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A numerical method based on the Jouyban-Acree model was presented for prediction of drug solubi-
lity in water-dioxane mixtures at various temperatures. The method requires drug solubility in mono-
solvent systems, i.e. two data points for each temperature of interest. The mean percentage deviation
(MPD) of predicted solubilities was calculated to show the accuracy of the predicted data and 27%
was found as the average MPD for 36 data sets studied. The proposed numerical method reduced the
number of required experimental data from five to two points and could also be extended to predict
solubility at various temperatures.

1. Introduction

Dissolving a desired amount of a drug in a given volume
of a solvent and/or a solvent mixture is still a challenging
area in pharmaceutical industry. The history of systematic
solubility studies in mixed solvent systems date back to a
couple of decades ago. Paruta and his co-workers (1964)
have studied the solubility of different drugs in water-co-
solvent mixtures and tried to explain the solubility beha-
vior based on variations of dielectric constant of the sol-
vent which is assumed as an indicator of solvent’s polarity
(Paruta et al. 1964). In 1972, Yalkowsky and co-workers
proposed the log-linear equation to represent the drug so-
lubility in water-cosolvent mixtures using solute free vo-
lume fraction of the cosolvent (Yalkowsy and Roseman
1981). Martin et al. (1981) have extended the Hildebrand
solubility approach to describe the solubility of polar/
semi-polar drugs in aqueous mixtures of a model cosol-
vent, dioxane. The excess free energy approach (Williams
and Amidon 1984), mixture response surface (Ochsner
et al. 1985), the phenomenological model (Khossravi and
Connors 1992), the combined nearly ideal binary solvent/
Redlich-Kister equation, so-called the Jouyban-Acree
model (Acree 1996; Jouyban-Gh et al. 1999; Jouyban
et al. 2006), the modified Wilson model (Jouyban-Gh
1998) and fluctuation theory (Ruckenstein and Shulgin
2003) have also been employed to model drug solubility
data in aqueous binary solvent mixtures. In addition to the
models mentioned above, attempts have been made to
build a general correlative/predictive equation for a group
of structurally related drugs in a given aqueous binary sol-
vents (Bustamante et al. 1993; Jouyban-Gh et al. 1998).
Most of the models require relatively complex computa-
tional methods, a number of experimental data points to
train the model and also a knowledge of physico-chemical
properties such as molar volume, solubility parameters etc
of the solute and solvents. In addition to the experimen-
tally originated errors (as an example of such errors see

Kishi and Hashimoto (1989)), any error in computations/
determinations of these physico-chemical properties could
be source of a major error in solubility calculations. As an
example, different numerical values of solute’s solubility
parameters produced prediction errors between 58 and
30915% in prediction of the solubility of p-hydroxyben-
zoic acid in water-dioxane mixtures (Jouyban-Gh et al.
1998).
From these models, the log-linear equation of Yalkowsky
has been preferred, because of its simplicity and applic-
ability in pharmaceutical industry where researchers are
more interested in models requiring simple and easy com-
putational operations. However, the model is only applic-
able for solubility profiles showing no solubility maxi-
mum in mixed solvents. This is not the case for most of
the drug solubility profiles in water-pharmaceutically inter-
esting cosolvent mixtures and there is a number of solubi-
lity profiles, such as solubility in water-ethanol mixtures
(as examples see Romero et al. 1996; Bustamante et al.
2002) which show solubility maximum. As previously re-
ported (Li and Yalkowsky 1994) a couple of reasons
could be provided to explain these deviations from log-
linear relationship.
In prediction of a solute solubility in a given mixed solvent
system showing no solubility maxima, reasonably accepta-
ble predictions could be made using Yalkowsky’s log-line-
ar equation. In order to estimate the solubility of different
solutes in a given binary solvent systems, Millard et al.
(2002) reported the solubilization power of four common
pharmaceutical cosolvents. From this correlation, each co-
solvent has two constant values and the aqueous solubility
of a drug and its partition coefficient are required as input
data to predict the solubility in water-cosolvent mixtures.
Machatha and Yalkowsky (2004) used half slope of the
log-linear solubilization power (s0.5) to predict the cosol-
vent fraction giving the maximum solubility of a drug. The
required data were partition coefficients of the cosolvent
and the solute. The partition coefficient (logP) of a solute
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could be determined experimentally or calculated using
software like ClogP1, ACDlogP and KowWin1 The logP
data calculated using ClogP1 software provided more ac-
curate results (Machatha and Yalkowsky 2005). This pre-
diction could help pharmaceutical industry to speed up the
optimization of liquid drug formulations where the cosol-
vent fraction should be kept as low as possible, usually
less than 0.5. Rytting et al. (2004) proposed quantitative
structure-property relationships (QSPRs) to compute solu-
bility of drug/drug like molecules in water-PEG 400 mix-
tures using molecular descriptors computed by Cerius soft-
ware and different sets of model constants for each binary
solvent composition. The most accurate prediction for all
solvent systems could be achieved using the Jouyban-
Acree model with a minimum number of experimental
data as training set and prediction at other solvent compo-
sitions. This point has been discussed in more details in
previous publications (Jouyban-Gh et al. 2001a, b). To
broaden the prediction capability of the Jouyban-Acree
model, it was used for prediction of the solubility of struc-
turally related drugs in a given binary solvent system. This
type of prediction could be more appropriate for extending
the available solubility data of related drugs to predict the
solubility of a new drug candidate from the same chemical
group (Jouyban-Gh et al. 1998).
Solubility prediction of different solutes in various solvent
systems with an acceptable error range is the ultimate goal
of predictions in this area. The produced prediction errors
for such models are relatively high and could not be re-
commended to be used in pharmaceutical industry and an
accurate predictive model was not proposed so far. How-
ever, considering rapid growth in databases and also com-
putational methods, it is expected to be presented in the
near future. The aim of this work was to establish model
constants of the Jouyban-Acree model for water-dioxane
mixtures to predict the solubility of various solutes in a
given water-dioxane mixture at different temperatures em-
ploying solubilities of the solute in mono-solvent systems.
Dioxane is not a pharmaceutically acceptable cosolvent,
however, since it is completely miscible with water and
provides the widest polarity range, it is capable of dissol-
ving poorly soluble drugs. It has been extensively used as
a model cosolvent in cosolvency studies, therefore, the
proposed method is checked using solubility data in
water-dioxane mixtures.

