COX-2 inhibitors in combination therapy

Recently, a combination of more than one target has
emerged as an approach for providing an effective cancer
prevention with fewer side effects. Preclinical studies
show that COX-2 selective inhibitors can synergize the
effectiveness of other therapeutic approaches such as ra-
diation therapy (Komaki et al. 2004; Nakata et al. 2004),
photodynamic therapy (Hendrick et al. 2003) and other
chemotherapeutic agents (De Long 2003; Badawi et al.
2004). Preclinical studies explain that the radiation can
elevate intratumoral levels of COX-2 protein and its pro-
ducts particularly PGE2 (Terakado et al. 2004; Davis et al.
2004). PGs are found to exert a protective role in radia-
tion therapy when administered before irradiation. In this
concern, selective COX-2 inhibitors e.g. celecoxib increase
the radiosensitivity for radiotherapy and synergize the con-
trol over tumor growth.
In another approach simultaneous targeting of COX-2 and
PPARg (Peroxisome Proliferator Activated Receptor g)
has been correlated for inhibiting mammary cancer devel-
opment. COX-2 inhibitors and PPARg agonists coordi-
nately mediate their anticancer effect via both COX-2 de-
pendent (inhibition of COX-2, activation of PPARg and
modulation of PG synthesis) and COX independent (in-
duction of proapoptotic factors and inhibition of cell pro-
liferation) pathways (Badawi et al. 2004). Similarly, the use
of COX-2 inhibitors can enhance the efficacy of immu-
notherapy (Delong et al. 2003). IFN beta therapy com-
bined with COX-2 inhibition was associated with an in-
creased number of T-cells within tumors and resulted in
cure of small tumors, significant inhibition of the growth
of large established tumors and inhibition of growth of
metastatic tumor foci after surgical debulking. Combina-
tion of Epidermal Growth Factor Receptor (EGFR) tyro-
sine kinase inhibitor with an COX-2 inhibitor also caused
a cooperative antitumor effect in breast cancer cells (Ro-
sato et al. 2003).

5. Conclusions

The COX-2 enzyme is a key regulatory factor in various
cancerous conditions and its inhibition provides an impor-
tant target for cancer chemotherapy. Overexpression of
COX-2 is strongly implicated in regulation of angiogen-
esis through induction of Vascular Endothelial Growth
Factor (VEGF) and translocation of HIF-1a protein to nu-
cleus through PGE2 resulting in metastasis. Upregulation
of COX-2 directly resists apoptosis by increasing the ex-
pression of proapoptotic Bcl-2 proteins and inhibiting cy-
tochrome c release from mitochondria. COX-2 enzyme
also produces an inducing effect on cell proliferation by
controlling G1 and S phase cyclins.
Selective COX-2 inhibitors commonly reduce the growth
rate of established tumors. These drugs are reported to
suppress the cancer both by inhibiting the COX-2 activity
and by interacting with non-COX-2 targets. Preclinical stu-
dies show that co-treatment with COX-2 inhibitors aug-
ments the antitumor effects of chemotherapy, radiation and
photodynamic therapy. Thus, these studies suggest that
use of selective COX-2 inhibitors may play an important
future role in both the treatment and prevention of cancer.
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