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that a similar conclusion [A. L. Jain and S. H. Koenig, 
Phys. Rev. 127, 442 (1962)] has been advanced re­
cently with regard to the number of electron ellipsoids 
in bismuth. This latter conclusion is based on a re-
evaluation of extensive bismuth data. 
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INTRODUCTION 

ONE approach to the theoretical study of the 
properties of solids is through the assumption of 

a central pair wise potential function. This approach was 
initiated in the early part of this century by the work 
of Mie1 and Griineisen2,3 and has been developed in 
subsequent years by various people. Although in the 
case of molecules a large number of potential energy 
functions have been examined,4 for solids very few have 
been investigated. 

The conditions that a satisfactory interatomic po­
tential in a crystal must satisfy have been discussed 
recently by Girifalco and Weizer.5'6 Varshni4 has dis­
cussed the requisite shape of a potential for the case of 
diatomic molecules and the same general requirements 
also apply here. 

Born and his collaborators7 have made a detailed 
analysis of the stability of crystal lattices and have given 
conditions that must be satisfied among the elastic 
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constants. For cubic crystals these are: (1) All elastic 
constants are positive. (2) Cn—Ci 2>0. 

For metals, two potential energy functions have been 
used by different workers: 

1. The Mie-Griineisen potential, 

cj)(r)=-a/rm+b/rn; (m<n), (1) 

where a, b, and m, and n are constants. This potential 
function has been used extensively8 by workers in 
solid-state physics. Griineisen employed this function 
in his early investigations on the theory of solids. 
Furth,9 and more recently Dayal and Sharma10 and 
Cole,11 have discussed the applicability of the function 
for a number of solids. Furth finds that this equation 
gives reasonable results for the equation of state, but 
the values of m and n determined by him violate the 
stability conditions for body-centered cubic metals. 
The causes of this anomaly have been discussed by 
Girifalco and Weizer. 

2. The Morse potential,12 

<t> 0 ) = Dle~2^r-ro) - 2<r«<"-°>], (2) 

8 For a partial list of references, see J. R. Partington, An 
Advanced Treatise on Physical Chemistry (Longmans, Green and 
Company, New York, 1952), Vol. III. 
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The Rydberg potential has been applied to a number of body-centered and face-centered cubic metals. 
The parameters of the potential were calculated using the experimental values for the energy of vaporiza­
tion, the lattice constant, and the compressibility. Results have been obtained for the elastic constants, 
for the equation-of-state curves, and for the volume dependence of the cohesive energy. They are compared 
with those obtained using the Morse potential, and with the experimental data. For the elastic constants, 
the results by the two potentials are not very different, but a significant improvement has been obtained 
in several cases for the equation of state and for the volume dependence of the cohesive energy. 
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originally suggested for molecules, has also been used 
for solids.13-16,5,6 In Eq. (2), a and D are constants and 
fo is the equilibrium interatomic distance. 

Recently, Girifalco and Weizer5,6 have made an 
extensive examination of the applicability of the Morse 
potential to 16 face-centered and body-centered cubic 
metals. They have calculated the equation of state and 
the elastic constants. Their results reproduce the general 
pattern of the experimental data, but it seems that a 
closer agreement might be achieved with a different 
form of potential. 

Rydberg17 proposed the following function for di­
atomic molecules: 

U= -Del\ + b{r-re)~]e-h^-^\ (3) 

where De is the dissociation energy, re is the equilibrium 
internuclear distance, and b is a constant. This potential 
has the shape appropriate for a potential function and 
has been found to give better results than the Morse 
potential for a good number of diatomic molecules.4 

I t is of interest therefore to compare the applicability 
of the Morse and Rydberg functions to cubic metals. 
To this end we have calculated the elastic constants 
Cii and C12, the equation of state and the variation of 
cohesive energy with volume using the Rydberg 
potential, for the same 16 cubic metals which were 
treated by Girifalco and Weizer using the Morse 
potential. 

RYDBERG FUNCTION FOR SOLIDS 

For solids, the Rydberg function may be written 

*(*,•) = -Dtl+birtj-rone-^a-ro), (4) 

where 0(V*i) represents the potential energy of two 
atoms i and j separated by a distance r{3, b and D are 
constants, and r0 is the equilibrium distance of approach 
of the two atoms. 

