- Rauwald HW, Beil A (1993a) High performance liquid chromatographic separation and determination of diastereomeric anthrone-C-glucosyls in Cape aloes. J Chromatogr 639: 359–362.
- Rauwald HW, Beil A (1993b) 5-Hydroyaloin A in the genus Aloe. Thin layer chromatographic screening and high performance liquid chromatographic determination. Z Naturforsch C 48: 1–4.
- Sheu SJ, Chen HR (1995) Determination of five major anthraquinoids in chinese herbal preparations by micellar electrokinetic capillary electrophoresis. Anal Chim Acta 309: 361–367.
- Sheu SJ, Lu CF (1995) Determination of six bioactive components of Hsiao-cheng-chi-tang by capillary electrophoresis. J High Resol Chromatogr 18: 269–270.
- Smith GF, Van Wyk BE (1991) Generic relationships in the Alooideae (Asphodelaceae). Taxon 40, 4: 557–581.
- Suzuki Y, Morita T, Haneda M, Ochi K, Shiba M (1986) Determination by high-performance liquid chromatography and identification of barbaloin in aloe. Iyakuhin Kenkyu 17: 984–990.
- Wätzig H, Dette C (1994) Capillary electrophoresis (CE) a review. Strategies for method development and applications related to pharmaceutical and biological sciences. Pharmazie 49: 83–96.
- Weng WC, Sheu SJ (2000) Separation of anthraquinones by capillary electrophoresis and high-performance liquid chromatography. J High Resol Chromatogr 23: 143–148.

Acad. S. Yu. Yunusov Institute of Chemistry of Plant Substances¹, AS RUz, Tashkent, Uzbekistan; Institute of Pharmacy², Department of Pharmaceutical Biology, Ernst Moritz Arndt University Greifswald, **Germany**

New pomolic acid triterpene glycosides from Zygophyllum eichwaldii

S. A. SASMAKOV¹, ZH. M. PUTIEVA¹, U. LINDEQUIST²

Received July 5, 2007, accepted August 3, 2007

Prof. Dr. Ulrike Lindequist, Institute of Pharmacy, Ernst Moritz Arndt University Greifswald, D-17487 Greifswald, Germany

lindequi@uni-greifswald.de

Pharmazie 62: 957–959 (2007) doi: 10.1691/ph.2007.12.7685

Two new bisdesmosidic triterpenoid saponins, $3-O$ -[α -L-2-O-sulphonylarabinopyranosyl]-pomolic acid-28-O-[ßd-glucopyranosyl] ester (zygoeichwaloside H) and 3-O- [β -D-2-O-sulphonylglucopyranosyl]-pomolic acid-28-O-[β -D-glucopyranosyl] ester (zygoeichwaloside K) were isolated from the roots of Zygophyllum eichwaldii. The structures were established primarily on the basis of NMR spectroscopy and chemical transformations.

As a part of our continuing phytochemical research on plants of the genus Zygophyllum which are used in the traditional medicine of Asian countries (Sasmakov et al. 2001; 2003), this paper deals with the isolation and structural elucidation of two new triterpenoid saponins from Zygophyllum eichwaldii.

Separation of triterpene-containing fractions of the methanolic extract of the roots of Zygophyllum eichwaldii on a silica gel column (gradient chloroform, methanol and water) led to the isolation of two triterpenes (1 and 2). Saponin 1 was obtained as an amorphous white powder. IR absorptions at 3410, 1734 and 1648 cm^{-1} indicated the presence of hydroxyl (OH), ester carbonyl $(C=O)$, and double bond $(C=C)$ functionalities. The olefinic resonances of the aglycone at δ 128.05 and 138.97, corresponding to quaternary and methine carbons suggested the urs-12-ene skeleton with a hydroxyl group at C-19 (Inada et al. 1987; Ouyang et al. 1997). The 13 C NMR spectral data of 1 were consistent with pomolic acid as the aglycone (Sasmakov et al. 2001). 41 different signals in the 13 C NMR spectrum supported that 1 has a bisdesmosidic structure (Table). This is confirmed by availability of hydrogen anomeric atoms at δ 5.10 and δ 6.32 in the ¹H NMR spectra. Acidic hydrolysis of the glycoside yielded pomolic acid as aglycone and arabinopyranose and glucopyranose as sugar parts. The 13 C NMR spectrum of 1 contained signals at δ 89.41 attributable to C-3 and showing that the hydroxyl group at this carbon is glycosylated. The signals of C-1' carbon atom arabinose at δ 103.60 and H-1' proton at δ 5.10 showed that the arabinose is located at C-3 of the aglycone. The downfield shifts of the $H-2'$ and $C-2'$ signals of arabinose compared with those of Ziyu-glycoside I (3) (Table) (Sasmakov et al. 2001; Yosioka et al. 1970) indicated that the sulphate group was in position $C-2'$ of the arabinose. The presence of the $-SO₃H$ group was con-

