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Quercetin (QU) is recognized as a promising anticancer drug, but its mechanism remains elusive.
Here we found that QU induced human leukemia cell death in a dose-dependent manner. However, it
did not show a dose-dependent inhibition on ROS generation (indicated by the level of malondialde-
hyde, MDA) in the same cells. QU showed similar antioxidant activity at concentrations of 50, 75 and
100 mM. Consistent with that, the antioxidant, N-acetyl-cysteine (NAC) could only further decrease the
ROS generation and enhance the cell death triggered by QU at the concentrations less than 50 mM.
These results indicate that an additional mechanism is involved in the anticancer activity of high con-
centrations of QU. When the effect of QU on histone acetylation was studied, QU induced significant
histone hyperacetylation at 75 and 100 mM, indicating the possible involvement of histone hyperacetyl-
ation in the anticancer activity of high concentrations of QU. This conclusion was supported by the
findings that when histone acetylation in the cells treated by QU was increased by different concentra-
tions of TSA, the cell death was significantly enhanced. Our results thus provide the first evidence that
QU can induce histone hyperacetylation and this induction of histone hyperacetylation may represent
an unrevealed mechanism in its anticancer activity.

1. Introduction

Quercetin (3,30,40,5,7-pentahydroxyflavone, QU) is one of
the major dietary flavonoids, found in a broad range of
fruits, vegetables and beverages such as tea and wine, with
a daily intake in Western countries of 25–30 mg (Hollman
et al. 1997; Morand et al. 1998), and has been found to
show anticancer activity in different cancer cells and in
animals (Chen et al. 2004a, b; Cipak et al. 2003; Kaneuchi
et al. 2003; Liesveld et al. 2003; Chan et al. 2003; Lee
et al. 2002; Mouria et al. 2002; Kuo et al. 2002; Feng
et al. 2001; Kim et al. 2000; Kawaii et al. 1999; Kang
et al. 1997; Uddin et al. 1995). Among the polyphenols,
QU is one of the most potent antioxidants, as demon-
strated in different in vitro and in vivo studies (Prior 2003;
Duthie et al. 2000; Russo et al. 1999; Bors et al. 1990;
Morand et al. 1998; Hollman et al. 1997), and this antiox-
idant activity is critically involved in its anticancer activity
(Chen et al. 2004a, b; Duthie et al. 2000; Feng et al.
2001).
Histone acetylation contributes to form a transcriptionally
competent environment by ‘opening’ chromatin and
permit access of transcription factors to DNA (Fry et al.
2002; Grunstein 1997), whereas histone deacetylation con-
tributes to a ‘closed’ chromatin state and transcriptional
repression. The balance of histone acetylation and deace-
tylation favors hypoacetylation in tumor cells, while it is
accurately maintained through a balance of histone acetyl-
transferase (HAT) and histone deacetylase (HDAC) enz-

yme activities in normal cells (Archer et al. 1999; Klo-
chendler-Yeivin et al. 2001). Thus increasing the acetyla-
tion of histones in tumor cells through inhibiting the activ-
ity of HDAC has been suggested as an efficient strategy to
combat cancer, and hence HDAC inhibitors are believed
to be promising both as single anti-cancer agents and in
combination therapies (Marks et al. 2000; Hendersona
et al. 2003; Yamashita et al. 2003; Donadelli et al. 2003;
Rosato et al. 2003; Marks et al. 2001; Kim et al. 2003).
Increasing chemicals are found to exert their potent antic-
ancer activity through promoting histone acetylation in
vivo (Carey et al. 2006; Yamashita et al. 2003; Donadelli
et al. 2003; Rosato et al. 2003; Marks et al. 2001), but no
literature is presently available on whether regulation of
histone acetylation is involved in the anticancer activity of
QU. To address this question, the effect of QU on histone
acetylation and cell death was studied in human leukemia
HL-60 cells.

2. Investigations, results and discussion

2.1. Cytotoxicity of QU in human leukemia cells

Treating cells with QU significantly inhibited cell prolif-
eration in a dose- (Fig. 1A) and time-dependent manner
(Fig. 1B). And as the trypan blue exclusion assay showed,
QU treatment also simultaneously increased the trypan
blue-stained cells, indicating the loss of cell membrane in-
tegrity and cell death (Figs. 1C and D).
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2.2. Effect of QU on ROS generation and histone acetyl-
ation in human leukemia cells

