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An artificial neural network (ANN) methodology was used to model the electrophoretic mobility of
basic analytes in binary solvent electrolyte systems. The electrophoretic mobilities in pure solvent
electrolytes, and the volume fractions of the solvents in mixtures were used as input. The electro-
phoretic mobilities in mixed solvent buffers were employed as the output of the network. The opti-
mized topology of the network was 3-3-1. 32 experimental mobility data sets collected from the litera-
ture were employed to test the correlation ability and prediction capability of the proposed method.
The mean percentage deviation (MPD) between the experimental and calculated values was used as
an accuracy criterion. The MPDs obtained for different numerical analyses varied between 0.21% and
13.74%. The results were also compared with similar calculated mobilities which were derived from
the best multiple linear model from the literature. From these results it was found that the ANN metho-
dology is superior to the multiple linear model.

1. Introduction

Capillary electrophoresis (CE) continues to develop as an
important separation technique (Altria and Elder 2004;
Feng et al. 2004; Perez-Ruiz et al. 2003; Pico et al. 2003),
which can offer many advantages over conventional se-
paration techniques in chemical and pharmaceutical ana-
lyses including good resolution and high separation effi-
ciency. The selectivity efficiency and resolution of CE
methods can be altered and possibly improved using
mixed solvent electrolyte systems (Sarmini and Kenndler
1997). A number of mathematical models based on the
multiple linear regression (MLR) technique have pre-
viously been proposed which calculate the electrophoretic
mobility of analytes in mixed solvent electrolyte systems.
In a recent paper (Jouyban et al. 2003a), the available
models have been reviewed and compared. It should be
noted that absolute prediction of the solvent effects on the
electrophoretic mobility of analytes is generally difficult
due to complex and non-linear relationships between mo-
bility and solvent composition. However, it has been
shown earlier (Jouyban-Gh et al. 2000) that it is possible
to predict the electrophoretic mobility at other solvent
compositions in the solvent mixtures using a minimum
number of experimental data.
Various equations based on the MLR method have been
presented to calculate the electrophoretic mobility of ana-
lytes in binary solvent electrolyte systems. These equa-
tions have been reviewed and compared for both correlation
ability and their prediction capability (Jouyban et al.
2003a). The most accurate model was the combined nearly
ideal binary solvent/Redlich-Kister equation (CNIBS/R-K).

The CNIBS/R-K model (Jouyban-Gh et al. 2000) is:

ln mm ¼ f1 ln m1 þ f2 ln m2 þ f1f2
P2

i¼ 0
Kiðf1 � f2Þi ð1Þ

where m is the electrophoretic mobility, f is the volume
fraction of the solvents in the mixture, subscripts 1, 2 and
m denote solvents 1, 2 and mixed solvent electrolyte sys-
tems, respectively and Ki is the model constants. The ba-
sic model was presented for modeling of solubility of so-
lutes in mixed solvents by Acree (1992) and its
applications were extended to represent different physico-
chemical properties in mixed solvent systems by our
group, therefore it was called Jouyban-Acree model
(Jouyban et al. 2004). The accuracy of Eq. (1) was evalu-
ated using acidic analytes in water-methanol mixtures
(Jouyban-Gh et al. 2000) and basic analytes in water-
methanol, water-ethanol and methanol-ethanol mixtures
(Jouyban et al. 2003b). This model is capable of predict-
ing the electrophoretic mobility of set of analytes in given
binary solvent electrolyte systems within an acceptable er-
ror range (Jouyban et al. 2003c). The model is also able
to correlate the effects of the solvent composition and
temperature on the electrophoretic mobility of analytes
using a single equation (Jouyban-Gh 2001).
Artificial neural networks (ANN’s) are mathematical meth-
ods that simulate a phenomenon based on a model
adopted from biological neural networks. ANNs consist of
multiple layers of arranged nodes where each node in one
layer is connected with another node in the next layer.
The strength of a connection between two nodes is termed
the weight. The theory of ANN has been reviewed by
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Zupan and Gasteiger (1999) and the method has been em-
ployed in analytical areas such as CE for quantification of
overlapping peaks (Bocaz-Beneventi et al. 2002) and mod-
eling of peak shapes (Farkova et al. 1999). The multiple
layer networks usually consist of three layers, which are
the input, hidden and output layers. The first practical step
in using ANNs is to define the nodes for input and output
layers. The number of nodes in the hidden layer, learning
rate, momentum, and the number of epochs are adjustable
parameters, which should be optimized in the second step.
In step three, the network is trained by experimental data
and in the final step the network is used for prediction of
unmeasured data.
There are different approaches towards training an ANN
model (Zupan and Gasteiger 1999) and the most frequent
one is the back-propagation (BP) technique (Svozil et al.
1997), which is often used in chemical and pharmaceuti-
cal applications. In a BP feed-forward network, a sigmoi-
dal transfer function is used in the hidden layer and a
sigmoidal and/or linear transfer function is usually em-
ployed in the output layer. In the network system pro-
posed in this work, it was found that the sigmoid transfer
function in the hidden layer and output layer gave the best
performance.
The output from the j-th node with sigmoidal transfer
function is:

