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As a general review for the 7th Retrometabolism-Based Drug Design and Targeting Conference, recent
developments within this field are briefly reviewed with various illustrative examples from different thera-
peutic areas. Retrometabolic drug design incorporates two major systematic approaches: the design of soft
drugs and of chemical delivery systems (CDS). Both aim to design new, safe drugs with an improved thera-
peutic index by integrating structure-activity and structure-metabolism relationships; however, they achieve
it by different means: whereas soft drugs are new, active therapeutic agents that undergo predictable
metabolism to inactive metabolites after exerting their desired therapeutic effect, CDSs are biologically
inert molecules that provide enhanced and targeted delivery of an active drug to a particular organ or site
through a designed sequential metabolism that involves several steps.

1. Introduction

Although the drug discovery and development processes have
significantly advanced by increasing insight into the molecu-
lar/biochemical mechanisms of drug action and by improved
and accelerated screening technologies and lead selection
methods, the number of approved new chemical entities (NCE)
has not increased accordingly. This lack of success underlines
the still limited understanding of what makes a good drug,
but also the increasing developmental problems caused by
stringent regulations. There are still too many “me too” drugs
being developed just through limited modifications of known
drugs. Highly touted new technologies, such as combinatorial
chemistry and high-throughput screening (HTS), still have had
no significant impact (Proudfoot 2002). Not enough emphasis is
put on the safety issues. This important component is addressed
by retrometabolic drug design (RMDD) approaches, a general
concept directed toward the design of improved therapeutic
index (TI = TD50 / ED50), which is a reflection of the degree of
selectivity or margin of safety. This type of design diverts the
metabolism of the drugs to novel, non-toxic pathways avoiding
the formation of toxic metabolites. With RMDD, metabolism
does not just happen, but the metabolic route is imposed on the
new drug by design. As is well known, RMDD involves two
basic directions: soft drugs (SD) and targeted chemical delivery
systems (CDS).

2. Soft drug examples and recent developments

The soft drug concept was introduced during the 1970 s (Bodor
1977, 1982, 1984), and since then it has been applied by many
research groups in a large number of therapeutic areas. Compre-
hensive reviews of all major aspects have been published (Bodor
and Buchwald 2000, 2003b). Our laboratory focused mainly on
the design of soft corticosteroids (e.g., loteprednol etabonate,

etiprednol dicloacetate) (Bodor and Buchwald 2006c), soft
�-blockers (e.g., adaprolol) (Bodor and Buchwald 2005), and
soft anticholinergics (e.g., tematropium) (Kumar and Bodor
1996). Detailed quantitative structure-activity relationships
were developed in these drug classes (Buchwald 2007a, 2008;
Buchwald and Bodor 2002, 2004, 2006) by taking into account,
among other things, the size-related effects through a bilinear
LinBiExp model (Buchwald 2005, 2007b). A number of soft
drug approaches both by our laboratories and by many others
already resulted in marketed drugs such as, for example, esmolol
and landiolol, soft �-blockers containing easily hydrolyzable
ester functions (Fig. 1), or remifentanil, a soft opioid analgesic
based on carfentanyl (Fig. 2). Some therapeutic compounds can
also be considered as “accidental” soft drugs, i.e., drugs that
are, in fact, soft drugs even though they were not intentionally
designed as such. For example, methylphenidate, a methyl ester
containing piperidine derivative that is structurally related to
amphetamine (Fig. 3), which is widely used for the treatment of
attention-deficit-hyperactivity disorder (ADHD). As a methyl
ester, it is easily hydrolyzed (Markowitz et al. 2000) to the
inactive (Patrick et al. 1981) acidic metabolite (ritalinic acid).
Thus, methylphenidate can be considered a safe, soft drug,
which is why it is used extensively in pediatric patients.
Soft drug design approaches are widely used in both industrial
and academic settings. Some more interesting developments
include:

1. Soft estradiol analogs developed by Labaree and co-workers
at Yale University (Fig. 4) (Labaree et al. 2001, 2003). These
compounds, while estrogenic, can be used locally for the
treatment of vaginal dispareunia, but are void of systemic
estrogenic activity, due to their facile hydrolytic deactiva-
tion.

