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Multiple options for the treatment of lung cancer have often been described in the past, including sur-
gery, chemotherapy and radiation, but the therapeutic effect is typically transient and mostly absent with
advanced disease. New approaches to the treatment of lung cancer are urgently needed. Gene therapy
has been widely proposed as a novel strategy to improve therapy. Although progress has been made
using viral vectors, rapid advances in transfection technologies employing nonviral vectors, together
with their relatively low toxicity, suggest that nonviral vectors may have significant potential for clinical
applications. This paper briefly reviews general principles of gene delivery with emphasis on recent
developments in the arena of lung cancer using nonviral vectors (naked DNA, polycationic polymers,
cationic liposomes). Employing gene transfer techniques to achieve therapeutically useful levels of
expression of therapeutic genes in the lung could provide a new strategy for treatment of lung cancer.

1. Introduction

Lung cancer is still considered the leading cause of cancer-
related deaths all over the world. Despite improvements in
cancer diagnosis and therapy, the present 5-year survival
rate of 14% is only slightly higher than the survival rate of
8% in the early 1960s (Dincer et al. 2005). Although pro-
gress has been made, with advances in surgery, chemother-
apy and radiation, the majority of patients diagnosed with
lung cancer ultimately surrender themselves to despire. A
major problem with the present treatment modalities is the
lack of tumor specificity giving rise to dose-limiting toxicity
and side effects. Gene therapy constitutes an experimental
approach gaining increased attention as a putative future
cancer therapeutic strategy (Wagner et al. 1990). Gene ther-
apy for lung cancer has attracted a great deal of attention
since the first report of successful gene delivery 15 years
ago (Simoes et al. 2005). The key technological impedi-
ment to successful gene therapy is vector optimization.
Gene transfer vectors can be divided into two categories:
viral (e.g. retrovirus, adenovirus, adeno-associated virus,
vaccinia virus etc.) and non-viral (e.g. naked DNA, polyca-
tionic polymers, cationic liposomes) agents. Viral methods
of gene delivery are efficient, but they suffer from several
drawbacks, including a need for packaging cell lines (Lollo
et al. 2000), problems with safety, such as mutation (Mar-
shall 1995; Romano 2005), carcinogenesis (Powell et al.
1999; Check 2003), and the elicitation of an immune re-
sponse that render transgene expression transient (Freimuth
2003; Lefesvre et al. 1996; Chen et al. 2003; Jooss and
Chirmule 2003; Zaiss et al. 2002). In addition, viral vectors
are limited by the size of the foreign gene that can be in-
serted into the viral genome (Labhasetwar et al. 1999). In
light of these concerns, nonviral gene transfer systems seem

to be more applicable in that they are less toxic, less immu-
nogenic, easier to prepare, they could be ideal methods for
in vivo gene therapy (Schmidt-Wolf and Schmidt-Wolf
2003; Makiya and Mitsuru 2002), meanwhile, they can be
efficient for systematic delivery. Recent advances in vector
technology have made nonviral gene therapy approaches
particularly appealing for the disease with high mortality
such as lung cancer. In this article, we will review the major
nonviral vectors that are currently used in gene therapy for
lung cancer.

2. Naked DNA

The simplest approach to nonviral delivery systems is di-
rect gene transfer with naked plasmid DNA. Plasmids are
able to transfect a broad range of cell types, they are ea-
sily produced in a large scale, the size of the gene insert
may be large, and plasmids are very safe. However, trans-
fection efficiency with plasmids is generally low and ex-
pression is only transient (van der Wouden et al. 2004),
thus, attempts in lung cancer gene therapy have been
made to enhance the efficiency via the application of jet-
injection and electroporation. Lewis-lung carcinoma bear-
ing mice received five jet injections into the tumor at a
pressure of 3.0 bar, delivering 3–5 microl plasmid DNA
(1 mg DNA/ml in water) per single jet injection. Analysis
of tumor cryosections revealed moderate LacZ or GFP ex-
pression at 48 h and strong reporter gene expression 72 h
and 96 h after jet injection. The simultaneous jet injection
of the TNF-alpha and LacZ carrying vectors demonstrated
efficient expression and secretion of both the cytokine, as
well as LacZ expression within the tumor 24 h, 48 h, 72
h, 96 h and 120 h after jet injection (Walther et al. 2001).
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Electroporation, the controlled electric fields to facilitate
cell permeabilization, was first described in the 1960s (Li
and Ma 2001), and it has been firstly applied to introduce
genes into respiratory epithelial cells in 1988 (Iannuzzi
et al.1988). To increase the levels of pulmonary gene
transfer by nonviral vectors, Dean et al. have adopted elec-
troporation protocols for use in the lung, the results pro-
vide evidence that electroporation is a safe and effective
means for introducing naked DNA into the lung and form
the basis for future studies on targeted pulmonary gene
therapy (Dean et al. 2003). Similarly, there have been re-
ports of lung cancer therapy via gene gun (Nishitani et al.
2000) or combination of nuclease inhibitor (Glasspool-
Malone et al. 2002), resulting in high gene expression.