Outj ¼
1

1� e�Netj
ð2Þ

where Netj is:

Netj ¼
Pp

i¼ 1
Inpi Wij þ Biasj ð3Þ

where Inpi is the input to j-th node from a previous layer
with p nodes and Wij is the respective weight. The Biasj is
a node where its input value is equal to 1. The purpose of
training such a network is to establish the numerical va-
lues of these weights. To assess the success of the pro-
cess, the mean square error (MSE) is often used as a cri-
terion for finalizing the learning process which can be
calculated according to Eq. (4):

MSE ¼ 1

P�M

PP

p¼ 1

PM

m¼ 1
ðOpm � TpmÞ2 ð4Þ

where M is the number of neurons in the output layer and
P is the number of samples. O and T are the output and
target values, respectively.
In developing a CE separation method, an organic modi-
fier may often be added to the aqueous (or non-aqueous)
electrolytes in order to alter the selectivity. The most com-
mon approach when optimizing the electrolyte solvent
composition is the trial and error method, but this is time-
consuming and costly. However, by using designed meth-
ods, it is possible to collect only a minimum number of
experimental data for a set of analytes and then predict
the best solvent composition for the separation. To find
the best model, the correlation ability of the models is
tested using a large amount of experimental data. As a
general rule, the most accurate model in this set of analy-
sis is capable of providing the most accurate predic-
tions.
ANN methodology can be used in data modeling/predic-
tion studies and they have been employed for modeling of
mobility data in CE (Li et al. 2002; Jalali-Heravi and Gar-
kani-Nejad 2001, 2002; Agatonovic-Kustrin et al. 1999),
for modeling of retention behavior in HPLC (Jalali-Heravi

and Fatemi 1998), and also optimization of the conditions
for other separation techniques (Jalali-Heravi and Parastar
2000). However ANNs have not been used in CE to mod-
el the electrophoretic mobility data in mixed solvent elec-
trolyte systems. In this work, the accuracy of the proposed
ANN was evaluated using 32 experimental data sets gen-
erated and reported by our group (Jouyban et al. 2001a,
2001b, 2001c, 2002, 2003b, 2003c, 2003d). The ANN
model is also compared with that of the best MLR meth-
od.

