ORIGINAL ARTICLES

Laboratory of Bio-Functional Molecular Chemistry¹, Laboratory of Toxicology², Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan

Effect of 70-nm silica particles on the toxicity of acetaminophen, tetracycline, trazodone, and 5-aminosalicylic acid in mice

X. LI¹, M. KONDOH¹, A. WATARI¹, T. HASEZAKI¹, K. ISODA¹, Y. TSUTSUMI², K. YAGI¹

Received September 13, 2010, accepted October 15, 2010 Masuo Kondoh, Ph. D., Laboratory of Bio-Functional Molecular Chemistry masuo@phs.osaka-u.ac.jp Kiyohito Yagi, Ph. D., Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan yagi@phs.osaka-u.ac.jp Pharmazie 66: 282–286 (2011) doi: 10.1691/ph.2011.0778

Exposure to nano-sized particles is increasing because they are used in a wide variety of industrial products, cosmetics, and pharmaceuticals. Some animal studies indicate that such nanomaterials may have some toxicity, but their synergistic actions on the adverse effects of drugs are not well understood. In this study, we investigated whether 70-nm silica particles (nSP70), which are widely used in cosmetics and drug delivery, affect the toxicity of a drug for inflammatory bowel disease (5-aminosalicylic acid), an antibiotic drug (tetracycline), an antidepressant drug (trazodone), and an antipyretic drug (acetaminophen) in mice. Co-administration of nSP70 with trazodone did not increase a biochemical marker of liver injury. In contrast, co-administration increased the hepatotoxicity of the other drugs. Co-administration of nSP70 and tetracycline was lethal. These findings indicate that evaluation of synergistic adverse effects is important for the application of nano-sized materials.

1. Introduction

Nano-sized particles, which have a diameter of less than 100 nm, are widely used in medicine, food, and machinery. With their smaller size, the physical and chemical properties of their constituents change, so that they may be toxic, for example to the lungs or liver, even though macro-particles of the same materials are not (Byrne and Baugh 2008; Nishimori et al. 2009b). Some nano-sized particles show long-term accumulation or a wide distribution in the body (Byrne and Baugh 2008; Nishimori et al. 2009b; Xie et al. 2009; Yang et al. 2008).

Recent reports indicate that some nano-sized particles can generate reactive oxygen species (ROS) on their surfaces, leading to cellular injury (Jin et al., 2008; Sharma et al. 2007; Ye et al. 2010). There are also many drugs that cause adverse effects through the generation of ROS (Ali et al. 2002; Kovacic 2005; Xu et al. 2008). Thus, nano-sized particles might enhance the side-effects of some pharmaceutical drugs. Indeed, we have shown that 70-nm silica particles (nSP70) cause liver injury but that macro-sized silica particles with a diameter of 300 and 1000 nm do not (Nishimori et al. 2009b). Also, when coadministered to mice, nSP70 but not the macro-sized silica particles enhance the toxicity of cisplatin and paraquat (Nishimori et al. 2009a). Surprisingly, co-administration of cisplatin and nSP70 was lethal, suggesting that each chemical may have different synergistic effects in the presence of nano-sized materials. In the current study, to clarify the influence of nano-sized materials on the adverse effects of chemicals, we assessed the toxicity in mice of 5-aminosalicylic acid (an agent for treating inflammatory bowel disease), tetracycline (a broad-spectrum antibiotic), trazodone (an antidepressant), and acetaminophen (a common antipyretic analogue) in the presence or absence of nSP70.

2. Investigations and results

Several reports indicate that 5-aminosalicylic acid, which is used to treat inflammatory bowel disease, causes liver injury and interstitial nephritis (Deltenre et al. 1999; Margetts et al. 2001). Administration of 5-aminosalicylic acid caused an increase in ALT, AST and BUN levels (Fig. 1). Also, nSP70 dosedependently elevated ALT and AST levels. Co-treatment with 5-aminosalicylic acid and nSP70 resulted in higher levels of ALT and AST than nSP70 alone. In contrast, changes in BUN levels in response to 5-aminosalicylic acid were not affected by nSP70.

Next, we investigated effect of nSP70 on tetracycline, a broadspectrum antibiotic. As shown in Fig. 2A and 2B, administration of tetracycline did not elevate biochemical markers for liver injury. In contrast, co-administration with nSP70 resulted in the synergistic induction of liver injury. However, nSP70 alone did not cause kidney injury. Importantly, co-administration of 30 and 50 mg/kg nSP70 with tetracycline resulted in the death of 1 of 4 and 2 of 4 mice, respectively.

Finally, we investigated effect of nSP70 on toxicity of the antidepressant trazodone and the antipyretic analgesic acetaminophen. We found that nSP70 did not have a synergistic effect on the toxicity of trazodone (Fig. 3). In contrast, co-administration of acetaminophen with nSP70 caused synergistic liver injury (Fig. 4).