2. Investigations, results and discussion

2.1. Computational methods

The Jouyban-Acree model was used to correlate different
physico-chemical properties in mixed solvent systems
which is briefly reviewed in a recent paper (Jouyban et al.
2005). Its basic form to calculate a solute solubility in
water-cosolvent mixture is:

ln Xm ¼ fc ln Xc þ fw ln Xw þ fcfw
P2
i¼0

Aiðfc � fwÞi ð1Þ

where Xm is the mole fraction solubility of the solute in
solvent mixture, fc and fw the volume fractions of cosol-
vent and water in the absence of the solute, Xc and Xw

the mole fraction solubilities in neat cosolvent and water,
respectively, and Ai the solvent-solvent and solute-solvent
interaction terms (Acree 1992) computed using a no-inter-
cept least square analysis (Jouyban-Gh and Hanaee 1997)
for each binary solvent system. The Ai coefficients in Eq.
(1) do have theoretical signficance in that each coefficient

is a function of two-body and three-body interaction ener-
gies that describe the attractions between the various mo-
lecules in solution (Acree 1992). In the case of a solute
dissolved in water-cosolvent mixtures, the basic thermody-
namic model from which Eq. (1) was derived included all
six possible two-body (c-c, w-w, s-s, c-w, c-s and w-s)
and all ten possible three-body (c-c-c, w-w-w, s-s-s, c-c-w,
c-w-w, c-c-s, c-s-s, w-w-s, w-s-s and c-w-s) molecular in-
teractions between water (w), cosolvent (c) and solute (s)
molecules. Equation (1) was derived by differentiating the
integral excess Gibbs energy of mixing equation for the
mixture containing components c, w and s, expressed in
terms of the 16 fore-mentioned two-body and three-body
interaction energies, with respect to the number of moles
of solute. Raoult’s law was used for the entropic contribu-
tion in the integral Gibbs energy of mixing equation.
More details of the derivation of the model could be
found in a previous paper (Acree, 1992). The applicability
of the model was also extended to calculate the solubility
of drugs in binary solvents at various temperatures (Jouy-
ban-Gh and Acree 1998):

ln Xm;T ¼ fc ln Xc;T þ fw ln Xw;T þ fcfw
P2
i¼0

Jiðfc � fwÞi

T

ð2Þ
where Xm,T, Xc,T and Xw,T are the mole fraction solubility
of the solute in solvent mixture, cosolvent and water in
the absence of the solute at temperature (T, �K) and Ji is
the model constant.
The mean percentage deviations (MPD) were used to
check the accuracy of the prediction method and is calcu-
lated using eq. (3).

