- Rauwald HW, Beil A (1993a) High performance liquid chromatographic separation and determination of diastereomeric anthrone-C-glucosyls in Cape aloes. J Chromatogr 639: 359–362.
- Rauwald HW, Beil A (1993b) 5-Hydroyaloin A in the genus Aloe. Thin layer chromatographic screening and high performance liquid chromatographic determination. Z Naturforsch C 48: 1–4.
- Sheu SJ, Chen HR (1995) Determination of five major anthraquinoids in chinese herbal preparations by micellar electrokinetic capillary electrophoresis. Anal Chim Acta 309: 361–367.
- Sheu SJ, Lu CF (1995) Determination of six bioactive components of Hsiao-cheng-chi-tang by capillary electrophoresis. J High Resol Chromatogr 18: 269–270.
- Smith GF, Van Wyk BE (1991) Generic relationships in the Alooideae (Asphodelaceae). Taxon 40, 4: 557–581.
- Suzuki Y, Morita T, Haneda M, Ochi K, Shiba M (1986) Determination by high-performance liquid chromatography and identification of barbaloin in aloe. Iyakuhin Kenkyu 17: 984–990.
- Wätzig H, Dette C (1994) Capillary electrophoresis (CE) a review. Strategies for method development and applications related to pharmaceutical and biological sciences. Pharmazie 49: 83–96.
- Weng WC, Sheu SJ (2000) Separation of anthraquinones by capillary electrophoresis and high-performance liquid chromatography. J High Resol Chromatogr 23: 143–148.

Acad. S. Yu. Yunusov Institute of Chemistry of Plant Substances<sup>1</sup>, AS RUz, Tashkent, Uzbekistan; Institute of Pharmacy<sup>2</sup>, Department of Pharmaceutical Biology, Ernst Moritz Arndt University Greifswald, Germany

# New pomolic acid triterpene glycosides from *Zygophyllum eichwaldii*

S. A. SASMAKOV<sup>1</sup>, ZH. M. PUTIEVA<sup>1</sup>, U. LINDEQUIST<sup>2</sup>

Received July 5, 2007, accepted August 3, 2007

Prof. Dr. Ulrike Lindequist, Institute of Pharmacy, Ernst Moritz Arndt University Greifswald, D-17487 Greifswald, Germany

lindequi@uni-greifswald.de

Pharmazie 62: 957–959 (2007) doi: 10.1691/ph.2007.12.7685

Two new bisdesmosidic triterpenoid saponins,  $3-O-[\alpha-L-2-O-sulphonylarabinopyranosyl]-pomolic acid-28-<math>O-[\beta-D-glucopyranosyl]$  ester (zygoeichwaloside H) and  $3-O-[\beta-D-2-O-sulphonylglucopyranosyl]-pomolic acid-28-<math>O-[\beta-D-glucopyranosyl]$  ester (zygoeichwaloside K) were isolated from the roots of *Zygophyllum eichwaldii*. The structures were established primarily on the basis of NMR spectroscopy and chemical transformations.

As a part of our continuing phytochemical research on plants of the genus *Zygophyllum* which are used in the traditional medicine of Asian countries (Sasmakov et al. 2001; 2003), this paper deals with the isolation and structural elucidation of two new triterpenoid saponins from *Zygophyllum eichwaldii*.

