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The cross section for a bremsstrahlung process in which almost all the energy of an incident high-energy 
electron is transferred to the photon is calculated analytically, using techniques previously developed for 
atomic photoeffect. Only terms of relative orders a4,a2q2, and g4 are neglected, where a^Ze2 and a is the mo
mentum of the outgoing low-energy electron (with :h—c=me=l). Similar results are obtained for positron 
bremsstrahlung and pair production; previous work on the photoeffect is extended. The accuracy of these 
predictions is discussed, and they are compared with experiments. 

I. INTRODUCTION 

CONTRARY to the Bethe-Heitler formula, the 
cross section remains finite for a bremsstrahlung 

process in which the momentum q of the outgoing 
electron is zero. A low-energy electron in the Coulomb 
field does not look like a plane wave, but rather like a 
bound state, and (as was noted by Fano, Koch, and 
Motz1) the process may be viewed as an approximate 
inverse of the atomic photoelectric effect. In recent 
theoretical calculations1-8 the leading terms of an 
expansion in a=Ze2 have been obtained for this 
limiting bremsstrahlung cross section <rtip.

6 For example, 
from previous photoeffect results, o-tip from electrons 
of very high energy k is immediately given as 

crtip= (4:Te2az/k)e-™li- (4*/15)a], (1) 

if terms of relative order a2 are omitted.3 The conver
gence of such a series for large a is evidently uncertain. 
Complications also arise since experiments1,7,8 are 
performed for small but finite q. In the present paper 
we attack both of these problems, by calculating to 
several more orders in a and retaining dependence of 
the cross section on q; our results neglect only relative 
orders a*, a2q2, and g4 in o-tiP from very high energy 
electrons. Only the leading term in 1/k has been retained 
in the expression for the cross section. Furthermore, as 
in Eq. (1), this expression is not a complete series 
expansion in a, since some normalization factors are 
left unexpanded. These factors, as discussed later, are 
not entirely unique; they are chosen to improve the 
apparent convergence of the series of the total cross 
section at the tip. 

We use a formalism previously developed for the 

* Supported in part by the U. S. Air Force through the Air 
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photoelectric effect9,10; the same calculation will also 
give us new results for other related processes. An 
improved version of the formalism is outlined in Sec. II. 
The method requires calculation of successive terms of 
an expansion in the angular momentum I of the low-
energy particle; each term contributes in relative order 
a21. We obtain an expression for the s state cross section 
of any of these related processes, valid neglecting only 
relative 0(#4), etc.; all the remaining conclusions of 
this paper follow directly from this result. First, we 
have new analytical results for s-state photoeffect; 
these are discussed in Sec. I l l and compared with 
previous work.9,10 For other processes we also need the 
results previously obtained for ^-state cross sections.3,10 

Then in Sec. IV we give predictions for the bremsstrah
lung cross section o-tiP from very high energy electrons, 
with the assumption that the low-energy outgoing 
electron is not observed. After discussing the extrapola
tion to finite incident electron energy we compare with 
experiments. In Sec. V we give the analogous results for 
positron bremsstrahlung and for pair production in 
which one member of the pair is of low energy. 

II. GENERAL FORMALISM 

It has been shown3-9 that for any very high energy 
Coulomb-field vertex process in which there is almost 
complete transfer of momentum between a photon and 
an electron or positron, the cross section, integrated 
over all states of the outgoing high-energy particle, is 
determined from the integral11 

/ = / dz dzf dpp e-^-'H- -) F(r/), (2) 

where e is the total energy of the low-energy electron 
in the process. If we sum over the polarizations of the 
high-energy particle, then11 

Ffor'HEW <>(^y«, (3) 

9 R. H. Pratt, Phys. Rev. 117, 1017 (1960). 
10 R. H. Pratt, Phys. Rev. 119, 1619 (1960). 
11 These differ from the corresponding expressions of reference 9 

in that none of the r dependence of the low-energy wave function 
is explicitly extracted from \p. 
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where r and r' are expressed in cylindrical coordinates 
(g,z) and (Q',Z'), and 9 = 9 ' ; under these circumstances 
F depends only on | p | , not g itself. In Eq. (3), x// is the 
wave function of the low-energy electron and the sum 
is over all states of this electron which will not be 
distinguished. In Sec. V we will generalize these results 
to include the cases for which the low-energy particle in 
the process is a positron. 