2. Hydrolyzable ester containing soft cyclosporin analogs
(Fig. 5) explored at Enanta (Lazarova et al. 2003) for the
treatment of autoimmune disorders.
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Fig. 3: Methylphenidate and its inactive metabolite, ritalinic acid

3. Soft tacrolimus analogs (Fig. 6) (e.g., MLD987) investigated
at Novartis (Hersperger et al. 2004) for inhalation treatment
of asthma.

4. Novel soft cytokine (Fig. 7) analogs developed at Janssen
(Freyne et al. 2005) for inhalation therapy of asthma.

5. Some locally acting soft benzodiazepine analogs
(CNS7259X, CNS7056) of midazolam and bromazepam,
developed at GlaxoSmithKline (Fig. 8) (Kilpatrick et al.
2007; Kilpatrick and Tilbrook 2006; Pacofsky et al 2002;
Stafford et al. 2002).

6. Intended soft mometasone furoate analogs (Fig. 9) investi-
gated at Novartis (Sandham et al. 2004) that, however, did
not fulfill expectations as the highly hindered 17�-esters did
not hydrolyze to the predicted inactive acidic metabolite.
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A similarly positioned thioester in fluticasone propionate
undergoes oxidative and not hydrolytic ester cleavage.

7. Soft amiodarone analogs (Fig. 10) for the treatment of atrial
fibrillation were developed by Aryx Therapeutics (Arya et al.
2009; Morey et al. 2001; Raatikainen et al. 2000) using the
dedicated software “Computer Assisted Soft Drug Design”
(Bodor et al. 1998a) licensed from the University of Florida.
Recent Phase II clinical studies demonstrated the superior
safety profile of budiodarone (ATI-2042) as compared to
amiodarone.

8. Soft cisapride analogs (e.g., ATI-7505) were also developed
at Aryx Therapeutics (Fig. 11) and they also demonstrated
improved activity and safety in clinical trials for gastropare-
sis (Camilleri et al. 2007).
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9. The soft drug approach was recently applied in the field
of anesthesiology (Cotten et al. 2009). Etomidate, an
imidazol-carboxyester type anesthetic is the agent of choice
for use in critically ill patients. However, it causes pro-
longed suppression of adrenocortisol steroid synthesis;
consequently, its clinical utility and safety are limited. A
soft analog MOC-etomidate, (R)-3-methoxy-3-oxopropyl-
(1-phenylethyl)-1H-imidazole-5-carboxylate (Fig. 12), was
strategically designed to undergo ultra-rapid metabolism by
esterases. Indeed, the soft analog was metabolized with a
half-life of 15.4 min in human liver S9 fraction, while eto-
midate did not show any significant hydrolysis in 1 hour.
MOC-etomidate was effective as a hypnotic, but at equipo-
tent doses of i.v. bolus, its soft analog was ultra-short acting:
its duration of activity was one order of magnitude lower
than that of etomidate (2.8 ± 0.4 min vs. 27 ± 7 min). On the
other hand, MOC-etomidate produced no reduction in the
adrenocortical steroid production, whereas an equihypnotic
dose of etomidate produced a statistically significant reduc-
tion. The acidic metabolite is inactive. An accompanying
editorial (Egan 2009) emphasized: “Although the terminol-
ogy is new, soft drug success stories in anesthesiology date
back many years. Perhaps the modern prototype example is

the short-acting opioid remifentanil. [. . .] MOC-etomidate
is the latest example of a novel soft drug under investigation
within anesthesiology. [. . .] The advance of soft drugs [. . .]
has made it increasingly possible for us to fulfill the magic
switch fantasy. [. . . ] the concept certainly makes more pre-
cise and accurate titration of anesthetic effect possible. With
the soft drug trend clearly established, it can be said that
anesthesia is going soft, and it’s a good thing.”

