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Ultrasonic Attenuation in Antimony. II. de Haas-van Alphen Oscillations*! 
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De Haas-van Alphen oscillations in the magnetoacoustic attenuation in single crystals of antimony were 
measured at 1.2°K in the range of fields from 4000 to 9100 G for the field in the x-z, y-z, and x-y planes. In 
addition to the carriers observed by Shoenberg, new carriers are seen. Evidence of nonellipsoidal behavior of 
the Fermi surface of the new carriers is observed. 

INTRODUCTION 

ULTRASONIC sound has in recent years proved to 
be a powerful tool for investigating the band 

structure of metals and semimetals. There are three im
portant ultrasonic effects: cyclotron resonance,1*2 geo
metric resonance (GR),2 - 5 and de Haas-van Alphen 
oscillations (dHvA).6-7 The first occurs by resonant ab
sorption of sound energy when the cyclotron frequency, 
or a submultiple of it, is equal to the sound frequency. 
The condition for observation is O>CTV>>I, where coc is the 
usual cyclotron frequency. Geometric resonance results 
from a variation in the interaction of the electron with 
the sound wave when the orbital diameter of the elec
tron is a multiple of the sound wavelength. To observe 
this effect one must have ql^>l, where q is the sound 
wave number and I the mean free path. The third effect, 
which is quantum mechanical, as opposed to the other 
two which are semiclassical, occurs when the energy 
separation of adjacent Landau levels is greater than 
kT; in addition to this condition the electron must be 
able to complete many orbits before being scattered 
which again requires a>c7v>>l. 

Cyclotron resonance could not be observed because 
the relaxation times in our samples were too short for 
the frequencies we had available. Geometric resonance 
was observed and is reported by Eckstein in the pre
ceding paper.8 This paper reports the results of de Haas-
van Alphen oscillations in antimony. 

THEORY 

A theory for ultrasonic dHvA oscillations has been 
given by Stolz.9 His theory is not self-consistent and 
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neglects relaxation time effects. We will assume with 
Onsager10 that the period of the oscillations is given by 

A(l/H) = eh/ca, (1) 

where H is the magnetic field; A (1/27) = l/H — l/Hi+h 

where i and i-\-l are maxima or minima of successive 
oscillations, and Q is the extremal cross-sectional area 
of the Fermi surface in momentum space perpendicular 
to the magnetic field. The constants e, h, and c, are, 
respectively, the charge of the electron, Planck's con
stant, and the velocity of light. 

The crystal structure of antimony is rhombohedral. 
If we assume for the Fermi surface of antimony the 
three-ellipsoid model of Shoenberg,11 we have for the 
principal ellipsoid: 

2nhoEF=:c(iipx2+a22py2+aMpz
2+2a2zpypz, (2) 

and 

aii+3a22 «22+3an 
2m0EF = px

2-\ py2+azzpz2 

4 4 

+awpypz±'yJ3pxpzdz^3(a22—aii)pxpy, (3) 

for the principal ellipsoid rotated ±120° about the z 
axis, where z is the threefold axis, x the binary, and y 
the bisectrix. This is the most general ellipsoidal surface 
allowed by symmetry. 

The periods of the dHvA oscillations derived using 
Eqs. (1), (2), and (3) are, with H in z-y plane, g||#, and 0 
from z axis: 

*9; eh 

CMQEF 

-[«II«22 cos20+ana:33 sin20 

- 2a33an sin0 cos0]1/2, (4) 

/ 1 \ eh r 
w — j = 0:110:22 cos20+o:23a:iisin0 cos0 

3(0:220:33—o:232)+0:330:11 # " ] 1 / 2 
1 

-sin20 (5) 

with H in z-x plane, q\\y, and 0 from % axis: 

» L . Onsager, Phil. Mag. 43, 1006 (1952). 
11 D. Shoenberg, Proc. Roy. Soc. (London) 345, 1 (1952). 
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eh 

\ H / i CWIQEF 

O eh r 
- QJna22 COS2^=±:'\^Q:23«H sin0 cos0 

2,3 C ^ O ^ F L 

(a22a33~ a 2 3 2 )+3ana33 ~|1/2 

-sin20 (7) 

with H in x-y plane, #||£, and 8 from x axis: 

<L) -

\H/2,d CMQEFL 

-[(0:220:33—a23
2) cos 20+ana 33Sm 20] 1 / 2 , (8) 

(«22Q!33 — «232) 
- COS20 

a33ail+3(a!22a:33 — Qf23
2) 

• s in 20 

1/2 

(9) 

The subscript 1 refers to the principal ellipsoid and 2, 3 
to the nonprincipal ellipsoids. The components of the 
reciprocal mass tensor ai3- are related to the mass tensor 
niij of Shoenberg by the relations 

mo 0:33^0 
w n = — , m22= 

a n 0:220:33—0:23 

0:22^0 023W0 

mn= 
0:220:33—0:23 

W 2 3 = 

EXPERIMENT 

Antimony from the Ohio Semiconductor Company, of 
quoted impurity content less than one part per million, 
was formed into single crystals by the Czochralski 
method. The crystals were oriented to within 1° by 
Laue back-diffraction x rays, and cut into suitable 
samples approximately 1 cm in thickness and 1 cm2 

in area. The first samples were cut with an acid string 
saw, using equal mixtures of concentrated H F and 
concentrated HNO3. The surfaces were then ground 
parallel to better than 10~2 mm over the surface of the 
crystal with an automatic abrasive lapper. This method 
of lapping was found to do considerable damage to the 
crystals and so was discarded. On later samples a spark 
cutter and planer were used and this improved the mean 
free path by a factor of 10. The mean free path at 1.2°K 
obtained from observing the number of oscillations in 
geometric resonance was approximately 1 mm which 
was significantly longer than at 4.2°K. All data pre
sented here were taken on the l^ter crystals at 1.2°K. 