For the purposes of this paper it is sufficient to take yp 
as a partial-wave solution of the Dirac equation of 
definite j , I, m, and to sum over m. In photoeflect this 
gives us the cross section <TJI from a given shell, which is 
the quantity of direct physical interest. In bremsstrah-
lung, if we do not observe the outgoing low-energy 
electron, the cross section can be written simply as the 
sum of the cross sections for emission of the electron 
into definite partial-wave states, without any inter
ference terms: cr—^ <TJI. Since each ajt is, in principle, 
a physically measurable cross section, the series for <J 
(which resembles a Born series since CFJI^O1) should 
converge even if the Born series does not. Thus, if in 
Eq. (3) we sum over m for fixed j , I, we obtain 

47rF±(V/) 

= kA (r)A (r')Pj (cosco)+ka2B (r)B (rf)Pr (cosco) 

+iaA(rf)B(r) k cos#Pz(cosco) 

d 1 
:=Fsm20 Pi(cosw) \-iaA(r)B(/) 

d cos# J 

X 
d -1 

k cos^/Pz(cosco):T:sin2(9/ Pj(cosw) , (4) 
dcosB' J 

where A(r) and aB(r) are, respectively, the large- and 
the small-component radial wave functions of the 
low-energy particle; the choice of signs ( ± ) corresponds 
to the possible cases j=lzt\, lf—ldLl, & = i + | , co=0 
—0', cosd=z/r, sin#=p/r. 

A technique for evaluating integrals of the form of Eq. 
(2) as a power series in a was developed for the photo-
effect.9 The method is also valid for bremsstrahlung at 
the tip and the other related processes,3 giving a series in 
a and q. I t was shown that if the radial wave functions, 
after removing a factor r7 _ 1 [[where y— (k2—a2)112"] 
and a normalization factor 2V, are expanded in series in 
(ar) and (qr),12 

12 In the form of Eq. (5), the series is written as in ar so that the 
nth coefficient may contain terms like (a/q) to powers as high as 
the nth. 

A(r) = Nry-lY,An(arY, B(r) = Nf*-1T,Bn(ar)», (5) 

where An and Bn are constants, then the ^th term of 
the expansion first contributes to the cross section in 
relative order an or higher, and hence to any desired 
order it is sufficient to replace the sum in (5) by finite 
polynomials in r. Making the transformations 

z= p sinhco, zf~ p sinhc/, (6) 

performing the p integration, making the transforma
tions 

x=o)+i^Tr, y=oi'—i%T, (7) 

and returning the contours to the real axis, the integral 
(2) becomes 

r(27+2) 
.27+2 

X (sinh2y) 

/.00 /»0O 

1 dx dy ($mh2x)(v-k)/2 

J —oo J —oo 

e—i[d(x)-0(y)] 
(7~h)f2_ 

(coshx+coshj) 2^ 2 

T(2y+2+n) sinhs* smhykFn(x,y) 
XL , (8) 

n r (2y+2)e w (cosh#+coslvy)n 

where 

F(x,y)=(rry-lZnPnFn(x,y), 

6{x) = ax+%T(y — k)Sx, 
(9) 

with Sx the usual step function: ± 1 according as x>0 
orx<0.n 

To calculate an s-state cross section neglecting only 
relative 0(a4) , etc., we need in Eq. (5) the first four 
terms of the expansion of A(r) and the first three of 
B(r). Systematically expanding (8) in a and evaluating 
the integrals, we get 

(10) 
e-™Y(2y+2) 4 1 T ( 2 T + 2 + W ) 