Separation of triterpene-containing fractions of the methanolic extract of the roots of Zygophyllum eichwaldii on a silica gel column (gradient chloroform, methanol and water) led to the isolation of two triterpenes (1 and 2). Saponin 1 was obtained as an amorphous white powder. IR absorptions at 3410, 1734 and 1648 cm<sup>-1</sup> indicated the presence of hydroxyl (OH), ester carbonyl (C=O), and double bond (C=C) functionalities. The olefinic resonances of the aglycone at  $\delta$  128.05 and 138.97, corresponding to quaternary and methine carbons suggested the urs-12-ene skeleton with a hydroxyl group at C-19 (Inada et al. 1987; Ouyang et al. 1997). The <sup>13</sup>C NMR spectral data of 1 were consistent with pomolic acid as the aglycone (Sasmakov et al. 2001). 41 different signals in the <sup>13</sup>C NMR spectrum supported that 1 has a bisdesmosidic structure (Table). This is confirmed by availability of hydrogen anomeric atoms at  $\delta$  5.10 and  $\delta$  6.32 in the  $^1H$  NMR spectra. Acidic hydrolysis of the glycoside yielded pomolic acid as aglycone and arabinopyranose and glucopyranose as sugar parts. The <sup>13</sup>C NMR spectrum of 1 contained signals at  $\delta$  89.41 attributable to C-3 and showing that the hydroxyl group at this carbon is glycosylated. The signals of C-1' carbon atom arabinose at  $\delta$  103.60 and H-1' proton at  $\delta$  5.10 showed that the arabinose is located at C-3 of the aglycone. The downfield shifts of the H-2' and C-2' signals of arabinose compared with those of Ziyu-glycoside I (3)(Table) (Sasmakov et al. 2001; Yosioka et al. 1970) indicated that the sulphate group was in position C-2' of the arabinose. The presence of the -SO<sub>3</sub>H group was con-

 Table:
 <sup>13</sup>C NMR spectral data for triterpene glycosides 1–4

| Atom   | 1      | 2      | 3      | 4      |
|--------|--------|--------|--------|--------|
| 1      | 38.60  | 38.20  | 38.60  | 38.20  |
| 2      | 26.28  | 25.84  | 26.40  | 25.83  |
| 2<br>3 | 89.41  | 89.10  | 88.49  | 89.06  |
| 4      | 39.47  | 38.95  | 39.27  | 38.95  |
| 5      | 55.82  | 55.30  | 55.64  | 55.26  |
| 6      | 18.40  | 18.10  | 18.40  | 18.00  |
| 7      | 33.21  | 32.87  | 33.21  | 32.87  |
| 8      | 40.27  | 39.89  | 40.27  | 39.89  |
| 9      | 47.46  | 47.08  | 47.46  | 47.02  |
| 10     | 36.72  | 36.31  | 36.71  | 36.31  |
| 11     | 23.76  | 23.38  | 23.76  | 23.38  |
| 12     | 128.05 | 127.82 | 128.15 | 127.80 |
| 13     | 138.97 | 138.62 | 138.97 | 138.61 |
| 14     | 41.83  | 41.83  | 41.83  | 41.83  |
| 15     | 28.95  | 28.55  | 28.95  | 28.54  |
| 16     | 25.83  | 25.48  | 25.83  | 25.48  |
| 17     | 48.35  | 48.21  | 48.35  | 48.20  |
| 18     | 54.14  | 53.80  | 54.14  | 53.79  |
| 19     | 72.40  | 72.70  | 72.36  | 72.70  |
| 20     | 41.80  | 41.54  | 41.83  | 41.45  |
| 21     | 26.40  | 26.10  | 26.40  | 26.03  |
| 22     | 37.45  | 37.23  | 37.44  | 37.03  |
| 23     | 27.90  | 27.72  | 27.96  | 27.71  |
| 24     | 16.60  | 16.31  | 16.60  | 16.31  |
| 25     | 15.30  | 14.90  | 15.35  | 14.90  |
| 26     | 17.10  | 16.72  | 17.12  | 16.72  |
| 27     | 24.30  | 23.96  | 24.29  | 23.92  |
| 28     | 176.60 | 176.38 | 176.67 | 176.33 |
| 29     | 26.76  | 26.34  | 26.76  | 26.38  |
| 30     | 16.39  | 15.95  | 16.39  | 15.99  |
| 1'     | 103.60 | 104.30 | 107.28 | 104.2  |
| 2'     | 77.68  | 79.56  | 72.63  | 78.69  |
| 3'     | 73.09  | 78.30  | 74.35  | 74.57  |
| 4′     | 67.58  | 70.57  | 69.25  | 69.31  |
| 5′     | 68.90  | 77.81  | 66.45  | 75.33  |
| 6′     |        | 68.20  |        | 61.70  |
| 1''    | 95.50  | 95.20  | 95.54  | 95.18  |
| 2''    | 73.69  | 73.40  | 73.79  | 73.39  |
| 3″     | 78.66  | 78.25  | 78.66  | 78.22  |
| 4″     | 70.96  | 70.75  | 70.96  | 70.70  |
| 5''    | 78.96  | 78.56  | 78.96  | 78.46  |
| 6''    | 62.06  | 61.72  | 62.06  | 61.79  |