The summation of Eq. (4) over a crystal consisting 
of N atoms is carried out by choosing one atom in the 
lattice to be the origin, adding together its interactions 
with all the other atoms in the crystal, and then 

The left-hand side of Eq. (15) contains experimentally 
known quantities, and the right-hand side is a function 
of bao alone. The values of the ratio Voo/KooUo(ao) a n d 
those of Uo(ao) were taken from Fiirth's paper.9 

Equation (15) was solved for bao by the Newton-
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17 R. Ryberg, Z. Physik 73, 376 (1931). 

multiplying by N/2. Thus, the total energy $ is 

* = -iND E y [ l + 6 ( f y - r o ) ] ^ 6 ^ ^ , (5) 

where r3 is the distance from the origin to the jth atom. 
We shall find it convenient to express the results in 
terms of L and fi defined by the equations 

L=ND/2, (6) 

P=ebr*. (7) 

Let us also write 

r,-= imj
2+nj

2+lfJ^a=Mja) (8) 

where m3a, n3a, l3a are the position coordinates of any 
atom in the lattice and a is the lattice spacing. The 
volume per atom is then given by 

V/N=ca\ (9) 

where c= 4 for body-centered crystals and c = 2 for 
face-centered crystals. 

The total energy is then 

*(<*) = -L0 £ / ll+abM3—bro]e-abMt (10) 

If a0 is the equilibrium value of a at zero temperature, 
then 

$(ao)=i/o(ao), (11) 

where U0(a0) is the energy of sublimation at zero 
temperature and pressure. We also have the relations 

(d$/da) ^=0, (12) 
and 

l/K00=V0o(d^/dV*)ao, (13) 

where Foo and K0o are volume and compressibility, re­
spectively, at zero temperature and pressure. Using (9), 
the above equation may be written as 

1/K00= (l/9cNa0) (dft/da%Q. (14) 

Equations (9), (10), (11), and (14) may be combined 
to give 

9Voo/KmU0(ao) = -bWF(ba0), (15) 
where 

(16) 

Raphson method. The summations on the right-hand 
side were made, using an IBM 1620 computer, over a 
finite lattice for which m3y n3; and l3- each ranged from 
- 1 0 t o + 1 0 . 

The other experimental data used here have been 
summarized in Table I together with the sources.18-20 

18 W. B. Pearson, Lattice Spacings and Structures of Metals and 
Alloys (Pergamon Press, New York, 1958). 

19 American Institute of Physics Handbook (McGraw-Hill Book 
Company, New York, 1957). 

20 C. D. Hodgman, Handbook of Chemistry and Physics (Chemi­
cal Rubber Publishing Company, Cleveland, Ohio, 1961). 
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TABLE I. Data for metals. 

Metals 

fee 
Pb 
As 
Ni 
Cu 
Al 
Ca 
Sr 

bee 
Mo 
W 
Cr 
Fe 
Ba 
K 
Na 
Cs 
Rb 

a 
(10~8 cm) 

2.4751* 
2.0431* 
1.7618* 
1.8073* 
2.0248* 
2.791* 
3.0424* 

1.5734* 
1.5825* 
1.4423* 
1.4332* 
2.5096* 
2.672b 

2.1453* 
3.0801° 
2.85* 

Tempera­
ture 
(°K) 

298 
298 
291 
293 
298 
291 
298 

293 
298 
293 
293 

^298 
293 
293 
293 
293 

Thermal 
expansion 
data from 
reference 

19 
19 
20 
19 
19 
19 

d 

19 
19 
19 
19 
19 

19 

at 
(io-8 

2.4569 
2.0340 
1.7571 
1.8011 
2.0142 
2.7764 
3.0267 

1.5716 
1.5808 
1.4409 
1.4295 
2.4989 
2.6125* 
2.1125* 
3.0225* 
2.7925* 

> 
cm) 

(S°K) 
(5°K) 
(5°K) 
(S°K) 

Deb ye 
(°K) 

88e 

189e 

370e 

301e 

400f 

226e 

170^ 

380e 

286e 

485° 
420e 

113e 

92.1e 

172e 

42e 

58e 

a Taken from reference 18. 
b Taken from reference 19, Table 2e-2. 
0 Calculated from the value at 263 °K given in reference 18 using thermal 

expansion data. 
d Estimated. 
e Taken from reference 6. 
* Reference 19, Table 4f-8. 
« M. W. Holm, Atomic Energy Commission Report IDO-16399 

(unpublished). 