1 — 2_^ i r 

47r€2T+2 n==0 en T ( 2 7 + 2) 

where 7 = (1 — a2)112 and 

3 
— I n — z l dijAiAj-\- YL bijBiBj 
IQ, i+2—n,i<2 i+3=n,i<3 

+ E diA^ (11) 

and to the desired order the only nonvanishing coeffi-
13 9(x) differs from that used in the photoeffect papers, since 

there the factors e~5r of the bound wave functions were not 
expanded. The present procedure is simpler, even for photoeffect. 
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cients are 

#00 

#01 

1 TT / 7l7T2\ / 5 25TT 2 \ 
# + 1 )a*- )TT#3 , 

2 6 \ 5 7 6 / \18 5 7 6 / 

1 7T / 7 7TT2\ / 41 TT2 \ 
= #+ W ( —+— W# 

4 20 \48 120/ \400 120/ 

1 / 1 TT2 \ 
— ( — + — )a 
10 \100 180/ 

1 23 
#02= # H 7T#3 

4 300 

1 TT 
— # H a3, #12=-
15 70 

30 

1 TT 
#2H #3 

20 140 

23 
2+ 7T#3 

900 

-1+ 

3 

/25 7T2\ 
-( )a 

\12 6 / 

2^ 5 
2 +—7T# 3 

12 

# 1 3 = a% 

70 

(12) 

15 
6o i= # H 7T#3. &02 = 

4 20 

T / l l 7TT2\ / 2 7T2\ 

Coo= ~ H — # — ( F2—( 1 F 
5 \ 6 3 0 / \75 30/ 

Coi = 

£io= 

£l2 = 

1 
= -#2~ 

2 
1 

3 

1 
=-#2 , 
30 

7T 

6 

/ I 

"(i-

i 6 2 0 : 

<^02 — 

T \ 
— W 
18/ 

3 

10 

2 
—a2-
15 

37 
2 

180 

3 

1 
7T#3 

35 

7T#3, 

1 7T#3, 

70 

Cll 

^30 = 

7 
= —a' 

60 

1 
= — a\ 
10 

3TT 

a 
140 

Equations (10)—(12) are the major result of this paper; 
substitution of specific choices for the radial wave 
function coefficients An and Bn for the low-energy 
particle immediately gives the corresponding s-state 
cross section. 

III. PHOTOEFFECT 

For jRT-shell photoeffect we may take the radial 
coefficients of the bound-state wave function as 

^ o = 2 + 0 ( # 4 ) , £ 0 = - ( l + i a 2 ) + 0 ( # 4 ) , 

^ ! = - 2 + 0 ( # 4 ) , £ ! = l + 0 ( # 2 ) , (13) 

A2=l+0(a?), B2=-i+0(a>), 

^3=-i+0(#2). 
This choice is not entirely unique, since it depends on 
the definition of N in Eq. (5). Then from (10) 

4 1 T(2y+2+n) 

E 
n=o en T ( 2 Y + 2 ) 

) 2 / 4?r 37 
• / n = ~ # 2 ( 1™ #H # 2 

3 \ 15 12 

139 77 7681 
7T2#2H 7T3#3 H 

720 720 6300 •)• 
(14) 

The total cross section for iT-shell photoeffect in the 
limit of high photon energy k may then be written as 

<z2?r-2 

aK=a0- e-™(l-0.837#-0.100a2+0.552a3) J (15) 
€27i+2 

where 
cr0=47re2#5A 7 i = € = ( l - # 2 ) 1 / 2 . (16) 

The term of relative 0(#2) was earlier obtained in this 
way,9 and has recently been verified by Weber and 
Mullin.14 

In the result (15) most, but not all, dependence on a 
has been expanded in series. Factors which have not 
been expanded converge slowly, or appear to worsen 
convergence of the series used, or worsen agreement 
with the exact results obtained numerically.9 Justifica
tion for retaining the factor e~"ira, which appears in a 
natural way in the calculations of all these related 
processes, seems quite strong; there is less justification 
for the other factors and we have here made a somewhat 
different choice than previously,9 in order to be able to 
generalize to the bremsstrahlung problem. 