3. Discussion

In this study, we showed that nSP70 synergistically enhance the toxicity of 5-aminosalicylic acid, tetracycline, and acetaminophen but not trazodone. To avoid direct interac-

Fig. 1: Effect of nSP70 on 5-aminosalicylic acid (5-ASA)-induced toxicity Mice were injected intraperitoneally with 5-ASA at 0 (open column) or 500 mg/kg (gray column) and intravenously with nSP70 at the indicated doses. After 24 h, the serum was collected. Shown are the levels of ALT (A), AST (B), and BUN (C). Data are means ± SEM (n=4)

tions between nSP70 and chemicals in their administration and absorption, nSP70 and chemicals were administered intravenously and intraperitoneally, respectively. Administration of nSP70 alone has been shown to cause liver injury but not kidney injury (Nishimori et al. 2009b). Also, in this study, nSP70 did not enhance kidney injury induced by 5-aminosalicylic acid or tetracycline, two drugs known to be nephrotoxic (Grisham et al. 1992; Kunin 1971). The renal toxicity of cisplatin, another nephrotoxic chemical, was unaffected by nSP70 (Nishimori et al. 2009a). Like 5-aminosalicylic acid, tetracycline, and acetaminophen (Chun et al. 2009; Herzog and Leuschner 1995; Kunin 1971), nSP70 is hepatotoxic (Nishimori et al. 2009b), and we showed here that its co-administration synergistically enhanced liver injury. These findings indicate that nSP70 may enhance the toxicity of certain chemicals. Therefore, it will be important to assess the tissue-specific risk of nano-sized materials.

The nSP70 particles had a lethal effect when combined with tetracycline. The 50% lethal dose of tetracycline is 318 mg/kg by intraperitoneal injection in mice. A previous report showed that 100 mg/kg nSP70 is lethal in 100% of mice (Nishimori et al.

2009b). A single injection of tetracycline (100 mg/kg) or nSP70 (30 or 50 mg/kg) alone was not lethal in this study but a combination of the two was. Co-administration of cisplatin and nSP70 showed a similar synergistic lethal effect. This could be due to an interaction between nSP70 and serum albumin. Tetracycline in the bloodstream can bind to albumin (Popov et al. 1972; Powis 1974). Likewise, serum albumin adsorbs onto nano-sized silica particles (Dutta et al. 2007). When injected intravenously, 100-nm anionized albumin-modified liposomes are taken up by hepatic endothelial cells and Kupffer cells (Kamps et al. 1997), which normally clear chemically modified albumin (Jansen et al. 1991). Thus, tetracycline-bound serum albumin may adsorb onto nSP70, causing it to be taken up by the hepatic endothelial cells and Kupffer cells in the liver where it may accumulate and cause lethal liver damage.

Indirect interactions between chemicals and nano-sized particles mediated by serum albumin may be useful for estimating the toxicity of nano-sized materials. In this study, co-treatment of mice with nSP70 (50 mg/kg) and tetracycline decreased BUN levels compared to tetracycline alone or nSP70 (30 mg/kg) and tetracycline. A similar decrease in BUN levels **ORIGINAL ARTICLES**

Fig. 2: Effect of nSP70 on tetracycline (Tet)-induced toxicity Mice were injected intraperitoneally with Tet at 0 (open column) or 100 mg/kg (gray column) and intravenously with nSP70 at the indicated doses. After 24 h, the serum was collected. Shown are the levels of ALT (A), AST (B), and BUN (C). One of 4 mice died when co-treated with nSP70 (30 mg/kg) and Tet (100 mg/kg), and 2 of 4 mice died when co-treated with nSP70 (50 mg/kg) and Tet (100 mg/kg). Data are means or means ± SEM (n = 2–4)

was also reported in mice co-treated with nSP70 and cisplatin (Nishimori et al. 2009a). However, the mechanism by which these decrease the BUN level remains to be determined.

In conclusion, we found that nSP70 cause synergistic toxicity when combined with some clinically used drugs, although the synergistic effects differ between chemicals. One combination was lethal, and the others resulted in tissue injury. These studies suggest that evaluation of possible synergistic adverse effects with pharmaceutical drugs may be important for assessing the safety of nano-sized particles.

4. Experimental

4.1. Materials

The nSP70 nanoparticles were obtained from Micromod Partikeltechnologie GmnH (Rostock, Germany). The mean diameter of the particles, as analyzed by a Zetasizer (Sysmex Co., Kobe, Japan), was 55.7 nm, and the particles were spherical and nonporous. The particles were stored at 25 mg/ml as an aqueous suspension. The suspensions were thoroughly dispersed by sonication before use and diluted in water. An equal volume of solution was injected for each treatment. Acetaminophen, tetracycline, and trazodone were dissolved in saline solution, and 5-aminosalicylic acid was suspended in 1% sodium salt of carboxy methyl cellulose. All reagents were of research grade.