2. Investigations, results and discussion

2.1. Mobility of an analyte in a binary mixture

All literature electrophoretic mobility data in each binary
solvent system was fitted to the ANN and MLR models
and then the back-calculated mobilities were used to cal-
culate the error terms. Table 1 shows the MPD and
OMPD values for correlative analysis using ANN and
MLR models. The minimum and maximum MPDs for the
ANN method were 0.21% and 1.65%. The values for
MLR were worse and were 0.40 and 10.21%. The
OMPDs and their standard deviations for ANN and MLR
methods were 0.63 � 0.29% and 2.20 � 2.21% and the
OMPD difference between two methods was significant
(paired t-test, p < 0.0005), which shows that the ANN
model was capable of providing a more accurate correla-
tion than MLR. The IPD distribution for the evaluated
methods is shown in Fig. 1, these values sorted in three
subgroups, i.e. �2% (less than experimental RSD values),
2–5% (acceptable error range) and >5% (unacceptable
error range). ANN was proven to be superior to MLR.
ANN gave a lower minimum MPD, maximum MPD, and
OMPD values and also a relative frequency of 94, 6 and
0% for three IPD subgroups.
To test the prediction capability of the models, five data
points with almost constant volume fraction intervals (i.e.
f1 ¼ 0, 0.3, 0.5, 0.7 and 1) from each binary data set were
used to train the models. The mobility at other solvent
compositions was then predicted. The MPD for predictive
analysis for ANN and MLR is listed in columns 7 and 8
of Table 1. The MPD for ANN varied between 0.70 to
3.64% and the corresponding range for MLR was 0.65 to
14.00%. The OMPDs and the standard deviations for
ANN and MLR were 1.97 � 0.65% and 3.41 � 3.24%,
respectively and the difference between the OMPDs was
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Fig. 1: Individual percentage deviation (IPD) for correlative analysis using
ANN and MLR methods
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Table 1: Detail of the experimental data and the mean percentage differences (MPD) for different numerical analyses

No. Analyte Solvent system Na MPDb MPDb MPDc MPDc MPDd MPDd Reference

MLR ANN MLR ANN MLR ANN

1 Labetalol Water-methanol 13 2.03 0.40 2.80 1.98 6.14 7.26 Jouyban et al. (2003b)
2 Alprenolol Water-methanol 13 1.98 0.83 2.72 2.52 10.08 5.47 Jouyban et al. (2003d)
3 Atenolol Water-methanol 13 1.58 0.43 2.15 1.93 1.45 1.04 Jouyban et al. (2003b)
4 Practolol Water-methanol 13 1.18 0.24 1.55 1.14 1.37 1.19 Jouyban et al. (2002)
5 Timolol Water-methanol 13 1.55 0.43 1.89 2.16 3.22 3.23 Jouyban et al. (2002)
6 Propranolol Water-methanol 13 2.98 1.65 4.32 3.64 3.19 5.76 Jouyban et al. (2002)
7 Labetalol Water-ethanol 11 10.21 0.34 14.00 2.16 18.52 10.79 Jouyban et al. (2003b)
8 Alprenolol Water-ethanol 10 5.11 0.63 8.23 2.77 7.71 3.86 Jouyban et al. (2003d)
9 Atenolol Water-ethanol 10 4.27 0.65 7.08 2.59 9.95 2.23 Jouyban et al. (2003b)
10 Practolol Water-ethanol 10 4.51 0.53 7.51 2.27 10.78 3.88 Jouyban et al. (2002)
11 Timolol Water-ethanol 10 6.50 0.35 9.85 1.39 9.28 4.35 Jouyban et al. (2002)
12 Propranolol Water-ethanol 10 6.08 0.62 9.38 2.65 9.21 5.66 Jouyban et al. (2002)
13 Labetalol Methanol-ethanol 13 0.82 0.97 1.20 1.39 6.35 4.33 Jouyban et al. (2003b)
14 Alprenolol Methanol-ethanol 13 1.02 0.64 1.45 1.94 1.29 1.37 Jouyban et al. (2003d)
15 Atenolol Methanol-ethanol 13 0.95 1.12 1.43 1.77 4.53 6.10 Jouyban et al. (2003b)
16 Practolol Methanol-ethanol 13 0.86 0.83 1.13 1.19 4.10 3.01 Jouyban et al. (2002)
17 Timolol Methanol-ethanol 13 1.21 0.60 1.66 1.79 3.84 4.85 Jouyban et al. (2002)
18 Propranolol Methanol-ethanol 13 1.13 0.71 1.78 1.77 2.11 2.79 Jouyban et al. (2002)
19 Propranolol Water-methanol 13 1.15 0.71 2.11 2.08 1.20 1.33 Jouyban et al. (2001b)
20 Timolol Water-methanol 12 1.18 0.73 2.72 2.16 2.00 1.87 Jouyban et al. (2001b)
21 Atenolol Water-methanol 12 1.35 0.76 2.77 2.66 1.40 1.54 Jouyban et al. (2003c)
22 Alprenolol Water-methanol 13 1.06 0.56 1.80 2.10 1.93 2.70 Jouyban et al. (2003c)
23 Acebutalol Water-methanol 13 1.12 0.84 1.73 2.16 1.44 1.62 Jouyban et al. (2001b)
24 Labetalol Water-methanol 12 1.22 0.79 1.95 1.50 3.78 2.22 Jouyban et al. (2003c)
25 Metoprolol Water-methanol 13 1.15 0.84 1.95 1.93 1.50 1.61 Jouyban et al. (2003c)
26 Nadolol Water-methanol 11 0.75 0.21 1.44 1.44 1.71 1.46 Jouyban et al. (2001c)
27 Oxprenolol Water-methanol 11 0.77 0.49 1.51 1.65 3.07 3.00 Jouyban et al. (2001c)
28 Pindolol Water-methanol 11 0.50 0.33 1.01 1.16 0.98 1.81 Jouyban et al. (2001c)
29 Monomethyl-