The unscreened cross section for photoeffect from the 
Li subshell may be obtained in the same way. To the 
same orders as before, the radial coefficients become 

,40=2-i#2, 

^ 2 = 4 ? B2= — 
(17) 

and then 

4 1 T ( 2 7 + 2 + ^ ) 2 
E 1 
n=o en T ( 2 7 + 2 ) 3 

139 

/ 4TT 10 
a2[ 1 a-\ #: 

\ 15 3 

77 7561 
7T2#2 H 7r°#d 71 

720 720 6300 • ) • 
(18) 

The corresponding cross section is 

5271+lg— ira 

tf2s — No

where 
a 3 € 2 7 i+2 

-(l-0.837#+0.214#2+0.561a3) , (19) 

/ l + 7 i \ 1 / 2 

e2)1'2. (20) 

From (15) and (19) we also obtain for the ratio of 
cross sections 

a-2 s /cr l s- | ( l-0.120a2+0.269a3) , (21) 

which shows, in agreement with the numerical calcula
tions,9,10 that the ratio is nearly §• for all elements. The 
numerical and analytical results for the cross sections 
themselves are shown in Table I. 

14 T. A. Weber and C. J. Mullin, Phys. Rev. 126, 615 (1962). 
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TABLE I. High-energy limit of Is and 2s photoeffect. a/a0 is 
given as a function of a: (1) as determined by Eq. (15), (2) by 
machine calculation,*,b and (3) by Eq. (19). 

Is 2s 
(1) (2) (3) (2) 

0.1 
0.3 
0.4 
0.5 
0.6 

0.696 
0.397 
0.317 
0.268 
0.242 

0.699 
0.394 
0.315 
0.260 
0.222 

0.0496 
0.0403 
0.0333 
0.0289 

0.0491 
0.0392 
0.0329 
0.0286 

a See reference 9. 
b See reference 10. 

IV. ELECTRON BREMSSTRAHLUNG 

We now proceed to our main task, to calculate the 
cross section for the high-frequency region of the 
bremsstrauhlung spectrum, in the limit of high incident 
electron energy, neglecting only relative orders a4, 
a2q2, q*, etc., where </<<Cl is the final electron momentum. 
In this approximation, the cross section is simply the 
sum of the partial cross sections for final $ and p 
electrons 

The s-state cross section as can be obtained to the 
desired order from Eqs. (10)—(12); the ^-state cross 
sections, which are of relative 0(a2), are already known 
to the needed order from the L-shell photoeffect work.3'10 

For the 5 state we have 

<rs=[(27re)2/£]7, (23) 

with I as defined in Eq. (2). The radial functions A 
and B of (4) and (5) may be expanded to the needed 
order in r as 

A(r)=-
Gry~12y / 

Ov) r(27+i)v 

XlA0+A1ar+A2(ary+Ad(ar)^J (24) 

Gry-^y / 3 \ 
B(r) = l+-q2 O 0 + 5 i a r + B 2 ( f l r ) 2 ] , 

r ( 2 T + i ) \ 8 / 
where 

( wae 
— 
2q 

)|if+£) g ? - 1 ' 2 ^ ) - 1/2 (25) 

and e= (1+<?2)1/2 is the total energy of the final electron 
and, 7 = 7 i = ( l - a 2 ) 1 / 2 . Note that15 

l i i n G - ^ - 1 ' 2 . 
q-*0 

(26) 

With this choice of normalization TV, the coefficients in 
the radial expansion are given to needed order as 

16 Also note that, in the approximation 

7 = «•.= 1, G=a1 /2(l - e-«™/f)-i/s 

in agreement with the result of reference 3 for the behavior of the 
cross section near the tip. 