Except for the alkali metals, a values are usually avail­
able at the room temperature. The values for #0 were 
calculated from these by using thermal expansion data. 
Occasionally, the thermal expansion data were not 
available over the whole temperature range. In these 

A. Elastic Constants Cu and C i 2 

Born7 has shown that for cubic monatomic crystals, 
whose atoms are all at rest and interact with a central 
pairwise force, the elastic constants can be calculated 
according to the equations, 

and 

C i i = - £ * » / Z > / * ( r y ) , 
2v i 

Ci2 = Cu=— E w,-2«/D/# (fy), 
2v i 

(17) 

(18) 

where the operator Dj is defined by 

1 d 

Tj drj 
Dj=- (19) 

and v= V/N is the volume per atom. For the Rydberg 
potential, Eqs. (17) and (18) yield 

D/3ab 
C n = E 

2v i 

Dfiab r nifrij2 

C M = E bro 
i L M? 

e-baM^ (20) 

2v 

+b2roa-
M? 

j2 nij2nj2~\ 
b2a2 \e~baMK (21) 

1 Mi J 

TABLE II. Parameters in the Rydberg function. 

Metals 

fee 
Pb 
Ag 
Ni 
Cu 
Al 
Ca 
Sr 

bec 
Mo 
W 
Cr 
Fe 
Ba 
K 
Na 
Cs 
Rb 

ba0 br0 (108 cm"1) 

4.2410 
3.9960 
3.6654 
3.5954 
3.4509 
3.2996 
3.2996 

3.4130 
3.2696 
3.2203 
2.9068 
2.4504 
1.9474 
1.9134 
1.8961 
1.8254 

6.3523 
6.0669 
5.6984 
5.6234 
5.4724 
5.3201 
5.3201 

6.4187 
6.2069 
6.1351 
5.6952 
5.1174 
4.5988 
4.5692 
4.5543 
4.4960 

573.9 
431.2 
298.5 
276.9 
238.1 
204.4 
204.4 

613.3 
496.1 
461.7 
297.4 
166.9 
99.35 
96.45 
95.03 
89.64 

1.7262 
1.9646 
2.0861 
1.9962 
1.7133 
1.0791 
1.0902 

2.1717 
2.0683 
2.2349 
2.0334 
0.9806 
0.7454 
0.9058 
0.6273 
0.6537 

D 
(10-14 erg) 

41.02 
57.76 
75.50 
61.78 
49.07 
29.71 
27.70 

139.1 
175.6 
76.08 
74.69 
26.36 
10.56 
12.40 
8.747 
9.166 

cases, extrapolations were made. The values of the 
parameters in the Rydberg potential are recorded in 
Table II . 

The following physical properties were calculated. 

The calculated values and some experimental values are 
shown in Table I I I . 

TABLE III. Elastic constants and the Griineisen constant y. 
All elastic constants are in units of 1011 dynes/cm2. 

Cu (theoret) Cu (expt) Cu (theoret) G 2 (expt) 

fee 
Pb 5.6082 6.7 (0°K)a 3.8000 5.7 (0°K)a 

Ag 12.808 13.15 (0°K)b 8.8725 9.73 (0°K)b 

Ni 23.256 26.12 (0°K)b 16.606 15.07 (0°K)b 

Cu 17.269 17.62 (0°K)b 12.410 12.49 (0°K)b 

Al 9.3574 12.30 (0°K)b 6.8140 7.08 (0°K)b 

Ca 2.0615 1.5220 
Sr 1.4836 1.0953 

bec 
Mo 
W 
Cr 
Fe 
Ba 
K 
Na 
Cs 

29.315 
35.056 
19.809 
18.393 
1.0873 
0.3407 

46.0a 

50.1a 

23.7a 

0.459 (77°K)a 

28.379 
33.265 
18.670 
16.618 
0.9281 
0.2755 

I7.9a 

19.8a 

14.1a 

_ « . _ _ , . . « , 0.372 (77°K)a 

0.7514 0.945 (90°K)a 0.6057 0.779 (90°K)a 

0.1803 
Rb 0.2360 

0.1451 
0.1886 

2.518 
2.334 
2.232 
2.063 
2.682 
1.266 
1.047 

2.056 
2.018 
1.041 
2.209 
0.721 
1.232 
1.137 
0.818 
0.924 

a J. deLaunay, in Solid State Physics, edited by F. Seitz and D. Turnbull 
(Academic Press Inc., New York, 1956), Vol. 2. 