amine
Water-methanol 11 0.40 0.29 0.65 0.70 10.32 10.46 Jouyban et al. (2001a)

30 Dimethyl-
amine

Water-methanol 11 0.58 0.56 1.05 0.99 4.37 8.04 Jouyban et al. (2001a)

31 Diethylamine Water-methanol 11 4.08 0.75 6.39 3.34 16.28 13.74 Jouyban et al. (2001a)
32 Triethylamine Water-methanol 11 1.16 0.26 1.86 2.12 3.12 13.52 Jouyban et al. (2001a)

OMPD
S.D.

2.20 �
2.21e

0.63 �
0.29e

3.41 �
3.24f

1.97 �
0.65f

5.19 �
4.51g

4.44 �
3.52g

a N is the number of data points in each set
b All data points in each binary set were used to train the models and MPD values were computed using back-calculated mobilities
c Five data points with nearly constant f1 intervals from each binary set were used to train the models and mobility at other solvent compositions were predicted. The number of data
points for this analysis was N-5
d All data points for different drugs in a given binary mixtures (except one data set) were used as training set and then mobility of the excluded data set predicted using trained
model. As an example, the electrophoretic data of sets 2–6 was used as training set and the mobility of labetalol in water-methanol mixtures were predicted and then MPD value was
computed. The number of data points for this analysis is N-2
e OMPD difference between MLR and ANN is statistically significant (paired t-test, p < 0.0005)
f OMPD difference between MLR and ANN is statistically significant (paired t-test, p < 0.01)
g OMPD difference between MLR and ANN is not statistically significant (paired t-test, p > 0.23)

Table 2: Correlation ability of MLR and ANN methods for the mobility of a given analyte in different binary solvent systems

Method
Drug

Set numbers in Table 1 N Maximum IPDa MPDa S.D. % of MPDa

MLR:
Labetalol 1, 7, 13 37 61.46 22.17 19.69
Alprenolol 2, 8, 14 36 61.24 20.60 18.52
Atenolol 3, 9, 15 36 41.45 15.44 13.77
Practolol 4, 10, 16 36 41.98 15.70 13.69
Timolol 5, 11, 17 36 54.23 19.49 17.13
Propranolol 6, 12, 18 36 59.01 16.77 15.48

OMPD 18.36
ANN:
Labetalol 1, 7, 13 37 2.81 1.02 0.68
Alprenolol 2, 8, 14 36 8.79 2.97 2.33
Atenolol 3, 9, 15 36 6.23 1.96 1.47
Practolol 4, 10, 16 36 4.17 0.88 0.83
Timolol 5, 11, 17 36 8.39 2.02 1.98
Propranolol 6, 12, 18 36 9.41 1.67 1.77

OMPD 1.75

a All data points for different drugs in binary mixtures were used to train the models, and the back-calculated mobilities were employed to compute IPD, MPD and OMPD values



statistically significant (paired t-test, p < 0.01). This result
showed that the ANN model could provide more accurate
predictions when five experimental data points were em-
ployed as a training set. The IPD distributions for both
methods are shown in Fig. 2. The relative frequency of
IPD >5% for the ANN method was 3.6% whereas the
corresponding value for MLR was 17.1%.

