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The aim of this study was to predict the permeability through porous poly (2-hydroxyethyl methacry-
late) (pHEMA) membranes of fluorescein isothiocyanate-labeled dextran molecular weight 4400 (FD-4)
as a model of peptide and protein drug movement. Homogeneous standard membranes were pre-
pared by redox polymerization. Permeability data were predicted by an artificial neural network (ANN)
as a function of polymerization factors, and the accuracy was compared with that of conventional
multiple linear regression (MLR). Good linearity was observed with each model, with the correlation
coefficient of a leave-one-out cross-validation (Rcross) being 0.857 for the MLR model and 0.876 for the
ANN model. The mean bias and mean accuracy for the ANN were somewhat smaller than those of
the MLR. The ANN method provides an accurate quantitative approximation of the permeability coeffi-
cient of FD-4, as judged by conventional MLR, and could be applied to prediction of the non-linear
relation between polymerization factors and the permeability of FD-4.

1. Introduction

Poly(2-hydroxyethyl methacrylate) (pHEMA) has been
studied extensively in the biomedical and pharmaceutical
fields for a variety of applications, including soft contact
lenses (Tighe 1987) and drug delivery (Mack and Kim
1987). Significant attention has also been paid to porous
pHEMA membranes because of their potential use as bio-
functional materials for cellular and tissue engineering
(Oxley et al. 1993; Skelly and Tighe 1979; Haldon and
Lee 1972). The mechanism of drug permeation through a
porous polymer such as pHEMA membrane is not clear in
detail, although it can be expressed generally by Fick’s
diffusion theorem (Higuchi 1963). The combined effects
of various parameters such as porosity, tortuosity, and mi-
croscopic viscosity of water in the pore structure on drug
permeation (Yamane et al. 1998) through a porous pHEMA
membrane (Yanagawa et al. 2006) are too complicated to
be recognized in detail. Nevertheless, prediction of drug
permeation (Lipinski et al. 1997; Simon and Fernandes
2004) through the membrane (Hosoya et al. 2004) is im-
portant in the formulation of pharmaceuticals.
One of the difficulties in the quantitative approach to the
prediction of drug permeation through a porous polymer
is approximating the actual relation between causal factors
and pharmaceutical responses (Takahara et al. 1997; Ta-
kayama et al. 1998). In this regard, several experiments
were carried out to determine the relation between factors
acting on the system and the responses or properties of
the system, and to represent the relation by using software
techniques (Lewis et al. 1999; Hussain et al. 1991). One

of the most popular techniques for the prediction of phar-
maceutical responses, the artificial neural network (ANN),
has been used to solve various problems ranging from in-
terpretation of analytical data, drug and dosage form de-
sign, and biopharmacy to clinical pharmacy (Surini et al.
2003; Takayama et al. 1999). Artificial neural networks
can be applied to quantify a non-linear relation between
causal factors and pharmaceutical responses by means of
iterative training with experimental data.
The aim of this study was to predict the permeation
through a porous pHEMA membrane using fluorescein
isothiocyanate-labeled dextran molecular weight 4400
(FD-4) as a model of peptide or protein drugs. Homoge-
neous standard pHEMA membranes were prepared by re-
dox polymerization. Permeability data were predicted by
the ANN as a function of polymerization factors. The
homogeneity and accuracy of these standard samples has
been verified in the literature. The accuracy of the ANN
method was compared with that of conventional multiple
linear regression (MLR).

2. Investigations, results and discussion

2.1. Prediction of the permeability coefficient of FD-4 by
MLR and ANN

Figure 1 shows typical surface morphology of porous
pHEMA membranes observed by scanning electron micro-
scope (SEM). Numerous pores with irregular shapes were
visible. Fig. 2 shows the permeation profiles of FD-4
through the porous pHEMA membranes and the perme-
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ability coefficient of FD-4 determined from the slope of
the permeation profiles (Table 1). The permeation profiles
and permeability coefficient were significantly different
for the membranes prepared with various amounts of the
initiator and the crosslinker. The larger the amount of in-
itiator, the greater the permeability coefficient. On the
other hand, a larger amount of crosslinker led to a smaller
permeability coefficient.
To understand and estimate the actual relation between
polymerization factors such as the amounts of crosslinker
and initiator and the permeability coefficient of FD-4, a
representation of the linear and non-linear relation was
needed. First, we applied MLR to represent the linear rela-
tion between two causal polymerization factors and the
permeability coefficient as the response variable. From the