3. Polycationic polymers

Even if it is successful, there are several limitations of using
naked plasmid DNA as a gene delivery vehicle, such as the
poor entry into the cell (Kawabata et al. 1995), lack of ef-
fective transport into the nucleus (Kamiya et al. 2001), and
the number and proportion of tumor cells that can be trans-
ducted by plasmids is low (Vile and Russel 1994). Further-
more, it is highly prone to tissue clearance and totally ineffi-
cient for systematic delivery (El-Aneed 2004). A variety of
novel synthetic vectors are emerging for in vivo testing to
improve the efficiency of gene delivery, including DNA
complexed with polycationic polymers such as poly-l-ly-
sine, polyethyleneimine, chitosan.

3.1. Polyethyleneimine

Polyethyleneimine (PEI), a cationic polymer, is a vector
that has attracted much attention since it was first shown
to be effective both in tissue culture and in vivo (Gautam
et al. 2000). The most prominent feature of PEI is its high
cationic charge density. Every third atom of PEI is a nitro-
gen atom capable of protonation. This leads to an extre-
mely high cationic charge density of 20–25 microequi-
valents per gram (Neu et al. 2005). Abdallah et al. (1996)
have shown that the transfection efficiencies of PEI in
vivo were influenced by the molecular weights, and found
that PEI with a reported molecular weight of 25 kD
yielded higher transfection efficiency than PEIs of higher
reported molecular weights. PEI has also been used to
efficiently deliver DNA to tumors in vivo (Gautam et al.
2000). Despite the fact that PEI was reported to be rela-
tively effective in cancer therapy in vivo by intravenous
injection (Kim et al. 2004), intratumoral injection (Wol-
schek et al. 2002) or micropump administration (Coll et al.
1999), gene delivery through inhalation may provide a
means of treatment for a wide range of pulmonary disor-
ders because it can reach large surface areas and avoid
risks associated with other systemic administration meth-
ods (Kim et al. 2004).
The mice bearing osteosarcoma lung metastases were treat-
ed twice weekly for 2 weeks with aerosolized PEI contain-
ing the murine IL-12 gene (PEI:IL-12; 600 ml PEI and
2 mg IL-12), aerosol therapy for 2 weeks resulted in high
expression of both the p35 and p40 subunits of IL-12 in the
lungs but not in the livers of mice. Peak IL-12 mRNA ex-
pression was seen 24 h after a single aerosol PEI:IL-12
treatment. This expression gradually decreased with contin-
ued detection for up to 7 days. IL-12 protein was not detect-
able in plasma even after 6 weeks of aerosol therapy. The
number of lung metastases in mice treated with aerosol
PEI:IL-12 was decreased significantly (Jia et al. 2003).