Since ROS and histone hypoacetylation are critically in-
volved in the different stages of carcinogenesis (Desh-
pande et al. 2002; Archer et al. 1999; Klochendler-Yeivin
et al. 2001; Lehrmann et al. 2002), both antioxidants and
HDAC inhibitors are thought to be promising anti-cancer
agents (Kang et al. 1999, 2000; Prasad et al. 1999; Drisko
et al. 2003; Conklin 2000; Kang et al. 2005; Marks et al.
2000; Hendersona et al. 2003; Yamashita et al. 2003; Do-

nadelli et al. 2003; Rosato et al. 2003; Marks et al. 2001;
Kim et al. 2003). QU is a naturally occurring strong anti-
oxidant (Morand et al. 1998; Hollman et al. 1997; Duthie
et al. 2000), and the antioxidant activity is believed to play
important roles in the anticancer activity of QU (Chen
et al. 2004a, 2004b; Duthie et al. 2000; Feng et al. 2001).
Thus to test whether histone hyperacetylation is also one
mechanism of QU to exert its anticancer activity, we deter-
minded the level of ROS generation and the acetylation of
histones in HL-60 cells treated by QU at the conditions
where they exhibited cytotoxicity. According to the pre-
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Fig. 1:
Effect of QU on the proliferation and viability
of HL-60 cells. Cells were incubated with dif-
ferent concentrations of QU for 16 h in A and
C; with 25 and 100 mM of QU for the indi-
cated times in B and D. Then cell number (A,
C) and trypan blue-stained cells (B, D) were
measured. Means � SD of three independent
experiments was indicated, n ¼ 3 � 3 cultures
per conditions, *P < 0.05, **P < 0.01 vs. the
control group in A and C
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Fig. 2:
Effect of QU on lipid peroxidation and histone
acetylation in HL-60 cells. Cells were incu-
bated with different concentrations of QU for
16 h in A and C, or with 25 and 100 mM of
QU in B and with 75 and 100 mM of QU in D
for the indicated times. Lipid peroxidation
(MDA content) and histone acetylation were
measured. Means � SD of three independent
experiments was indicated, n ¼ 3 � 3 cultures
per conditions, *P < 0.05, **P < 0.01 vs. the
corresponding control group in A and C



vious report (Gutteridge et al. 1990), lipid peroxidation
(LPO, as indicated by MDA content), resulted from the
direct interaction between in vivo ROS and unsaturated
fatty acid, was used as one representative of in vivo ROS
accumulation. Figure 2A showed that treating cells with
QU led to a marked decrease in the concentration of
MDA. However, QU did not induce a dose-dependent
MDA decrease in cells. QU induced similar MDA de-
crease at 50, 75 and 100 mM, although cell death gradu-
ally increased with the increase of its concentration. QU
treatment caused a rapid, followed by a sustained decrease
in the amount of MDA in HL-60 cells (Fig. 2B). When
the state of histone acetylation was evaluated in differently
treated cells, QU significantly increased the histone acety-
lation in HL-60 cells only at the concentrations of 75 and
100 mM (Fig. 2C). The induction of histone hyperacetyla-
tion by QU was further confirmed by the time-dependent
assay where QU treatment caused a rapid, followed by a
slow increase in the acetylation of histones in HL-60 cells
(Fig. 2D). Collectively, these results firstly found that QU
could also induce histone hyperacetylation, and this induc-
tion of histone hyperacetylation may represent one addi-
tional mechanism in its anticancer activity.

2.3. Effect of NAC and TSA on QU-induced ROS gen-
eration decrease, histone hyperacetylation and cell death

To test the above conclusion, the effect of N-acetylcys-
teine (NAC), a well known antioxidant and trichostatin
(TSA), a well studied HDAC inhibitor (Yamashita et al.
2003; Donadelli et al. 2003; Rosato et al. 2003; Marks
et al. 2001) on QU-induced ROS generation, histone acet-
ylation and cell death was carefully determined. To our
surprise, only in the cells treated by combination of
200 mM NAC with low concentrations of QU (at less than
50 mM), QU further decreased the MDA formation
(Fig. 3A), showed no influence on the histone acetylation
(Fig. 3B), and further enhanced the cell proliferation arrest
and cell death (Figs. 3C and 3D). Combination of 500 mM