2.2. Mobility of a beta-blocker in different binary solvent
mixtures

It is suggested that the electrophoretic mobility of an ana-
lyte in different binary solvent systems could provide use-
ful information for an analyst. It is proposed that the data
would be especially useful in method development when
the mobility of an analyte in different solvent systems
could be electronically calculated. In this case the electro-
phoretic mobility of an analyte under the same analytical
conditions and at the same electrolyte concentrations in
different solvent systems was used to compare the ability
of the methods considered in this study and back-calcu-
lated mobilities were used to compute MPD values. The
details of the sets, the number of data points, maximum
IPD, MPD and its standard deviation are shown in Ta-
ble 2. Maximum IPD for ANN and MLR methods were
9.41 and 61.46%, respectively. MPDs obtained were in
the range of 0.88 to 2.97% for ANN and 15.44 to 22.17%
for MLR and the OMPDs were 1.75 and 18.36%, respec-
tively for ANN and MLR methods. These findings indi-

cated that the ANN method is better able to correlate such
mobility data than the MLR method.

2.3. Mobility of a set of analytes in a given binary mix-
ture

In pharmaceutical industry, a large number of chemically/
pharmacologically related compounds are synthesized, or
extracted from natural sources, to evaluate their biological
activities. During this period, the development of an ap-
propriate analytical method to measure these compounds
is a priority. If a method was available to calculate the
electrophoretic mobility of an analyte under given analyti-
cal conditions, this would be useful for the analyst in
speeding up the method development. It is suggested that
the ANN and MLR methods both possess the capability
to generate this information.
All data points for set of analytes in a given binary sol-
vent system under the same analytical conditions but at
different solvent compositions were used to train the mod-
els. Mobilities were then back-calculated and employed to
compute IPD, MPD and OMPD values. The OMPD va-
lues for ANN and MLR were 2.51% and 4.61%, respec-
tively (for details see Table 3). In another set of analyses,
one of the data sets was excluded during the training pro-
cess to test the prediction capability of the methods. The
mobility of the excluded data set was then predicted using
the trained models. The MPD values for the predicted
data using ANN and MLR are listed in columns 9 and 10
of Table 1. The MPDs for ANN varied between 1.04–
13.74% and for MLR varied from 0.98–16.28%. The
OMPD and its standard deviation for ANN and MLR
methods was 4.44 � 3.52% and 5.19 � 4.51%, respec-
tively, and there was no significant difference between the
OMPDs.

2.4. Conclusions

Artificial neural networks (ANN) were successfully em-
ployed to model the electrophoretic mobility of basic ana-
lytes in various binary solvent electrolyte systems. Both
solute mobilities in pure solvent electrolytes and the vo-
lume fractions of the solvents in mixtures were used as
input data. The electrophoretic mobilities in mixed solvent
buffers were employed as the output of the network. The
mean percentage deviation (MPD) between the experimen-
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Table 3: Correlation ability of MLR and ANN methods for the mobility of set of analytes (with similar structure, pKa, molecular
weight etc) in a given binary systems

Method
Solvent system

Set numbers in Table 1 N Maximum IPDa MPDa S.D. % of MPDa

MLR:
Water-methanol 1–6 78 19.26 3.68 4.86
Water-ethanol 7–12 61 39.10 9.69 9.02
Methanol-ethanol 13–18 78 9.94 3.14 2.70
Water-methanol 19–28 121 6.94 1.78 1.63
Water-methanol 29–32 44 25.88 6.51 6.39