MPD ¼ 100

N

P jCalculated� Observedj
Observed

ð3Þ

in which N is the number of solubility data points. The
individual percentage deviations (IPD) was also computed
using:

IPD ¼ 100
jCalculated� Observedj

Observed

� �
:

2.2. Results and discussion

Available experimental solubility data of drugs in water-
dioxane mixtures at a constant and/or various temperatures
were collected from the literature (for details see Table)
and regressed using Eq. (2). The obtained equation is:

ln Xm;T ¼ fc ln Xc;T þ fw ln Xw;T þ fcfw

� 2206:9

T
þ 1173:1ðfc� fwÞ

T
þ 1997:4ðfc� fwÞ2

T

" #

ð4Þ

R ¼ 0:972; N ¼ 504; F ¼ 2870:7; p < 0:0005

Statistical parameters shown above indicate that the model
is a significant model with high F value. The significance
of the model constants was checked using t-test and the
constants were statistically significant with p < 0.0005.
As discussed above, the model constants of the Jouyban-
Acree model are functions of solute and solvents of a so-
lution. Using these constants it is possible to predict the
solubility of a solute in water-dioxane mixtures at various
temperatures and the required experimental data are the
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numerical values of Xc,T and Xw,T. The predicted solubility
is compared with the corresponding experimental value,
the MPD values were computed and the results were
listed in the Table. The minimum MPD (7.8%) was ob-
tained for solubility prediction of theophylline at 25 �C
and the maximum MPD (62.2 %) was observed for solu-
bility prediction of nalidixic acid at 10 �C. The average
(� SD) of MPD for the studied data sets was 27.2
( �14.3). The produced error is relatively high, however it
could be considered as an acceptable error in pharmaceuti-
cal applications where < 30% was accepted (Beerbower
et al. 1984; Reillo et al. 1995a).
The IPDs of predicted solubilities were sorted in three sub-
groups, i.e. IPD � 4% (comparable with experimental un-
certainity), 4–30 (acceptable error range in pharmaceutical
applications) and > 30% (unacceptable error range). The
relative frequency of IPDs were illustrated in Fig. 1. The
probability of solubility prediction in water-dioxane at var-
ious temperatures within acceptable error range is 0.66.
There are good agreements between experimental (�ln Xm)
and predicted solubilities as shown in Fig. 2.
To show the applicability of the proposed prediction meth-
od on unmeasured solubility data of solutes, the data set
numbers of 1–18 from the Table, were used to train Eq. (2)

and the solubility data of set numbers 19–36 were pre-
dicted using the trained model. The average MPD (� SD)
was 26.0 (� 10.5)%. There was no significant difference
between 27.2 and 26.0% obtained using trained models
employing 36 and 18 data sets, respectively, and this con-
firms that the model is capable of predicting unmeasured
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Table: Details of experimental solubility data of solutes in water-dioxane mixtures at various temperatures (T, �K), the number
of data points in each set (N), logarithms of the mole fraction solubilities in mono-solvent systems (ln Xc;T and ln Xw;T),
mean percentage deviation (MPD) and the model constants (J0, J1 and J2) computed using leave one out