Viral vectors are more efficient than plasmids entering the
nucleus because they can target nuclear receptors with
specific viral proteins, thus, many of peptides are derived
from viral proteins, have been exploited to boost delivery
of plasmids (Gomez-Vargas and Hortelano 2004). Simi-
larly, in order to improve the transfection and targeting
efficiency of PEI-based formulations, PEI also have been
conjugated to specific viral proteins. It has been shown that
an oligopeptide related to the protein transduction domain
of HIV-1 TAT was covalently coupled to 25 kDa PEI
through PEG resulting in a TAT–PEG–PEI conjugate.
Transfection efficiencies of both PEI and TAT–PEG–PEI
polyplexes with DNAwere studied under in vitro conditions
(A549) and in mice after intratracheal instillation. While
luciferase expression in A549 cells was much lower for-
TAT–PEG–PEI (0.2 ng/mg protein) than for PEI (2 ng/
mg), significantly higher transfection efficiencies for TAT–
PEG–PEI were detected in mice (Kleemann et al. 2005). In
addition, conjugation of PEI with ligands such as glycose,
has been shown to enhance targeting of specific cell types
with a high degree of specificity. There have been reports of
the aerosol containing glucosylated PEI and recombinant
plasmid pcDNA3.0-phosphatase and tensin homologue de-
leted on chromosome 10 (PTEN) complex was delivered
into K-ras null lung cancer model mice through a nose-only
inhalation system, resulting in high expression of PTEN
protein in mice lungs (Kim et al. 2004).

3.2. Poly-l-lysine

One of the first polycations characterized as a potential
nonviral vector for DNA condensation was poly(l)-lysine
(Ogris and Wagner 2002). Meanwhile, poly-l-lysine and
its derivates are the most widely reported polypeptides
employed for gene delivery. In order to require successful
transfection efficiency, poly-l-lysine and its derivatives
usually have been used with chloroquine (Joubert et al.
2003), receptor ligands (Wu et al. 2002), or covalently
linked to pluronic, both PEG and palmitoyl groups (El-
Aneed 2004). Moreover, poly-l-lysine can enhance viral
mediated gene transfer efficiency (Nguyen et al. 1997;
Schwarzenberger et al. 2001). When complexes of epider-
mal growth factor/poly-l-lysine conjugate and DNA were
incubated with several different lung cancer cell lines,
high levels of gene expression resulted when uptake was
performed in the presence of the endosomal lysis agent
(Cristiano et al. 1996).

3.3. Chitosan

In contrast to the abundance of structurally different syn-
thetic non-viral gene delivery vectors (PEI, PLL, etc.),
there is only a small number of polycations of natural
origin available (Borchard 2001). Chitosan, a natural-
based polymer obtained by alkaline deacetylation of chit-
in, is nontoxic, biocompatible, and biodegradable (Praba-
haran and Mano 2005), which can form poly-electrolyte
complexes with DNA (Borchard 2001). Therefore, chito-
san and chitosan derivatives may represent potentially safe
and efficient cationic carriers for gene delivery.
Gene powders with chitosan are a useful pulmonary gene
delivery system, which is a noninvasive and novel option
for gene delivery. Chitosan-pDNA powder with an N/P
ratio¼5 increased the luciferase activity to 2700% of that
of the Cytomegalovirus promoter (pCMV-Luc) solution.
These results suggest that the addition of chitosan can
suppress the degradation of pDNA, and increase the yield
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of powders (Hirokazu et al. 2003). Although few gene
therapy trials aimed directly at lung cancer using chitosan
and its derivatives have been commenced, there is a lot of
basic research in this field (Regnstrom et al. 2006; Kop-
ing-Hoggard et al. 2005; Koping-Hoggard et al. 2001; Hir-
okazu et al. 2003). We believe that lung cancer is a very
intriguing candidate for gene therapy using the natural-
based polymer-chitosan.