b G. A, Alers and J. R. Neighbours, Revs. Modern Phys. 31, 675 (1959). 
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B. Equation of State 
According to the Debye model, the Helmholtz free-

energy A is given by the relation 

A=$+3NkT\n(l--er*iT)--NkTD(0/T), (22) 

where k is the Boltzmann constant, T is the absolute 
temperature, 6 is the Debye temperature and 

/ 6\ / T V CBIT ^ 

Kr)-<7)/„ ^'- (23) 

Then the pressure P is 

fdA\ 1 d$ 3yRT /0 

\dV/r 3Nca? da V < ! ) • 
(24) 

where y is Griineisen's constant. 
Equation (24) was solved for y, giving P the value of 

one atmosphere and V the value Nca?, where a is the 
lattice parameter determined experimentally at tem­
perature T. The values of a and T together with their 
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WITH THE EXPERIMENTAL VALUES 
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FIG. 1. (a) to (h) Equation-of-state curves for various metals. Where Rydberg and Morse results overlap 
(e.g., Na, Ba, Al), only one curve has been shown. 

sources are given in Table I, and the values of y so 
determined are given in Table III. 

The predictions by the Rydberg potential for the 
equations of state for the various metals at the tem­
peratures T above are shown in Figs. 1(a) to 1(h), 
together with the experimental data of Bridgman21 and 
the Morse potential curves, as given by Girifalco and 
Weizer.6 

C. Volume Dependence of the Cohesive Energy 

Recently, Benedek22 has deduced the volume de­
pendence of <£ from the shock wave data obtained by 
Walsh et al.2Z He has presented results for six metals, in­
cluding four in our list. The theoretical dependence of 
<£ on volume for these metals was calculated from 
Eq. (10), again at the temperatures indicated in Table I. 
Corresponding results were derived for the Morse 
potential, using the parameters determined by Girifalco 
and Weizer.24 The experimental data and the Rydberg 
and Morse predictions are presented in Figs. 2(a) to 
2(d). The value of $0 (value of <£ at one atmosphere 
pressure and temperature given in Table I), for the 
theoretical curves refers to the "theoretical'' value $o 
for each potential. 

DISCUSSION 

Elastic Constants 

It will be noticed that the theoretical values of the 
elastic constants satisfy Born's requirements. Experi-

21 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 58, 165 (1923); 
60, 305 (1925); 60, 385 (1925); 74, 11 (1940); 74, 425 (1942). 

22 G. B. Benedek, Phys. Rev. 114, 467 (1959). 
23 J. M. Walsh, M. H. Rice, R. G. McQueen and F. L. Yarger, 

Phys. Rev. 108, 196 (1957). 
24 We are indebted to Dr. Weizer for kindly supplying us with 

a list of the values of #300 used by them. 

mental values of Cu and C12 at low or zero temperature 
are available only for four metals in the list; the 
theoretical values are for zero temperature. The results 
obtained here are not very different from those obtained 
by the Morse potential.5,6 In general the results are 
reasonable, but for Mo, W, K, and Na the errors are 
rather large. 

Equation of State 

The Rydberg predictions are considerably better than 
the Morse predictions for Cu, Fe, Ni, W, and Cr, 
slightly better for K, Na, Ca, Sr, Al, and Pb, and worse 
than the Morse predictions for Rb, Cs, and Ag. For 
Ba and Mo the predictions differ from the experi­
mental results by about the same amount. 

For the alkali metals, neither the Rydberg nor the 
Morse5,6 nor the Mie-Gnineisen (see Figs. 6 and 7 of 
Furth9) potential gives satisfactory results, but it is 
interesting that for such metals all three potentials 
show the same general behavior. At low pressures the 
calculated values of AV/V are less than the observed 
ones, and at high pressures they are greater. 

Variation of Cohesive Energy with Pressure 

The Rydberg results are better than the Morse ones 
for Al and Ni, worse for Ag, and about the same as the 
Morse results for Cu. The comparison of theory with 
experiment may not be meaningful in the case of Al 
since the experiments were done using 24ST aluminum 
which is an alloy of 4.5% Cu, 0.6% Mn, and 1.5% Mg. 