10. The field of antiinflammatory corticosteroids provides one
of the most successful areas for soft drug design (Bodor
1999; Bodor and Buchwald. 2006c). Traditional corticos-
teroids are very useful drugs because of their ability to exert
intense biological effects in almost any organ. They also
tend to have multiple adverse effects that seriously limit
their usefulness. Not surprisingly, the glucocorticoid recep-
tor represents the target with the most number of approved
drugs (together with the histamine H1 receptor) (Overing-
ton et al. 2006). Systemic side effects include, for example,
weight gain, fat redistribution, insulin resistance, myopathy,
osteoporosis, hypertension, increased intraocular pressure,
growth inhibition, and others. Soft drug approaches are par-
ticularly well suited for this area and especially for the
design of novel inhaled, intranasal, or topically applied
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corticosteroids. However, to successfully separate the
desired local activity from systemic toxicity, it is important
to reach an adequate balance between activity/distribution
and rate of metabolic deactivation. We followed a classic
inactive metabolite-based soft drug approach with cortienic
acid, a known inactive metabolite of hydrocortisone, as lead.
Starting from this structure, more than 120 first-generation
soft steroids have been synthesized by modifications of the
17� ester function and the 17� hydroxy function, together
with other changes (introduction of �1,2, fluorination at 6�
and/or 9�, methylation at 16� or 16�). From these first gen-
eration soft analogs, loteprednol etabonate (LE, Fig. 13),
an analog of prednisolone, has been selected for clinical
development on the basis of various considerations includ-
ing therapeutic index, synthetic availability, and “softness”
(the rate and easiness of metabolic deactivation). LE is a
safe and effective treatment for seasonal allergic conjunc-
tivitis, post-operative inflammation, contact lens-associated
GPC, or uveitis (Howes 2000; Ilyas et al. 2004; Noble and
Goa 1998). A very recent paper (Holland et al. 2009) fur-
ther demonstrates the outstanding safety profile of LE. In
these studies, thirty “steroid sensitive” patients who have
undergone corneal transplantation were treated, as usual,
with prednisolone acetate. This treatment caused an aver-
age elevation of intraocular pressure (IOP) to 31.1 mmHg.
Increased IOP after corneal transplant can lead to irreversible
vision loss through optic nerve damage. For this reason, the
patients were switched to LE (LotemaxTM). The IOP in all
cases was reduced during the 21 weeks treatment to an aver-
age of 18.2 mmHg (Fig. 14). It was concluded that switching
to loteprednol etabonate from prednisolone acetate in known
steroid responders was successful in reducing IOP and did
not increase the risk of allograft rejection.

3. Chemical delivery systems

On the other side of retrometabolic design, CDS approaches
provide novel, systematic methodologies for targeting active
biological molecules to specific target sites or organs based on
predictable, multistep enzymatic activation (Bodor and Brewster
1991; Bodor and Buchwald 1997a, 1999). The bioremovable
moieties attached to the drug that is the subject of targeted
delivery include a targetor (T) moiety, which has to achieve
the site-specific targeting, and (optional) modifier functions
(F1...Fn), which serve as lipophilizers, protect certain func-
tions, or fine-tune the necessary molecular properties to prevent

premature, unwanted metabolic conversions. The two main
classes are represented by the enzymatic physical-chemical-
based CDSs, which exploit site-specific traffic properties by
sequential metabolic conversions that result in considerably
altered transport properties and are used for brain-targeting, and
by site-specific enzyme-activated CDSs, which exploit specific
enzymes found primarily, exclusively, or at higher activity at the
site of action and are used for ocular-targeting.
The brain-targeting redox-type CDS was highly successful in
targeting drugs (D) to the brain by exploiting the differen-
tial bidirectional movement through the blood-brain barrier
(BBB) of a lipophilic dihydrotrigonelline–D construct allowing
“lock-in” of the hydrophilic trigonelline+–D in the brain. The
positively charged oxidized drug precursor accumulates behind
the BBB allowing sustained local release of D and sparing in the
same time the whole body from the drug (Bodor and Brewster
1991; Bodor and Buchwald 1997a; Bodor et al. 1975). Among
CDS approaches explored to date (Bodor and Buchwald 2003a),
estradiol CDS (E2-CDS) is in the most advanced investigation
stage: it has completed Phase I/II studies with a new buccal
formulation (Bodor and Buchwald 2006a).
Recently, a group of French researchers (Foucout et al. 2009)
have successfully applied our formerly introduced (Bodor et al.
2002) dihydroquinoline � quinolinium targetor system for
GABA: the lipophilic DHQ–D penetrates the BBB, and oxi-
dation locks in the Q+–D precursor (Fig. 15) (Foucout et al.
2009). Further, a modified targetor was reported by Hassan et al.
(2009). The 1-malonyl-1,4-dihydropyridine� pyridinium moi-
ety was successfully applied for brain targeting (Hassan et al.
2009).