firmed by solvolysis. The cross peaks of the <sup>3</sup>J long range couplings between H-18/C-28, H-1" of glucose/C-28 enabled us to determine the resonance of C-28 and the glucosidations in this position. In addition, the shifts observed on the carbons of the  $\beta$ -D-glucose unit, particularly the values at  $\delta$  95.50 of the anomeric carbon were in agreement with a site of glucosylation at the 28-carboxyl group. Consequently, the structure of compound **1** was established as 3-*O*-[ $\alpha$ -L-2-O-sulphonylarabinopyranosyl]-pomolic acid-28-*O*-[ $\beta$ -D-glucopyranosyl] ester, for which the trivial name zygoeichwaloside H is proposed.



The  ${}^{13}C$  NMR resonance of the aglycone of compound 2 matched well with the aglycone of 1 indicating the same aglycone for both compounds. The occurrence of two anomeric signals at  $\delta$  4.82 and 6.25 in the <sup>1</sup>H NMR spectrum of 2 showed the presence of two sugar units. Acidic hydrolysis of the glycoside gave glucopyranose as sugar component. The existence of a glucose ester at position C-28 was established by comparison of <sup>1</sup>H and <sup>13</sup>C signals of 2 and zygoeichwaloside I (4) (Sasmakov et al. 2001) (Table). The  $^{13}$ C NMR spectrum of 2 exhibited significant glycosidation shifts for C-3 ( $\delta$  89.10) of the aglycone. The signals at  $\delta$  104.30 and  $\delta$  5.10 in <sup>13</sup>C and <sup>1</sup>H NMR spectrum showed that the one of them glucose is located at C-3 of aglycone. The downfield shifts of the H-2' and C-2' glucose signals of 2 indicate that the sulphate group is in position C-2' of the glucose. The presence of the sulphate group was confirmed by solvolysis. Therefore, glycoside 2 was determined to be  $3-O-[\beta-D-2-O-sulphony]$ glucopyranosyl]-pomolic acid-28-O-[β-D-glucopyranosyl] ester (zygoeichwaloside K).

## Experimental

## 1. General

<sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker DRX-500 instrument at working frequencies 500.13 and 125.27 MHz, respectively, in C<sub>5</sub>D<sub>5</sub>N and CD<sub>3</sub>OD at 30 °C with TMS standard. Two-dimensional spectra were measured using standard methods of Bruker. The accuracy of the <sup>1</sup>H and <sup>13</sup>C chemical shifts were 0.01 ppm; of <sup>1</sup>H/<sup>1</sup>H spin-spin coupling constants, 0.2 Hz. IR spectra were recorded on a Perkin-Elmer System 2000 FT IR Fourier spectrometer in KBr pellets; CC: silica gel (0.063–0.16 mm); TLC: silica gel (0.025 mm) and Merck TLC-plates precoated with Si<sub>60</sub>F<sub>254</sub> or Si<sub>60</sub>RP18F<sub>254</sub>. Sugars were chromatographed on plates impregnated with 0.3 M solution of NaH<sub>2</sub>PO<sub>4</sub>. Glycosides and sugars were detected by sprinkling the plates with 15% ethanolic solution of wolfram-phosphoric acid and o-toluidine-salicilate accordingly.

## 2. Isolation

The conditions of extraction and fractionisation have been published (Sasmakov et al. 2001; 2003). The fractions enriched with glycosides 1 and 2 were rechromatographed on a column with silica gel using the mobile phase CHCl<sub>3</sub>–MeOH–H<sub>2</sub>O (70:23:4 to 65:28:5) and yielded 21 mg 1 and 24 mg 2.

## 3. Acid hydrolysis

The appropriate triterpene glycosides **1–2** (5 mg) were dissolved in 5 ml 5%  $H_2SO_4$  and refluxed for 3.5 h at 100 °C. The reaction mixture was diluted with  $H_2O$  and extracted with CHCl<sub>3</sub>. The aqueous layer was neutralized with BaCO<sub>3</sub> and sugars were identified by TLC (n-BuOH–MeOH–H<sub>2</sub>O, 5:3:1) and spraying with O-toluidine-salicilate.