Table: 13 C NMR spectral data for triterpene glycosides $1-4$

Atom	1	$\overline{\mathbf{c}}$	3	4
$\mathbf{1}$	38.60	38.20	38.60	38.20
	26.28	25.84	26.40	25.83
$\frac{2}{3}$	89.41	89.10	88.49	89.06
$\overline{\mathcal{L}}$	39.47	38.95	39.27	38.95
5	55.82	55.30	55.64	55.26
6	18.40	18.10	18.40	18.00
$\overline{7}$	33.21	32.87	33.21	32.87
8	40.27	39.89	40.27	39.89
9	47.46	47.08	47.46	47.02
10	36.72	36.31	36.71	36.31
11	23.76	23.38	23.76	23.38
12	128.05	127.82	128.15	127.80
13	138.97	138.62	138.97	138.61
14	41.83	41.83	41.83	41.83
15	28.95	28.55	28.95	28.54
16	25.83	25.48	25.83	25.48
17	48.35	48.21	48.35	48.20
18	54.14	53.80	54.14	53.79
19	72.40	72.70	72.36	72.70
20	41.80	41.54	41.83	41.45
21	26.40	26.10	26.40	26.03
22	37.45	37.23	37.44	37.03
23	27.90	27.72	27.96	27.71
24	16.60	16.31	16.60	16.31
25	15.30	14.90	15.35	14.90
26	17.10	16.72	17.12	16.72
27	24.30	23.96	24.29	23.92
28	176.60	176.38	176.67	176.33
29	26.76	26.34	26.76	26.38
30	16.39	15.95	16.39	15.99
1'	103.60	104.30	107.28	104.2
2^{\prime}	77.68	79.56	72.63	78.69
3'	73.09	78.30	74.35	74.57
4 [′]	67.58	70.57	69.25	69.31
5'	68.90	77.81	66.45	75.33
6^{\prime}		68.20		61.70
$1^{\prime\prime}$	95.50	95.20	95.54	95.18
$2^{\prime\prime}$	73.69	73.40	73.79	73.39
$3^{\prime\prime}$	78.66	78.25	78.66	78.22
$4^{\prime\prime}$	70.96	70.75	70.96	70.70
$5^{\prime\prime}$	78.96	78.56	78.96	78.46
$6^{\prime\prime}$	62.06	61.72	62.06	61.79

firmed by solvolysis. The cross peaks of the ³J long range couplings between H-18/C-28, $H-1''$ of glucose/C-28 enabled us to determine the resonance of C-28 and the glucosidations in this position. In addition, the shifts observed on the carbons of the β -D-glucose unit, particularly the values at δ 95.50 of the anomeric carbon were in agreement with a site of glucosylation at the 28-carboxyl group. Consequently, the structure of compound 1 was established as $3-\overline{O}$ -[α -L-2-O-sulphonylarabinopyranosyl]-pomolic acid- $28-O-[β-D-glucopyranosyl]$ ester, for which the trivial name zygoeichwaloside H is proposed.

The ¹³C NMR resonance of the aglycone of compound 2 matched well with the aglycone of 1 indicating the same aglycone for both compounds. The occurrence of two anomeric signals at δ 4.82 and 6.25 in the ¹H NMR spectrum of 2 showed the presence of two sugar units. Acidic hydrolysis of the glycoside gave glucopyranose as sugar component. The existence of a glucose ester at position C-28 was established by comparison of ${}^{1}H$ and ${}^{13}C$ signals of 2 and zygoeichwaloside I (4) (Sasmakov et al. 2001) (Table). The $13C$ NMR spectrum of 2 exhibited significant glycosidation shifts for C-3 $(\delta$ 89.10) of the aglycone. The signals at δ 104.30 and δ 5.10 in ¹³C and ¹H NMR spectrum showed that the one of them glucose is located at $C-3$ of aglycone. The downfield shifts of the $H-2'$ and $C-2'$ glucose signals of 2 indicate that the sulphate group is in position $C-2'$ of the glucose. The presence of the sulphate group was confirmed by solvolysis. Therefore, glycoside 2 was determined to be $3-O-[β-D-2-O-sulphonyl$ glucopyranosyl]-pomolic acid-28-O- $[\beta$ -D-glucopyranosyl] ester (zygoeichwaloside K).

Experimental

1. General

¹H and ¹³C NMR spectra were recorded on a Bruker DRX-500 instrument at working frequencies 500.13 and 125.27 MHz, respectively, in C_5D_5N and CD_3OD at 30 °C with TMS standard. Two-dimensional spectra were measured using standard methods of Bruker. The accuracy of the ${}^{1}H$ and measured using standard methods of Bruker. The accuracy of the 1 H and 13 C chemical shifts were 0.01 ppm; of $^1H/I^1$ H spin-spin coupling constants, 0.2 Hz. IR spectra were recorded on a Perkin-Elmer System 2000 FT IR Fourier spectrometer in KBr pellets; CC: silica gel (0.063–0.16 mm); TLC: silica gel (0.025 mm) and Merck TLC-plates precoated with $Si₆₀F₂₅₄$ or Si₆₀RP18F₂₅₄. Sugars were chromatographed on plates impregnated with 0.3 M solution of NaH2PO4. Glycosides and sugars were detected by sprinkling the plates with 15% ethanolic solution of wolfram-phosphoric acid and o-toluidine-salicilate accordingly.