4. Molecular packaging

The CDS approach has also been extended to achieve success-
ful brain deliveries of neuropeptides such as Leu-enkephalin,
thyrotropin-releasing hormone (TRH), and kyotorphin analogs
(Bodor and Buchwald 1999; Bodor and Buchwald 2003b; Bodor
et al. 1992; Chen et al. 1998; Wu et al. 2002). Brain deliv-
ery of peptides is particularly difficult because of their rapid
metabolic degradation by peptidases and their often unfavorable
lipophilicity profile (Bodor and Buchwald 2006b). Therefore,
the successful brain delivery of peptides requires three issues
to be solved simultaneously: enhance passive transport by
increasing the lipophilicity, ensure enzymatic stability to pre-
vent premature degradation, and exploit the lock-in mechanism
to provide targeting. This has been achieved with a complex
molecular packaging strategy, in which the peptide unit is part
of a bulky molecule dominated by lipophilic modifying groups
(L) that direct BBB penetration and prevent recognition by pep-
tidases (Fig. 16). The efficacy of the CDS package was strongly
influenced by modifications of the spacer (S) moiety, which
consisted of strategically used amino acids that ensured the
timely removal of the charged targetor from the peptide, and
the lipophilic (L) moiety. The bulkier cholesteryl group used as
L showed a better efficacy than the smaller adamantine-ethyl, but
the spacer (S) function turned out to be the most important factor
for manipulating the rate of peptide release and pharmacological
activity: proline, proline-proline, or proline-alanine spacers pro-
duced the best in vivo pharmacological effects. Brain-targeting
redox analogs (BTRAs), in which the targetor moiety is not
attached to the peptide from outside, but is integrated within
novel redox amino acid building blocks (Bodor 1997) that
replace the original basic amino acid of the active peptide, have
also been explored for kyotorphin and its analogs (Chen et al.
1998) as well as for TRH in a copycat design (Prokai-Tatrai et al.
2002; Prokai et al. 2004) (Fig. 17).
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On the other hand, former junior associates of the Center
for Drug Discovery at the University of Florida continue to
attempt to hijack the original brain targeting concept based on
differential sequential metabolism of dihydropyridine � pyri-
dinium targetor system constructs (Bodor 1997; Bodor et al.
1992) by breaking up the necessary sequence into prodrugs and
other units, renaming the original components. For example,
the “targetor” is renamed (improperly) as “transport moiety”,
the “spacer(s)” as “scissile linkers” (Prokai-Tatrai et al. 2008;
Prokai-Tatrai and Prokai 2009), and the “brain-targeted redox
analog (BTRA)” (Chen et al. 1998) based on ‘redox amino acids’
(Bodor 1997) as “prodrug-amenable analog” (Prokai-Tatrai and
Prokai 2009). They also compare the in silico predictions for log
P values with three different methods, including BLOGP (Bodor
et al. 1989) and QLogP (Bodor and Buchwald 1997b), conclud-
ing that they “displayed a great array of unrealistic discrepancies
within and among the methods” (Prokai-Tatrai and Prokai 2009)

and that they were “uninterpretable for the compounds involved
in this study” mainly because they “consistently predicted the
pyridinium compounds (. . .) to be significantly more lipophilic
than the corresponding 1,4-dihydropyridines” (Prokai et al.
2004). However, part of this is because they are using unautho-
rized software ignoring the existence of updated versions that
accurately predict the lipophilicity of peptides (Buchwald and
Bodor 1998), even for those that contain the unique dihydropy-
ridine � pyridinium redox components where there is a large
change of several log units (Bodor et al. 1998b, 1999).

5. Conclusion

In conclusion, retrometabolic approaches incorporate two drug
design approaches, the soft drugs and CDSs. These achieve their
drug targeting roles in opposite ways, but they both rely on
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designed metabolism to control drug distribution and action and
to increase safety. These approaches are general in nature, and
the corresponding specific design principles can be applied to
essentially all drug classes.

Acknowledgements: This paper was partially presented during the 7th Con-
ference on Retrometabolism-Based Drug Design and Targeting, May 10–13,
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