A*=2-\<?-\q\ 
A^-2-\<P-\q\ 
A*=i-\{q/a)\ 
As=-i+(2/9)(q/a)\ 

£o=-l+i<72, 
B^l-\{q/a)\ 
B,= -i+k(q/ay, 

(27) 

The terms in (q/a) arise, as already remarked, from 
writing the series in q and a formally as a series in a 
only. Inserting (27) in (10)—(12), and also expanding 
e and 71 in a, we have 

4 1 r(27l+2+n) 
Z 
n=o en r ( 2 7 l + 2 ) 

4TT 13 139 2 / 4TT 16 

In=-a2[ 1 a-\—& 
3 \ 15 4 720 

77 

720 

7241 1 22 

6300 6 315 > 
(28) 

We then obtain for the s-state cross section 

87reV G2e~™ 
- ( l -0 .837a+0.318a 2 

ke* r ( 2 7 i + l ) 

+0.564a8+0.417g2+0.012^2) . (29) 

The normalization in front of this expansion has been 
chosen in such a way that under the formal substitution 
q2—> —a2 the expansion (28) reduces to that of Eq. (14) 
for the iT-shell photoeffect.16 The good convergence of 
the photoeffect result (in the sense that it agrees well 
with the numerical calculations even for large a) 
encourages the hope that the bremsstrahlung result in 
the form of Eq. (29) may also converge fairly well. 

For ^-state bremsstrahlung the cross sections, to the 
desired order, may be written3 

-F{v) 
2xe2a2?I+3 

£ r ( 2 7 i + l ) ' 

where 

and 

/ 3 3 T \ 
m 1 a ) 

3 £ r ( 2 7 2 + l ) \ 140 / 

F(p) = (1+ v-2) (1 - e-*")r\ v=a/q. 

256we2a2^1 

Jva%=F(v) e 

(30) 

(3D 
These results were check by an independent calculation 
using the formalism of Sec. I I ; the dependence on a has 
also been verified by Gavrila17 in his work on L-shell 
photoeffect. 

From Eq. (22) we conclude that the cross section for 
bremsstrahlung near the tip can be described by the 

16 It is easy to see that it is possible to connect the two expan
sions in this way to all orders. For looking at the Dirac equation 
for large and small components, under this substitution the 
continuum wave function with e=(l+^ 2) 1 / 2 becomes the bound 
wave function of total energy (I —a2)112, except for differences in 
normalization. Hence under this substitution, ibrem differs from 
/photo only by a simple normalization factor. 

"Mihai Gavrila, Phys. Rev, 124, 1132 (1961), 
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FIG. 1. High-frequency region of extremely relativistic electron 
bremsstrahlung spectrum for Fe as calculated by (1) Eqs. (22), 
(29), and (30); (2) Eq. (33). The original and modified (see 
reference 18) Bethe-Heitler predictions are also shown. k(da/dk)/ 
ar0

2Z2 is plotted against the energy e of the low-energy outgoing 
electron, where e=kma^~k-\-\ in units of me. 

sum of (29) and (30), each of which has a physical 
meaning. However, it is also instructive to combine 
these terms into one series to facilitate comparison with 
other work5 and for simplicity of calculation. Making 
the replacements 

72 -> 27i , F{v) - » (\+v*)<rKi\ (32) 

the total cross section may be written 

ZireW G2e~™ 
erbrem= (1 - 0.837^+1.45 7a2 

ke* T ( 2 T i + l ) 
+0.255a3+1.556g2-0.297a22), (33) 

which neglects only relative orders a4, a2q2, (f, etc. 
In Fig. 1 we show the predictions of our theory for 

the shape of the Fe spectrum near the tip for highly 
relativistic electrons calculated in two different ways: 
(1) using Eqs. (22), (29), and (30); (2) using Eq. (33). 
The difference between these is mainly due to the added 
e~3 dependence which Eq. (33) gives to the ^-state 
cross sections. For reference we show the corresponding 
Bethe-Heitler prediction, which, of course, is not valid 
in this high-frequency region. We also show the result 
of an analytic extrapolation18 which reduces to the 

18 The extrapolation is performed by multiplying the Bethe-
Heitler prediction (at high energy) by the factor exp[7ra(e/q—1)2 
X\T(l+iae/q)\2/\T(l+ia)\* which tends to unity for high q 
where the original prediction holds. For q<Kl this factor is propor
tional to 1/q, and hence the modified Bethe-Heitler formula 
becomes finite at the tip, with the correct value to lowest order in 
a, and also the correct large characteristic e~™ factor of the tip 
cross section. However, the — 47r#/15 term of the tip is not 
obtained. 