NAC with low concentrations of QU obtained similar re-
sults (data not shown). And NAC itself at 200 and
500 mM did not induce significant cell proliferation arrest
and cell death (Fig. 3 and additional data not shown).
Combined with that QU showed dose-dependent activity
to induce cell death but non dose-dependent activity to de-
crease the MDA formation any more at more than 50 mM,
these data further confirmed the existence of additional
mechanisms in the anticancer activity of high concentra-
tions of QU. As we expected, 50 nM TSA showed no in-
fluence on the ROS generation (Fig. 4A), but significantly
increased histone acetylation in the cells treated by QU
(Fig. 4B), and significantly enhanced the cell proliferation
arrest and cell death both in the presence and in the ab-
sence of QU (Figs. 4C and 4D). Combination of 20 nM
TSA with QU obtained similar results, except that 20 nM
TSA itself induced slight but not significant cell prolifera-
tion arrest and cell death (data not shown). These results
strongly indicated the involvement of histone hyperacety-
lation in the cell death induced by QU.
In summary, although additional experiments are needed
to clarify the detailed mechanism on the induction of QU
on histone acetylation, our present study not only provided
the first evidence that QU induces histone hyperacetylation
in human leukemia cells, but also proved the involvement
of this histone hyperacetylation induction in its anticancer
activity. Considering the critical role of histone hypoacetyl-
ation in the different stages of carcinogenesis and the pro-
mising future of the agents being able to improving his-
tone acetylation (Archer et al. 1999; Klochendler-Yeivin
et al. 2001; Lehrmann et al. 2002), this study opened a
new window to further understand the mechanism of QU’s
anticancer activity and evaluate its clinical potential.

3. Experimental

3.1. Reagents

Quercetin, trichostatin A, N-acetyl-cysteine, trypsin, trypan blue, 1,1,3,3-
tetramethoxypropane and thiobarbituric acid were purchased from Sigma
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Fig. 3:
Effect of QU and NAC on lipid peroxidation,
histone acetylation, cell proliferation arrest and
cell viability in HL-60 cells. Cells were incu-
bated with different concentrations of QU, or
its combination with 200 mM NAC for 16 h,
then lipid peroxidation (A), histone acetylation
(B), cell proliferation arrest (C) and cell viabi-
lity (D) were analyzed in different groups.
Means � SD of three independent experiments
was indicated, n ¼ 3 � 3 cultures per condi-
tions, *P < 0.05 vs. the corresponding QU
alone group. The effect of 500 mM NAC was
also detected in these experiments, and similar
results were obtained



(Sigma, St. Louis, MO), RPMI-1640 was purchased from Gibco (Gibco,
Santa Clara, CA). All other reagents are of analytical grade.

3.2. Cell culture and treatment

Human leukemia cells (HL-60) were maintained in RPMI-1640 medium sup-
plemented with 10% fetal bovine serum and 1% penicillin/streptomycin
(equivalent to 100 units/ml and 100 mg/ml, respectively) at 37 �C in a humi-
dified atmosphere containing 5% CO2. After culturing the cells (1�105 cells/
ml) for 24 h, the culture medium was aspirated and replaced with new med-
ium containing quercetin (QU), N-acetyl-cysteine (NAC) and/or trichostatin
A (TSA) where indicated, after that, the different cultures were replaced with
fresh medium containing the corresponding reagents every 24 h.

3.3. Determination of cell proliferation and viability

Cells at 1�105/ml were cultured for 24 h, then treated with QU and/or
other agents at the indicated concentrations, three dishes for each of differ-
ently treated cells were collected every 8 h in the first 2 days, the total and
dead cells were counted respectively by using the trypan blue stain exclu-
sion method under a phase-contrast microscope.

3.4. The malondialdehyde (MDA) assay

After different treatment, HL-60 cells were collected and suspended in the
lysis buffer (Kang et al. 2003). And the suspension was collected after pi-
petting the cell mixture up and down for 20 times. MDA amount in the
obtained suspension was immediately evaluated using a colorimetric assay
as described previously (Ohkawa et al. 1979). All the analyses were per-
formed in triplicate.

3.5. Histone purification and histone acetylation assay

Cells were plated at a density of 2�105 cells/ml, exposed to QU, NAC
and/or TSA as indicated in the presence of 5 mCi/ml [3H] acetate (5.0 Ci/
mmol) for the indicated times. Preparation of histones from HL-60 cells
was done according to Cousens et al. (1979) with the following modifica-
tions: the washed cells were suspended in lysis buffer containing TSA
(100 ng/ml) and PMSF (1 mM). After pipetting up and down 20 times, the
nuclei were washed three times in the lysis buffer and once in 10 mM Tris
and 13 mM EDTA (pH 7.4). The histones were extracted from the pellet in
0.4 N H2SO4. After centrifugation, the histones in the supernatant were
collected by cold-acetone precipitation, air-dried, and 3H-labelled histones
were determined by liquid scintillation counting.

3.6. Statistical analysis

Statistical analysis was performed by analysis of variance (ANOVA post-
hoc Bonferroni), and p < 0.05 or 0.01 were denoted as * or **, respec-
tively.
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