MLR analysis relevant to the overall combination of cau-
sal factors, the optimal regression equation was obtained:

Y ¼ 0.221 (� 0.048) X2 � 0.130 (� 0.037) X1X2

þ 0.191 (� 0.108)

n ¼ 27 , s ¼ 0.129 , F (2, 24) ¼ 44.1 , R ¼ 0.887 (1)

where Y is the permeability coefficient of FD-4, X1 is the
amount of crosslinker, X2 is the amount of initiator, n is
the number of data pairs, s is the standard deviation of the
estimates, F (f1, f2) is the observed F value, f1 is the
first degree of freedom, f2 is the second degree of free-
dom, and R is the multiple correlation coefficient.
Although the independent term of X1 was not included in
the optimal equation, the Y value was given as a linear
combination of X2 and X1X2, and the multiple correlation
coefficient (R) was good enough. Thus, the permeability
coefficient of FD-4 (Y) correlated negatively with the
amount of crosslinker (X1) and positively with the amount
of initiator (X2).
Second, we applied the ANN to represent the non-linear
relation between two causal polymerization factors and the
permeability coefficient of FD-4 as the response variable.
As in the MLR approach, when using X1 and X2 in the
input layer and Y as a node in the output layer, the num-
ber of the nodes in the hidden layer was optimized with
Akaike’s information criterion (AIC) as a judging index
together with the “leave-one-out (LOO)” technique (Ta-
kayama et al. 2000). The AIC values of ANN that were
trained for the prediction of the permeability coefficient of
FD-4 as a function of the number of nodes in the hidden
layer are shown in Fig. 3. The ANN learns an approxi-
mate non-linear relation by a procedure called “training,”
which involves varying weight values. Training is a search
process for the optimized set of weight values, which can
minimize the squared error between the estimation and
experimental data of units in the output layer (Takayama
et al. 2003). As a result, two units in the hidden layer
were selected as an optimal structure for the ANN.
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Fig. 1:
Typical SEM micrographs of porous pHEMA
membranes. (a: No. 3, b: No. 6, c: No. 7)
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Fig. 2: Typical permeation profiles of FD-4 through porous pHEMA mem-
branes (~: No. 3, &: No. 6, *: No. 7)

Table 1: LOO-predicted permeability coefficient of FD-4 by MLR and ANN

Formulation
No.

Permeability coefficient
�103 cm2/mina

MLR ANN

Mean � SDa Rangea Mean � SDa Rangea

1 3.54 � 0.31 3.45 � 0.03 3.42–3.49 4.31 � 0.09 4.23–4.40
2 7.91 � 2.41 6.46 � 0.21 6.23–6.65 7.88 � 0.82 7.02–8.65
3 9.86 � 0.92 9.64 � 0.25 9.37–9.86 9.51 � 0.29 9.19–9.76
4 2.91 � 0.66 2.80 � 0.07 2.72–2.84 2.24 � 0.05 2.18–2.28
5 3.65 � 0.23 4.66 � 0.01 4.65–4.67 4.10 � 0.05 4.06–4.16
6 4.99 � 0.93 6.58 � 0.10 6.51–6.69 5.47 � 0.40 5.17–5.91
7 1.72 � 0.13 2.21 � 0.02 2.19–2.22 2.16 � 0.03 2.13–2.20
8 2.79 � 1.40 2.66 � 0.12 2.55–2.79 2.79 � 0.10 2.68–2.89
9 4.18 � 0.91 2.90 � 0.24 2.63–3.10 3.13 � 0.14 2.98–3.24

* Mean � SD and range of three determinations



Figure 4 shows the three-dimensional diagram of the perme-
ability coefficient of FD-4 as a function of the amounts of
crosslinker and initiator. The linear or non-linear relation
between the causal polymerization factors and the perme-
ability coefficient of FD-4 was represented with the re-
sponse surfaces predicted by the MLR and ANN (Fig. 4).
It can be seen that the response surface generated by
ANN was smoother and more concave than produced by
the MLR. Although differences in the shapes of the re-
sponse surfaces were apparent, the two surfaces were
equivalent in that the larger the amount of crosslinker, the
smaller the permeability coefficient. On the other hand,
the larger the amount of initiator, the higher the permeabil-
ity coefficient. A larger amount of crosslinker and a smal-
ler amount of initiator may cause a higher dense three-
dimensional internal structure of a pHEMA membrane.