OMPD 4.61
ANN:
Water-methanol 1–6 78 11.88 2.59 2.28
Water-ethanol 7–12 61 22.32 2.13 3.34
Methanol-ethanol 13–18 78 10.27 1.66 1.56
Water-methanol 19–28 121 4.81 1.25 0.98
Water-methanol 29–32 44 18.95 4.94 3.96

OMPD 2.51

a All data points for different drugs in binary mixtures were used to train the models, and the back-calculated mobilities were employed to compute IPD, MPD and OMPD values
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Fig. 2: Individual percentage deviation (IPD) for predictive analysis using
ANN and MLR methods



tal and calculated values was used as an accuracy criter-
ion. The MPDs obtained for different numerical analyses
varied between 0.21% and 13.74%. The results were also
compared with similar calculated mobilities which were
derived from the best multiple linear (MLR) model, i.e.
Eq. (1), from the literature. The predicted data from the
ANN methodology proved more accurate when compared
with MLR. ANN calculations are considered simple and
straightforward and the required software is available. It is
therefore concluded that the use of ANN methodology is
an efficient and effective tool for both data modeling and
prediction and therefore ANN can be recommended for
method optimisation studies in CE.

3. Experimental

Details of experimental mobility data (Jouyban et al. 2001a, 2001b, 2001c,
2002, 2003b, 2003c, 2003d) reported by the authors are shown in Table 1.
Data set numbers 1–18 were collected using a 37 cm (30 cm effective
length) �75 mm I.D. fused silica capillary. The electrolyte was 80 mM
sodium acetate buffer containing different concentrations of water, methan-
ol and ethanol. The applied voltage was 25 kV. Temperature was 25 �C
and the wavelength was 214 nm. For set numbers 19–28 and 29–32 the
analaytical conditions were the same as above. For sets 19–28 buffer con-
centration was 104 mM sodium acetate buffer and the applied voltage was
20 kV. The corresponding conditions for aliphatic amines (sets numbers
29–32 in Table 1) were sodium acetate (20 mM) þ imidazole (10 mM)
and 8 kV.
All ANN calculations were carried out using MATLAB 6.1 (MathWorks,
Natick) with the mathworks Neural Network Toolbox (MathWorks, Na-
tick). The other calculations and statistical tests were performed using
SPSS software (SPSS, Chicago).
The first stage was to train the network, and initially the input and target
values were normalized between 0.1 and 0.9. The volume fraction of sol-
vent 1, and the solute electrophoretic mobilities in pure solvents 1 and 2
were used as inputs. The mobilities of the same solutes in mixed solvents
were used as outputs. The number of neurons in the hidden layers, values
of learning rate, momentum and number of epochs were optimized. Differ-
ent numbers of neurons in the hidden layer (from 1 to 10) were tested at
an arbitrary learning rate and momentum, and 10000 iterations. The num-
ber of neurons in the hidden layer which gave the minimum value of MSE
was selected as the optimum number. Then, learning rate and momentum
were optimized in a similar way. Optimum model values of three neurons
in hidden layer, a learning rate of 0.1 and a momentum of 0.8 were se-
lected. To ensure that the global optimum had been reached, and that it
was not a local optimum, the algorithm was run from different starting
values of initial weights. Each set of starting values resulted in almost the
same set of optimum values, confirming that a global optimum had been
found.
To evaluate the accuracy of the proposed numerical methods, the experi-
mental mobility values were fitted into the models and back-calculated
and/or predicted mobilities were used to calculate the mean percentage
differences (MPD) between experimental and calculated mm values and
considered as an accuracy criterion. MPD was defined as:

MPD ¼ 100

N

P mCal: � mobs:

mobs:

��
�
�
�

��
�
�
� ð5Þ

where N is the number of experimental data points. The overall MPD
(OMPD) is defined as the sum of the MPDs divided by the number of
data sets considered in the calculations. The MPD and OMPD give an
overall indication of the accuracy of the error and in order to detect the
range of individual errors, the individual percentage deviation (IPD) was
also calculated by:

IPD ¼ 100
mCal: � mobs:

mobs:

��
�
�
�

��
�
�
� ð6Þ
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