2. Isolation

The conditions of extraction and fractionisation have been published (Sasmakov et al. 2001; 2003). The fractions enriched with glycosides 1 and 2 were rechromatographed on a column with silica gel using the mobile phase CHCl₃–MeOH–H₂O (70:23:4 to 65:28:5) and yielded 21 mg 1 and 24 mg 2.

3. Acid hydrolysis

The appropriate triterpene glycosides 1–2 (5 mg) were dissolved in 5 ml 5% H₂SO₄ and refluxed for 3.5 h at 100 °C. The reaction mixture was diluted with H₂O and extracted with CHCl₃. The aqueous layer was neutralized with BaCO₃ and sugars were identified by TLC $(n-BuOH-MeOH-H₂O, 5:3:1)$ and spraying with O-toluidine-salicilate.

4. Solvolysis

The solutions of 1 and 2 in a 1:1 mixture of dioxane and pyridine were heated in a stoppered reaction vial at $120\degree C$ for 4 h. The mixture was diluted with H_2O and extracted with n-BuOH.

5. Compound 1

IR (KBr, v, cm⁻¹): 3410, 2939, 1734, 1648, 1460, 1389, 1238, 1227, 1142, 1072, 836, 773, 649. ¹H NMR (C₅D₅N): 3.35 (H-3), 5.57 (H-12), 2.96 (H18), 5.16 (HO-19), 1.29, 0.96, 0.90, 1.20, 1.71, 1.41, 1.08 (3 H, s, 23, 24, 25, 26, 27, 29, 30- CH3). 3-O-a-l-Arap (2-SO3H): 5.10 (H-1), 5.40 (H-2), 4.54 (H-3), 4.36 (H-4), 4.30, 3.80 (H₂-5).

28-O-b-d-Glcp: 6.32 (H-1), 4.26 (H-2), 4.38 (H-3), 4.49 (H-4), 4.06 (H-5), 4.50, 4.43 (H_2 -6). ¹³C NMR spectra: see Table. $C_{41}H_{66}O_{16}S$

6. Compound 2

M.p. 212–214 °C (MeOH). $[\alpha]_D^{22} + 32.3 \pm 2^{\circ}$ (c 0.4; C₃H₅N).
IR (KBr, v, cm⁻¹): 3418, 2939, 1732, 1648, 1460, 1389, 1238, 1221, 1142, 1072, 836, 773, 649. ¹H NMR (C₅D₅N): 3.32 (H-3), 5.53 (H-12), 2.92 (H-18), 5.04 (HO-19), 1.44, 1.16, 0.86, 1.12, 1.70, 1.41, 1.06 (3 H, s, 23, 24, 25, 26, 27, 29, 30- CH3). 3-O-b-d-Glcp (2-SO3H): 4.82 (H-1), 5.02 (H-2), 4.38 (H-3), 4.16 (H-4), 3.90 (H-5), 4.28, 4.48 (H₂-6). 28-*O*-β-D-

Glcp: 6.25 (H-1), 4.23 (H-2), 4.27 (H-3), 4.29 (H-4), 4.03 (H-5), 4.47, 4.40 (H₂-6). ¹³C NMR spectra: see Table. $C_{42}H_{69}O_{17}S$

References

- Inada A, Kobayashi M, Murata H, Nakanishi T (1987) Two new triterpenoid glycosides from leaves of *Ilex chinensis* SIMS. Chem Pharm Bull 35: 841–845.
- Ouyang MN, Wang HQ, Liu YQ, Yang CR (1997) Triterpenoid saponins from the leaves of *Ilex latifolia*. Phytochemistry 45: 1501-1505.
- Sasmakov SA, Putieva ZhM, Kachala VV, Saatov Z, Shashkov AS (2001) Triterpene Glycosides of Zygophyllum eichwaldii. II. Structure of zygoeichwaloside I. Chem Nat Comp 37: 347–350.
- Sasmakov SA, Putieva JM, Saatov Z, Lindequist U (2003) A new triterpene glycoside from Zygophyllum eichwaldii. Pharmazie 58: 602-603.
- Yosioka I, Sugawara T, Ohsuka A, Kitagawa I (1971) Soil bacterial hydrolysis leading to genuine aglycone. III. The structures of glycosides and genuine aglycone of Sanguisorbae radix. Chem Pharm Bull 19: 1700–1707.