Bethe-Heitler formula away from the tip and is also 
moderately accurate in the tip limit. The results are 
given for the dimensionless quantity k(da/dk)/ar0

2Z2, 
where (da/dk) is the cross section, a is the fine structure 
constant, r0 is the classical electron radius, k is the 
photon energy, and Z is the nuclear charge; they are 
plotted against the energy e of the outgoing low energy 
electron, i.e., against kmax—k+l. 

At the tip, q—>0, and the total high-energy cross 
section is from (33) 

SireWa2^-2 

(Thve1r,(q=0) = -:—z —e-*a{l -0 .837a 
kT ( 2 7 i + l ) 

+ 1 .457G 2 +0 .255G 3 ) . (34) 

The equivalent of the a2 term in the above expansion 
(34) has recently been calculated19 by Deck, Mullin, 
and Hammer5 (to be called the D M H result). The 
difference in the results obtained by (22), (29), and (30) 
and from (33) and (34) and the D M H formula provide 
some measure of the uncertainties in these expansion 
procedures. For the tip, these three methods are nearly 
equal for low-Z elements, differ by a maximum of 2 % 
for Ag(Z=47), and less than 4 % for Th(Z=90) . The 
closeness of these results suggests the choice of Eq. (34) 
for actual calculations because of its relative simplicity. 
I t is instructive to rewrite Eq. (34) with the choice of 
normalization factor of DMH, thus changing both of the 
relative 0(a2) and 0(az) coefficients. The predictions for 
high-energy electron bremsstrahlung cross section at 
the tip obtained from (34) and its modified form are 
shown in Fig. 2 as a function of Z. The difference for 
Ag is only 3 % , whereas for Th it is 35%. 

There are two sources of uncertainty in this calcula
tion of the total cross section at the t ip: (l) the accuracy 
with which we have calculated the s and p cross sections, 
and (2) the contribution from higher partial waves. We 
argue that we have taken expressions which well 
represent the s and p cross sections; for medium-weight 
elements they are certainly quite good, but in the heavy 
elements it is possible that the errors are large (30% 
or more). Again, in medium weight elements the 
contributions of higher states of relative 0(a4) are 
certainly small. But in heavy elements, for which the 
p states contribute about half of the s-state contribution, 
it has been argued3 that the higher shells are also 
important. A calculation of the Estate contribution, 
to lowest order, indicates that its relative magnitude 
is approximately 2a4, and so is large. In Fig. 2 we show 
the modification to the predictions of Eq. (34) due to 
this d-state contribution, and it is fairly sizable for 
large Z. I t thus appears that realistic quantitative 
predictions cannot yet be made for the very heavy 

19 This result, which is only valid through relative 0{a2), has a 
different appearance than Eq. (34) because the choice of unex-
panded normalization factors is not the same. The two results are, 
of course, equivalent if the same factors are retained in the 
normalization. 
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elements, but that accurate results are now available 
for medium-weight and light elements. 