The case of Cu is interesting. The equation-of-state 
curve for this metal is fitted much more closely by the 
Rydberg curve than by the Morse curve. The pressure 
dependence of the cohesive energy indicates, at high 
pressures, a preference for the Morse version. Now the 
(<£,F) curve depends directly upon <3? whereas the (P9V) 
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FIG. 2. (a) to (d) The change in the cohesive energy as a function of the volume decrement x= {vi — v)/vi. v± is the volume at P—l 
atm and T=temperature given in Table I for Rydberg results, 300°K for Morse results and 293°K for experimental values. (For all 
practical purposes these differences of temperatures may be disregarded.) $(0) is the cohesive energy at A = Z>I. 
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curve depends upon d$/dV; in other words the (P,V) 
relation is a more sensitive test for correct potential 
shape. Thus, for copper also, the Rydberg potential 
more closely approximates the interatomic interaction. 

Choice of Gruneisen's Constant 

The value of the Grlineisen constant 7 affects the 
($,V) curves of Benedek quite strongly. In fact, the 
discrepancies between Benedek's results and the theo­
retical results could all be removed by judicious adjust­
ment of 7 by at most 20% from the values taken here. It 
is difficult to say what is the correct value for 7 and 
our values, having been obtained by a different method, 
differ slightly from Benedek's. The replacement of our 
values for 7 by those of Benedek would not, however, 
always improve the agreement. 

Girifalco and Weizer have found 7 « 0 for Mo, W, and 

A RECENT study has shown that the substitution 
of manganese in the equiatomic iron-cobalt alloy 

leads to an increase of the mean saturation moment of 
the ternary alloy.1 Furthermore, this effect was found 
to be unique to Mn because all other transition elements 
reduced the mean amount. A search to find similar 
behavior by substitution of such elements as Cr, which 
resembles Mn magnetically in the metallic state, and 
Rh, Ir, and Pt, which exhibit similar increasing effects 
on the saturation moment of Fe, has proved to be 
futile. To attain this unique effect, Mn must fulfill two 
conditions: Each Mn atom must "carry" a larger 
moment than the average moment of the parent Fe-Co 
alloy and its atomic spin must be aligned in a direction 
parallel to that of the Fe and Co atoms. 

An interesting aspect of these findings is related to 
the fact that the binary alloy of Fe and Co containing 
35 a t .% Co has hitherto displayed the highest satura-

1 C. W. Chen, Phil. Mag. (to be published). 

Cu, and a very small value for 7 for Fe. The method 
by which 7 is determined in this work gives a result 
which is rather sensitive to the thermal expansion of the 
lattice constant, (a3oo—&o). The truncation error in the 
experimental data which they have used for do and #300 
is of the same order as (#300— ao) i ° r these metals,25 so 
that the expansion property was "lost" and 7 turned 
out to be nearly zero. 
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25 We may here recall the approximate rule that the total 
relative thermal expansion from 0°K to the melting point of the 
metal, A///0~0.027. Mo, W, Cu, and Fe are all high-melting-point 
elements. 

tion magnetization among all ferromagnetic materials 
at room temperature. Should the substitution of Mn in 
alloys close to this composition continue to increase the 
moment, a new maximum value of saturation magneti­
zation would be reached. I t has not been possible to 
make a trustworthy prediction, however, because of 
numerous conflicting factors. At first glance, such an 
effect seemed quite feasible since the magnetic prop­
erties of Mn-substituted FeCo alloys were found to be 
strikingly similar to those of the dilute Ni alloys, 
despite the difference in their crystal structures. 
Accordingly, Fe-Co alloys with an atom ratio of 
Co:Fe>35:65, which lie on the right side of the peak 
of the familiar Pauling-Slater curves2 might provide an 
electronic structure of the right type for an increase in 
the moment to occur when Mn is incorporated. On the 
other hand, a deduction of this sort could be invalidated 

2 R. M. Bozorth, Ferromagrietism (D. Van Nostrand Company, 
Inc., Princeton, New Jersey, 1951), 1st ed., p. 441. 
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The substitution of manganese in the body-centered cubic iron-cobalt alloys has been shown to either 
decrease or increase the mean saturation moment of the ternary alloys. On the basis of a modified band 
model, this varying effect of Mn may be ascribed to the occupancy of the localized d states of the Mn atoms. 
An increase in the moment is observed when Mn is added to alloys with the atom ratio of Co: Fe ^ 1 in which 
the localized d states are just half filled according to Hund's rule. At lower ratios, however, the localized d 
states become first more than half empty and eventually nonexistent. The rates at which the substitution 
of Mn decreases the mean moment of the latter alloys change accordingly. The proposed electronic structures 
are consistent with observations that the increase of residual resistivities of Fe-Co alloys caused by 1 at.% 
Mn also varies sensitively with the Co: Fe ratio of the host alloy. 