4.2. Animals

Eight-week-old BALB/c male mice were purchased from Shimizu Laboratory Supplies Co., Ltd. (Kyoto, Japan). Mice were maintained in controlled environment (23 ± 1.5 °C; 12-h light/12-h dark cycle) with free access to standard rodent chow and water. The mice were given 1 week to adapt before experiments. All of the experimental protocols complied with the ethical guidelines of the Graduate School of Pharmaceutical Sciences, Osaka University.

4.3. Biochemical analysis

Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and blood urea nitrogen (BUN) were measured using commercially available kits according to the manufacturer's protocols (WAKO Pure Chemical, Osaka, Japan).

Fig. 3: Effect of nSP70 on trazodone (Tra)-induced toxicity Mice were injected intraperitoneally with Tra at 0 (open column) or 100 mg/kg (gray column) and intravenously with nSP70 at 30 or 50 mg/kg. After 24 h, the serum was collected. Shown are the levels of ALT (A), AST (B), and BUN (C). Data are means ± SEM (n=4)

Acknowledgements: The authors thank all members of our laboratory for their useful comments and discussion. This study was supported by a grant from the Ministry of Health, Labor, and Welfare of Japan.

References

- Ali MM, Frei E, Straub J, Breuer A Wiessler M (2002) Induction of metallothionein by zinc protects from daunorubicin toxicity in rats. Toxicology 179: 85–93.
- Byrne JD Baugh JA (2008) The significance of nanoparticles in particleinduced pulmonary fibrosis. Mcgill J Med 11: 43–50.
- Chun LJ, Tong MJ, Busuttil RW Hiatt JR (2009) Acetaminophen hepatotoxicity and acute liver failure. J Clin Gastroenterol 43: 342–349.
- Deltenre P, Berson A, Marcellin P, Degott C, Biour M Pessayre D (1999) Mesalazine (5-aminosalicylic acid) induced chronic hepatitis. Gut 44: 886–888.
- Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, Addleman SR, Kaysen GA, Moudgil BM Weber TJ (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100: 303–315.
- Grisham MB, Ware K, Marshall S, Yamada T Sandhu IS (1992) Prooxidant properties of 5-aminosalicylic acid. Possible mechanism for its adverse side effects. Dig Dis Sci 37: 1383–1389.
- Herzog R Leuschner J (1995) Experimental studies on the pharmacokinetics and toxicity of 5-aminosalicylic acid-O-sulfate following local and systemic application. Arzneimittelforschung 45: 300–303.
- Jansen RW, Molema G, Harms G, Kruijt JK, van Berkel TJ, Hardonk MJ Meijer DK (1991) Formaldehyde treated albumin contains monomeric and polymeric forms that are differently cleared by endothelial and Kupffer cells of the liver: evidence for scavenger receptor heterogeneity. Biochem Biophys Res Commun 180: 23–32.
- Jin CY, Zhu BS, Wang XF Lu QH (2008) Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 21: 1871–1877.
- Kamps JA, Morselt HW, Swart PJ, Meijer DK Scherphof GL (1997) Massive targeting of liposomes, surface-modified with anionized albumins, to hepatic endothelial cells. Proc Natl Acad Sci U S A 94: 11681–11685.

- Kovacic P (2005) Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer. Med Hypotheses 64: 350–356.
- Kunin CM (1971) Hepatorenal toxicity of tetracycline. Minn Med 5: 532–533.
- Margetts PJ, Churchill DN Alexopoulou I (2001) Interstitial nephritis in patients with inflammatory bowel disease treated with mesalamine. J Clin Gastroenterol 32: 176–178.
- Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y Yagi K (2009a) Influence of 70 nm silica particles in mice with cisplatin or paraquatinduced toxicity. Pharmazie 64 : 395–397.
- Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y Yagi K (2009b) Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm 72: 496–501.
- Popov PG, Vaptzarova KI, Kossekova GP Nikolov TK (1972) Fluorometric study of tetracycline-bovine serum albumin interaction. The tetracyclines-a new class of fluorescent probes. Biochem Pharmacol 21: 2363–2372.
- Powis G (1974) A study of the interaction of tetracycline with human serum lipoproteins and albumin. J Pharm Pharmacol 26: 113–118.
- Sharma CS, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R, Wilson BL Ramesh GT (2007) Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanosci Nanotechnol 7: 2466–2472.
- Xie G, Sun J, Zhong G, Shi L Zhang D (2009) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol, in press.
- Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR de Graaf D (2008) Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 105: 97–105.
- Yang ST, Wang X, Jia G, Gu Y, Wang T, Nie H, Ge C, Wang H Liu Y (2008) Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett 181: 182–189.
- Ye Y, Liu J, Xu J, Sun L, Chen M Lan M (2010) Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol *In Vitro* 24: 751–758.