No. Solute Ref. T ln Xc;T ln Xw;T N MPD MPD J0 J1 J2

1 Acetanilide [1] 293 �2.37 �7.26 11 33.3 � 2216.4 1193.3 1979.5
2 Acetanilide [1] 298 �2.12 �7.13 11 36.9 � 2217.1 1195.7 1978.2
3 Acetanilide [1] 303 �2.01 �7.01 11 33.0 � 2214.1 1195.9 1979.8
4 Acetanilide [1] 308 �1.81 �7.01 11 32.5 � 2210.3 1201.2 1982.4
5 Acetanilide [1] 313 �1.55 �6.81 11 36.9 � 2212.2 1201.8 1984.4
6 Caffeine [2] 298 �4.77 �6.08 16 34.8 � 2226.8 1188.3 1991.4
7 Nalidixic acid [1] 283 �6.91 �13.23 12 62.2 � 2228.2 1170.1 2012.5
8 Nalidixic acid [1] 293 �6.76 �13.07 12 53.5 � 2224.8 1168.8 2013.3
9 Nalidixic acid [1] 298 �6.62 �12.94 12 44.3 � 2222.2 1168.6 2010.0
10 Nalidixic acid [1] 303 �6.50 �12.75 12 34.7 � 2218.7 1166.8 2011.2
11 Nalidixic acid [1] 308 �6.50 �12.53 12 24.8 � 2215.6 1165.8 2008.3
12 Nalidixic acid [1] 313 �6.40 �12.21 12 19.9 � 2211.6 1161.2 2017.9
13 p-Hydroxybenzoic acid [3] 298 �2.47 �7.42 13 33.4 � 2211.8 1205.5 2019.0
14 Paracetamol [1] 293 �3.70 �6.38 12 12.2 � 2201.3 1174.2 1997.6
15 Paracetamol [1] 298 �3.62 �6.27 12 15.7 � 2198.7 1174.7 1995.5
16 Paracetamol [1] 303 �3.53 �6.07 12 16.9 � 2196.1 1175.3 2003.0
17 Paracetamol [1] 308 �3.45 �5.95 12 21.3 � 2192.7 1177.0 2006.3
18 Paracetamol [1] 313 �3.34 �5.81 12 22.7 � 2192.0 1177.0 2006.8
19 Paracetamol [4] 298 �3.03 �6.27 17 9.4 18.1 2200.1 1178.7 2013.2
20 Phenacetin [5] 293 �4.26 �9.61 13 13.0 17.8 2208.0 1152.8 2016.6
21 Phenacetin [5] 298 �4.07 �9.41 13 11.4 17.1 2205.2 1156.3 2019.7
22 Phenacetin [5] 303 �3.84 �9.18 13 11.3 17.3 2204.3 1157.1 2020.9
23 Phenacetin [5] 308 �3.63 �9.04 13 8.1 15.1 2202.5 1166.5 2012.0
24 Phenacetin [5] 313 �3.48 �8.84 13 10.4 17.0 2200.3 1167.6 2014.6
25 Salmeterol xinafoate [6] 292 �5.45 �12.79 12 45.0 47.9 2180.5 1116.4 1984.6
26 Sulfadiazine [7] 298 �7.61 �12.33 17 24.7 32.8 2195.1 1167.0 1964.2
27 Sulfadimidine [7] 298 �6.51 �12.71 19 16.2 23.9 2208.8 1153.0 2000.1
28 Sulfamethizole [8] 298 �6.94 �10.25 19 41.6 47.3 2201.9 1103.4 1840.9
29 Sulfamethoxazol [7] 298 �3.51 �10.67 15 15.1 24.5 2196.1 1184.8 1995.4
30 Sulfanilamide [9] 298 �2.52 �7.35 16 14.1 15.7 2202.4 1180.3 2014.5
31 Sulfapyridine [10] 298 �10.29 �13.24 17 38.8 29.1 2229.7 1177.6 1969.8
32 Sulfisomidine [11] 298 �5.99 �9.21 21 24.7 33.4 2189.6 1158.3 1973.3
33 Sulphamethoxypyridazine [7] 298 �3.74 �10.20 18 27.7 36.1 2183.1 1148.2 2008.2
34 Theobromine [12] 298 �7.72 �10.32 11 51.1 32.1 2216.9 1194.6 2020.8
35 Theophylline [13] 298 �5.95 �7.21 21 7.8 16.6 2203.5 1162.4 2016.1
36 Trimethoprim [14] 298 �5.80 �10.77 20 39.6 25.4 2209.7 1240.5 2018.3

Mean: 27.2 26.0 2206.9 1173.0 1997.2

[1] Bustamante et al. (1998); [2] Adjei et al. (1980); [3] Wu et al. (1983); [4] Romero et al. (1996); [5] Bustamante and Bustamante (1996); [6] Jouyban-Gh et al. (2001b);
[7] Bustamate et al. (1993); [8] Reillo et al. (1995a); [9] Reillo et al. (1993); [10] Reillo et al. (1995b); [11] Martin et al. (1985); [12] Martin et al. (1981); [13] Martin et al. (1980);
[14] Subrahmanyam et al. (1996)
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solubilities with the overall prediction error of �27%. In
order to further check on the stability of the model con-
stants, leave one out method was used. In each run of
computing the model constants, one data set was excluded
from the calculations. The results shown in the Table and
the means of Ji values from this analysis which are ex-
actly the same as appeared in Eq. (4) reveal that the mod-
el constants are robust and Eq. (4) could be used to pre-
dict the solubility of drugs in water-dioxane mixtures at
various temperatures.
While using the proposed prediction method, one should
consider that:
� Solubility of the solute of interest in water and dioxane
should be determined experimentally and used as input
variable of the model. Although, there is a number of
models to estimate the solubility of solutes in mono-sol-
vent systems (as an example see Abraham and Lee
1999), their prediction capability is questionable because
of a large prediction error.

� The solvent composition of the mixed solvent system
should be expressed as volume fraction (fc for volume
fraction of dioxane and fw for volume fraction of water).

� Natural logarithm of the mole fraction solubilities of the
solutes was predicted using Eq. (4).

� Temperature should be expressed as absolute tempera-
ture (�K).

In conclusion, the proposed trained model is capable of
estimating the solubility of drugs in water-dioxane mix-
tures at various temperatures and mean of the expected
prediction error is �27% which is an acceptable error
range in pharmaceutical applications. The proposed nu-
merical method reduced the number of required experi-
mental data from five to two points and could also be
extended to predict solubility at various temperatures.
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