2.2. Predictive ability of ANN method compared
with MLR

The LOO method of cross-validation (Rcross) was used to
assess the predictive ability of the MLR and ANN meth-
ods. The results for the MLR and ANN models are sum-
marized in Table 1 and the results of the correlation coeffi-
cient (R) and correlation coefficient of the Rcross in
Table 2. The approximation of ANN was significantly
greater, with R ¼ 0.930, than that of MLR, with
R ¼ 0.887 (Fig. 5). Additionally, a good linearity for each
model was observed, with the correlation coefficient of an
Rcross of 0.857 for the MLR model and 0.876 for the
ANN model (Fig. 6).

The accuracy of the ANN method was compared with that
of the MLR using the mean bias and the mean accuracy,
as determined by Eqs. (2) and (3), respectively (Okumura
et al. 2006):

Bm ¼
P

ðXp � XtÞ=Xt

n
� 100 ð2Þ

Am ¼
P

jXp � Xtj=Xt

n
� 100 ð3Þ

where Bm is the percentage mean bias, Am is the percent-
age mean accuracy, Xp is the permeability coefficient pre-
dicted by the LOO method, Xt is the actual permeability
coefficient, and n is the number of experiments. The re-
sults for the MLR and ANN models are summarized in
Table 3. Both Bm and Am were somewhat smaller for the
ANN model owing to the ANN’s superior sensitivity to the
fluctuations of variables where greater non-linearity exists.
Because porous pHEMA membranes are prepared by two
causal polymerization factors, most of the relation between
the response variables and the causal factors are not linear.
These results indicate that the ANN method provides an
accurate quantitative approximation of the permeability
coefficient of FD-4 through porous pHEMA membranes
compared with the conventional MLR method.
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Fig. 3: Akaike’s information criterion (AIC) values of ANN trained for
prediction of permeability of FD-4 through porous pHEMA mem-
branes based on number of nodes in hidden layers
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Fig. 4:
Response surfaces of permeability of FD-4
through porous pHEMA membrane (Y) as
function of amount of TEGDMA as crosslin-
ker (X1) and APS or SMBS as initiator (X2).
Response surface predicted by (a) MLR and
(b) ANN methods

Table 2: Statistic indices for evaluating reliability estimated
by MLR and ANN

Statistic index MLR ANN

R 0.887 0.930
Rcross 0.857 0.876
Bm (%) 7.570 3.709
Am (%) 23.126 19.361

Table 3: Amounts of crosslinker and initiator used to prepare
porous pHEMA membranes

Formulation Crosslinker Initiator
No. mol/L mg/mL

1 0.5 1.0
2 0.5 3.0
3 0.5 5.0
4 1.0 1.0
5 1.0 3.0
6 1.0 5.0
7 1.5 1.0
8 1.5 3.0
9 1.5 5.0



Although MLR is an effective approach for predicting the
permeability of FD-4 through porous pHEMA mem-
branes, somewhat better results were observed with a non-
linear approximation using the ANN method. It was con-
cluded that the ANN method can be a powerful means for
predicting the permeability of drug through porous pHEMA
membranes.

3. Experimental

3.1. Materials

2-Hydroxyethyl methacrylate (HEMA) and FD-4 were purchased from Sig-
ma Chemical Co., St. Louis, MO, USA. Tetraethylene glycol dimethacry-
late (TEGDMA) and quat amine divinylbenzene/styrene copolymer (De-
Hibit 200) were purchased from Polysciences Inc., Warrington, PA, USA.
Ammonium persulfate (APS) and sodium metabisulfite (SMBS) were pur-
chased from Wako Pure Chemical Industries, Ltd., Osaka, Japan. Other
chemicals used were of reagent grade.

3.2. Preparation of porous pHEMA membrane for quantitative analysis

In order to remove the inhibitor 4-methoxyphenol (MEHQ), the HEMA
was passed through an exchange column packed with De-Hibit 200 before
pHEMA synthesis. Crosslinked porous pHEMA membranes were synthe-
sized by redox polymerization. The amounts of crosslinker and initiator
used for various preparations are listed in Table 3. A monomer of HEMA
(1.0 mL) was mixed with TEGDMA as a crosslinker and dissolved in a
mixture with APS and SMBS as an initiator, each in phosphate buffered
saline (PBS; 4.0 mL). Then the mixture was kept for 24 h at 25 �C.