We now wish to compare these results with the recent 
experiments on the high-frequency region of the 
bremsstrahlung spectrum. To do this requires a further 
approximation, since the discussion to this point has 
kept only the leading order 1/k energy dependence of 
the cross section on the energy of the high-energy 
incident electron, and all present experiments are at 
low enough energies so that the deviations from this 
high-energy approximation are sizable. Now, the 
energy dependence of bremsstrahlung and photoeffect 
are the same through order a, and hence from Gavrila's20 

work we know the complete energy dependence of the 
bremsstrahlung cross section through this order.3 A 
function P(fi), such that P ( l ) = 1, multiplies the entire 
cross section, and a function Q(fi), where Q(0) = 0 and 
<3(1)= — 47r/15, further multiplies the term of relative 
order a. Both of these changes tend to increase the cross 
section as 0, the velocity of the incident electron, 
decreases. Our approximation in using this procedure 
for bremsstrahlung, as discussed in reference 3, is the 
neglect of the further energy dependence of the terms of 
relative 0(a2), etc., and we are again encouraged by the 
good results obtained in this way for photoeffect cross 
sections. Our confidence will of course be greater for 
high-energy incident electrons, and we will not discuss 
bremsstrahlung from electrons of energy less than 
2 MeV. 

Using electrons of kinetic energy 15.1 MeV, Fano, 
Koch, and Motz1 measured <rtiP for W and Hall and 
Hanson measured it for Th. For W the result for 
k(da/dk)/Z2 was 1.38±0.41 mb and for Th 1.6±0.16 
mb. The present theory, including d states (extrapolated 
to finite energies), gives 1.41 mb and 1.66 mb with 
rather large uncertainties; the agreement seems accept-
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FIG. 2. Z dependence of high-energy electron bremsstrahlung 
cross section at the tip as calculated by (1) Eq. (34); (2) Eq. (34) 
plus Estate contribution; (3) the equivalent of (34) but with the 
choice of normalization of DMH. k(dar/dk)/ar0

2Z2 is plotted 
against the nuclear charge Z. 
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FIG. 3. Ratio of positron to electron bremsstrahlung cross 
sections for Fe and Th in the high-frequency region; d states are 
not included. The figure may also be interpreted as giving the 
ratio of production of low-energy positrons to production of 
low-energy electrons in high-energy pair production. 

able. For 4.54-MeV electrons on Au, Fano, Koch, and 
Motz1 found 1.8=b0.3 mb, to be compared with 1.7 mb 
from our theory. 

V. POSITRON BREMSSTRAHLUNG AND 
AND PAIR PRODUCTION 

I t is easily verified that the integral / of Eqs. (2) 
and (3) also describes processes involving a low-energy 
positron, if we make the substitution a —» —a. Hence 
the corresponding results are obtained for the high-
frequency region of positron bremsstrahlung simply by 
making this substitution in Eqs. (29)-(33). One must 
note, however, that G(—a) = G{a) exp(—irae/q) and so 
Eq. (26) becomes 

lim G ( - a) = en™ ^ | a | T~1/2. 
g->0 

(35) 

Low-energy positrons do not get near the nucleus, and 
the cross section for positron processes is accordingly 
suppressed, vanishing at the tip # = 0 . For this reason, 
Eq. (34) in the positron case becomes 

Cpos.brem (<? ~ ^ 0 ) = 
Swe2aza2^~2 

pTa—2iraefq 

1 Mihai Gavrila, Phys. Rev. 113, 514 (1959). 

* r ( 2 7 1 + 1 ) 

X (l+0.837a+1.457a2-0.255a3) , (36) 

with a > 0 . Note that well away from the tip, when 
e/</~l, electron and positron bremsstrahlung have the 
same characteristic factor e~Ta. The terms in 4x^/15, 
etc., remain opposite in sign, but the work of Davies, 
Be the, and Maximon21 indicates that they actually 

21 Handel Davies, H. A. Bethe, and L. C. Maximon, Phys. Rev. 
93, 788 (1954). In this paper, the correction to Born approximation 
for high-energy initial and final electron bremsstrahlung is 
proportional to a2 for small Z. Indeed, the expression they obtain 
is even in a. This implies that for large q, electron and positron 
bremsstrahlung are equal. 
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vanish for large q, when a series expansion in q is no 
longer legitimate. We show in Fig. 3 how the ratio of 
positron and electron bremsstrahlung cross sections for 
Fe and Th vary in the high-frequency region of the 
spectrum. The results for Th are, of course, less accurate, 
but they show how the factor e

2ira^~e/q) of the ratio 
keeps the cross sections significantly different much 
further back from the tip. 