4. Cationic liposomes

Liposomes have attracted much attention as potential drug
carriers. Liposomes are easy to prepare, highly biocompa-
tible and can be loaded with a broad variety of drugs,
DNA and diagnostic agents (Torchilin 2005). However, as
a rule, transfection by the use of anionic or neutral lipo-
somes is not very efficient, and requires entrapment of
DNA inside vesicles (Li and Ma 2001). On the whole,
these liposomes are transfection-efficient when applied in
vitro and much less efficient being applied in vivo. Conse-
quently, cationic liposomes mediated gene transfer and de-
livery attract great attention as a result of their positive
charge on the particle surface ensures their binding to the
negatively charged cellular membranes. Cationic lipid-
based delivery systems can be efficient for gene delivery
if the composition of the DNA-lipid complexes is properly
controlled (Liu et al. 1997). However, some authors re-
cently showed that size, not surface charge, is a major
determinant of the in vitro lipofection efficiency of lipo-
plex. They considered that area-specific gene expression
in lung metastases may be achieved by controlling the
physicochemical properties (pDNA to lipid ratio) of the
lipoplex (Li et al. 2005). Despite cationic liposomes can
be toxic when administered at high doses in cell culture,
no toxicity or inflammatory reactions has been reported
using liposomes in humans (Templeton and Lasic 1999).
Ramesh et al. described an improved extruded DO-
TAP:cholesterol (DOTAP:Chol) cationic liposome that ef-
ficiently delivers therapeutic tumor suppressor genes p53
and FHIT, which are frequently altered in lung cancer, to
localized human primary lung cancers and to experimental
disseminated metastases. Transgene expression was ob-
served in 25% of tumor cells per tumor in primary tumors
and 10% in disseminated tumors. When treated with
DOTAP:Chol-p53 and -FHIT complex, significant sup-
pression was observed in both primary and metastatic
lung tumor growth. Furthermore, repeated multiple treat-
ments revealed a 2.5-fold increase in gene expression and
increased therapeutic efficacy compared to single treatment.
Finally, animal survival experiments revealed prolonged sur-
vival when treated with liposome-p53 DNA complex (Ra-
mesh et al. 2001). Aid components, such as protein (Yana-
gihara and Cheng 1999; Sorgi et al. 1997; Vaysse et al.
2002), or certain amino acids (Li et al. 2005), can be used to
enhance gene efficiency and promote selective targeting to
the lung. Current cationic liposomes are able to achieve high
transfection ratios and are notable for concentrated biodistri-
bution to the pulmonary system when given intravenously
(Dow et al. 2005; Li et al. 2005; Ito et al. 2004), percuta-
neously (Saito et al. 2000), intratracheally (Zou et al. 2000),
etc. Moverover, with the development of novel cationic li-
pids, such as pyridinium cationic lipids (Ilies et al. 2005), the
application of cationic liposomes in lung cancer become
more and more promising. Lipid based-nanoparticles are
also used for gene therapy for lung cancer.
The use of DOTAP:cholesterol (DOTAP:Chol) nanoparti-
cles coupled to gene has been reported. Ramesh et al. de-

monstrated that DC (DOTAP:Chol) nanoparticles effec-
tively deliver tumor suppressor genes to primary and
disseminated lung tumors. They evaluated nanoparticle-
mediated delivery of the human mda-7/IL-24 gene to pri-
mary and disseminated lung tumors in vivo. They demon-
strate that DOTAP:Chol efficiently delivers the mda-7/IL-
24 gene to human lung tumor xenografts, resulting in sup-
pression of tumor growth (Ramesh et al. 2004). Although
DOTAP:Chol nanoparticles complexed to DNA (DNA-na-
noparticles) are efficient vectors for systemic therapy, in-
duction of an inflammatory response in a dose-dependent
fashion has also been observed thereby limiting its use
(Gopalan et al. 2004). Gopalan et al. demonstrated that
systemic administration of DNA-nanoparticles induced
multiple signaling molecules both in vitro and in vivo that
are associated with inflammation. Use of small molecule
inhibitors against the signaling molecules resulted in their
suppression and thereby reduced inflammation without af-
fecting transgene expression (Gopalan et al. 2004).

5. Conclusion

Gene therapy has the potential to become an important
modality for treating lung cancer. Consequently, recent pre-
clinical studies of lung cancer have reported promising re-
sults. It is encouraging to confirm that the efficacy of non-
viral vectors has now improved to achieve cell levels that
would be curative in human patients. Nevertheless, im-
proved gene delivery systems would be necessary before
efficient and safe nonviral gene therapy of lung cancer is
realized. The effect of the physical and chemical properties
of the various nonviral delivery systems on the efficiency of
each step must also be adequately understood because vec-
tor optimization to improve the efficiency of one step in the
process may be detrimental to the effectiveness of another
(Wiethoef and Middaugh 2003). As a result, the safety and
clear expression mechanism is very important to the nonvir-
al gene therapy trial for lung cancer in the future.
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