3.3. Permeation studies

The permeability of the model penetrant, FD-4, through porous pHEMA
membranes was evaluated using a water-jacket-type two-chamber diffusion
cell with an available diffusion area of 0.7928 cm2, with each half-cell
volume being 3.0 mL at 37 �C. The cells were clamped to prevent leakage.
A volume of PBS and the FD-4 solution (0.1 mg/mL as the concentration
of FD-4 and 3.0 mL of the total amount) were applied to the receiver and
donor compartment, respectively. A 200 mL sample from the receiver solu-
tion was withdrawn at each interval and replaced by an aliquot volume of
fresh PBS. The concentration of FD-4 in the sample was analyzed using a
microplate luminometer (Mithras LB840, Beltold Japan Co., Ltd., Osaka,
Japan) at an excitation wavelength of 485 nm and emission wavelength of
535 nm. Permeability coefficients were calculated from the slope of the
plot of cumulative amounts of harvested FD-4 as a function of time.

3.4. Data analysis and computer programs

3.4.1. Multiple linear regression

The best combination of causal factors was selected from among 2q – 1
kinds of regression equations (where q is the number of causal factors);
i.e., the overall combination of factors was evaluated. The coefficient of
determination, which had been doubly adjusted by degrees of freedom
(R**2), was used as a judging standard for selection of the optimal combi-
nation of factors (Okumura et al. 2006; Wu et al. 2001):

R��2 ¼ 1� ðp� 1Þ ðpþ qþ 1Þ
ðpþ 1Þ ðp� q� 1Þ ð1� R2Þ ð4Þ

where p is the number of data pairs, q is the number of causal factors, and
R is the multiple correlation coefficient. Computer program ALCORA
(Takayama et al. 2003), written by us to be executable in Windows XP,
was used for the MLR.
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Fig. 5:
Correlation between experimental and pre-
dicted permeability coefficient of FD-4
through porous pHEMA membranes obtained
by (a) MLR and (b) ANN
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3.4.2. Artificial neural network

A general ANN structure has one input layer, one or more hidden layers,
and one output layer. Each layer has some units corresponding to neurons.
The units in neighboring cells between two units are called “weights”. In
each hidden and output layer, the processing unit sums its input from the
previous layer and then applies the sigmoidal function to compute its out-
put to the following layer according to the following equations (Takayama
et al. 2003):

yp ¼
P

wpqxp ð5Þ

fðyqÞ ¼
1

1þ exp ð�ayqÞ
ð6Þ

where wpq is the weight of the connection between unit q in the current
layer and unit p in the previous layer; xp is the output value from the
previous layer, f(yp), that is conducted to the following layer as an output
value; and a is a parameter relating to the shape of the sigmoidal function.
Nonlinearity of the sigmoidal function is strengthened with an increase in
a. In this study, a hierarchical ANN with one input, one hidden, and one
output layer was employed with the amount of TEGDMA or APS and
SMBS as a node in the input layer and the permeability coefficient of
FD-4 as a node in the output layer.
To enable reasonable prediction of each response variable by an ANN,
AIC was applied to evaluate in the optimality of ANN (Takayama et al.
2000):

AIC ¼ ns � ln ðSSÞ þ 2� nw ð7Þ

where ns is the number of data pairs, nw is the number of weights in the
ANN, and SS is the residual sum of squares between the actual and pre-
dicted response variables. An extended Kalman filter was employed as a
training algorithm (Okumura et al. 2006; Murase et al. 1991). This filter
enables the number of training runs to be greatly reduced, and thus the
iteration of training was set at the most to 1000 to avoid over-training
problems. Computer program ANNA (Takayama et al. 2003), written by us
to be executable in Windows XP, was used for the ANN.

3.4.3. Leave-one-out method

The predictabilities of the MLR and ANN models were evaluated by an
Rcross procedure (Aoyama et al. 1990; Lim et al. 2002). As in the MLR
model, this method systematically removes one data pair from the calibra-
tion data set. A MLR model was then constructed on the basis of the
reduced data set and subsequently used to predict the removed data. This
process was repeated for all data so that a complete set of predicted values
was obtained. The ANN model was treated likewise: one data pair was
removed from the training data set, and the ANN was then trained using
the reduced data set. The trained ANN was adopted to predict the removed
data. This process repeated for all data, as with the MLR.
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