Predictions for the two limiting regions of the pair 
production spectrum require no further work. I t has 
previously been shown9 that the cross section for a 
pair production process in which the positron takes 
almost all the energy is identical to the cross section for 

I. INTRODUCTION 

THE virtue of the proton-hydrogen scattering sys
tem is that it is the simplest of the atom-atom1 

type. I t is worthwhile understanding this system as a 
prototype of a more general atom-atom collision thereby 
gaining some confidence in the theoretical methods 
which we would like to apply to these more complicated 
collisions. 

I t would appear that the general atom-atom scatter
ing problem breaks into two natural subgroups. Firstly, 
at high energies (where the relative velocity of the 
atoms is larger than the circulating electron velocities) 
we have the problem of direct collisions (elastic and 
inelastic) and the problem of rearrangement collisions. 
The direct collisions are treated here neglecting re
arrangement. The wave functions thus obtained can 
then be used to calculate the rearrangement collisions. 
The justification for this procedure is that rearrange
ment probabilities are small at high energies.2 

Secondly, at low energies a molecular description is 
more appropriate and direct and rearrangement colli
sions can be treated on almost the same footing.2 Only 
direct high-energy collisions will be treated here. 

1 By atom-atom collision we mean here the collision between 
two heavy bodies. One or both may be ions. 

2 M. H. Mittleman, Phys. Rev. 122, 499 (1961). 

the high-frequency region of the electron bremsstrah
lung spectrum, under the usual assumption of a very 
high energy incident particle. Hence, all results for 
electron bremsstrahlung may be taken over without 
modifications, understanding q again as the momentum 
of the low-energy electron. In the same way, pair 
production in which the electron takes almost all the 
energy is identical with the high-frequency region of the 
positron bremsstrahlung spectrum, with q the momen
tum of the low-energy positron. Figure 3 may hence 
also be interpreted as the ratio of pair production 
cross sections for these two cases, production of low-
energy positrons is suppressed. 

We have in mind the following experiment. A slow 
beam of ground-state atomic hydrogen is crossed with 
a high-energy proton beam. The slow hydrogen beam 
is then allowed to proceed sufficiently long for excited 
states to decay (~10~6 sec) leaving only the metastable 
2S state. The beam then passes through a small elec
tric field where the 2S state is quenched. The resultant 
Lyman a radiation is then detected. This then measures 
the 2S population due to the collisions and cascade 
from higher states. 

In the next section we describe the population of the 
2S level by a calculation by the method of coupled 
states (1S,2S,2P). This method yields a result in sharp 
disagreement with so-called distorted-wave methods2,3 

but in qualitative agreement with the second Born 
approximation.4 The reasons for this are discussed. The 
method of closely coupled states is known to be an 
approximation to a more exact optical potential 
method.5 The modifications introduced by this last 
method are also briefly discussed. 

In the third section the population of the higher 

3 D. R. Bates, Proc. Phys. Soc. (London) 73, 227 (1959). 
4 A. E. Kingston, B. L. Moiseiwitsch, and B. G. Skinner, Proc. 

Roy. Soc. (London) 258, 273 (1960). The second Born approxi
mation is not calculated exactly here. Only the 15, 25, and 2P 
states are allowed of the infinite, set of intermediate states. 

6 M. H. Mittleman and R. Pu, Phys. Rev. 126, 370 (1962). 
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The excitation of the metastable state (25) of atomic hydrogen by fast protons is discussed. The direct 
excitation cross section of 25 is calculated from a coupled set of equations (15, 2S, 2P). The indirect popula
tion of the 25 state by excitation to higher states with subsequent cascade to the 25 state is described by 
Born approximation. The calculation is shown to apply to a fast crossed beam experiment. 