## 4. Solvolysis

The solutions of 1 and 2 in a 1:1 mixture of dioxane and pyridine were heated in a stoppered reaction vial at 120  $^\circ C$  for 4 h. The mixture was diluted with H<sub>2</sub>O and extracted with n-BuOH.

#### 5. Compound 1

IR (KBr, v, cm<sup>-1</sup>): 3410, 2939, 1734, 1648, 1460, 1389, 1238, 1227, 1142, 1072, 836, 773, 649. <sup>1</sup>H NMR ( $C_5D_5N$ ): 3.35 (H-3), 5.57 (H-12), 2.96 (H18), 5.16 (HO-19), 1.29, 0.96, 0.90, 1.20, 1.71, 1.41, 1.08 (3 H, s, 23, 24, 25, 26, 27, 29, 30- CH<sub>3</sub>). 3-*O*- $\alpha$ -L-Arap (2-SO<sub>3</sub>H): 5.10 (H-1), 5.40 (H-2), 4.54 (H-3), 4.36 (H-4), 4.30, 3.80 (H<sub>2</sub>-5). 28-*O*- $\beta$ -D-Glep: 6.32 (H-1), 4.26 (H-2), 4.38 (H-3), 4.49 (H-4), 4.06 (H-5),

4.50, 4.43 (H<sub>2</sub>-6). <sup>13</sup>C NMR spectra: see Table. C<sub>41</sub>H<sub>66</sub>O<sub>16</sub>S

#### 6. Compound 2

M.p. 212–214 °C (MeOH).  $[\alpha]_{D}^{22}$  + 32.3  $\pm$  2° (c 0.4; C<sub>5</sub>H<sub>5</sub>N). IR (KBr, v, cm<sup>-1</sup>): 3418, 2939, 1732, 1648, 1460, 1389, 1238, 1221, 1142, 1072, 836, 773, 649. <sup>1</sup>H NMR (C<sub>5</sub>D<sub>5</sub>N): 3.32 (H-3), 5.53 (H-12), 2.92 (H-18), 5.04 (HO-19), 1.44, 1.16, 0.86, 1.12, 1.70, 1.41, 1.06 (3 H, s, 23, 24, 25, 26, 27, 29, 30- CH<sub>3</sub>). 3-O-\beta-D-Glcp (2-SO<sub>3</sub>H): 4.82 (H-1), 5.02 (H-2), 4.38 (H-3), 4.16 (H-4), 3.90 (H-5), 4.28, 4.48 (H<sub>2</sub>-6). 28-O-\beta-D-

Glcp: 6.25 (H-1), 4.23 (H-2), 4.27 (H-3), 4.29 (H-4), 4.03 (H-5), 4.47, 4.40 (H\_2-6).  $^{13}\mathrm{C}$  NMR spectra: see Table.  $C_{42}H_{69}\tilde{O}_{17}S$ 

#### References

- Inada A, Kobayashi M, Murata H, Nakanishi T (1987) Two new triterpenoid glycosides from leaves of *Ilex chinensis* SIMS. Chem Pharm Bull 35: 841–845.
- 35: 841–845.
  Ouyang MN, Wang HQ, Liu YQ, Yang CR (1997) Triterpenoid saponins from the leaves of *Ilex latifolia*. Phytochemistry 45: 1501–1505.
  Sasmakov SA, Putieva ZhM, Kachala VV, Saatov Z, Shashkov AS (2001) Triterpene Glycosides of *Zygophyllum eichwaldii*. II. Structure of zygoeichwaloside I. Chem Nat Comp 37: 347–350.
  Sasmakov SA, Putieva JM, Saatov Z, Lindequist U (2003) A new triterpene glycoside from *Zygophyllum eichwaldii*. Pharmazie 58: 602–603.
  Yosioka I, Sugawara T, Ohsuka A, Kitagawa I (1971) Soil bacterial hydrolysis leading to genuine aglycone. III The structures of glycosides and genuine aglycone.
- sis leading to genuine aglycone. III. The structures of glycosides and genuine aglycone of Sanguisorbae radix. Chem Pharm Bull 19: 1700-1707.