Quartz #-cut transducers of fundamental frequency 
12 Mc/sec, and gold plated in a manner described by 
Huntington12 were bonded to both sides of the sample. 

Dewor 
Helium Bath 
Transducer 
Modulation Coils 

—[sĥ nt]— 
Electronic 
Magnet 

X -Y 
Recorder 

5 H. B. Huntington, Phys. Rev. 72, 321 (1947). 

FIG. 1. Block diagram of experiment. 

With this method of plating, electrical connections 
proved no problem. The bond used was Dow Corning 
No. 200 silicone fluid of viscosity 2.5X106 centistokes. 
This substance is still plastic at helium temperatures. 
Of the many bonds tried, this one was found to be the 
only suitable one. 

A standard cryogenic arrangement with a dual coaxial 
line sample holder was used, and the temperature of the 
helium bath was controlled by pumping. The coaxial 
lines were terminated with the transducers and no at
tempt at impedance matching was made. An elec
tronically controlled magnet of maximum field 9200 G 
was used. Calibration of the magnet was done with 
nuclear magnetic resonance. The stability of the magnet 
was one part in a thousand. 

Pulsed 12-Mc/sec rf power from an Arenberg pulsed 
oscillator was applied to the first transducer, propagated 
as an acoustic wave through the sample, received by the 
second transducer at the opposite face of the sample, 
detected by a low-noise superheterodyne receiver, and 
displayed on an oscilloscope. With this arrangement we 
could make certain that the electronics was working and 
that both transducer bonds were satisfactory. For the 
actual measurements we used the less direct though 
more sensitive derivative method of Reneker because of 
the small amplitude of the oscillations. A block diagram 
is shown in Fig. 1. In this scheme, continuous 12-Mc/sec 
power from a Hewlett-Packard 608 C oscillator replaced 
the pulsed oscillator. Modulation coils attached to the 
magnet and driven by a power amplifier, which was in 
turn driven by a 40-cps oscillator, caused an oscillating 
change in attenuation which was demodulated by a 
phase-sensitive detector. A narrow bandwidth is first 
achieved by a Twin-T amplifier of bandwidth Af/f 
—1/40. A phase-sensitive detector synchronously recti
fies the 40-cps signal. The resulting dc signal can then be 
integrated to further reduce noise fluctuations. This 
further reduces the bandwidth down to a value as small 
as 1/25 cps in our unit. The rms Johnson noise is given 
by E2=AkTRAf so that the reduction of the necessary 
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FIG. 2. A typical set of oscillations. 

2-Mc/sec bandwidth of the pulsed method to the 1/25 
cps of the continuous method increases the signal-to-
noise ratio by more than 1000. The field was increased 
slowly enough to avoid integration time errors. The 
output of the phase-sensitive detector was applied to the 
y axis of a brown x-y recorder, while the output of a 
calibrated shunt recorded the current in the magnet on 
the x axis. Since the dHvA oscillations in antimony are 
quite close together for the fields used in this experi
ment, a scheme was used to magnify any portion of the x 
axis by subtracting a known dc voltage and using a 
high-sensitivity shunt. Since the attenuation of the 
sound wave is given by A = Aoe~aL

y a small change in the 
magnetic field H causes a change Aa = (da/dH)H=oAH 
and the attenuation to first order becomes AA/AH 
=Aoe~aL(da/dH)H=0' This derivative action reduces the 
amplitude of oscillations at high fields by a factor 1/H2 

and emphasizes more rapid oscillations. We see that the 
derivative technique is sensitive to only a narrow range 
of periods since long periods are suppressed by the 
action of the derivative and one would expect short 
periods to be damped by an exponential factor con
taining the effective mass. 

DISCUSSION 

A typical set of oscillations is shown in Fig. 2 while a 
plot of the oscillation number n vs 1/H from which the 
period was obtained is shown in Fig. 3. In a typical 
sample, oscillations were seen above 4000 G. The 

FIG. 3. The 1/H 
plot for the previous 
oscillations. 

amplitude of the oscillations was larger at 1.2°K than 
it was at 4.2 °K. Plots of the observed periods vs angle 
are shown in Figs. 4-6 together with the data taken by 
Shoenberg. Oscillations for q\\x were typically much 
weaker in amplitude. Comparison of the values of the 
observed periods in the x-y plane to those of Shoenberg 
showed that in this plane the carriers observed are those 
he analyzed; in the other two planes evidence of another 
carrier is observed in addition to the carriers of Shoen
berg which are now seen only over a limited range of 
angles. Since our data agree with Shoenberg wherever 
his carriers are observable, we may conclude that the 
oscillations we observe are of the dHvA type. 

Equations (4)-(9) can be rewritten in the form 

[A(1/H)J= ~A cos(2d+<j>)+B = e2c2/k2a2. (10) 

A least-squares fit of our new data to Eq. (10) was made 
for the dominant periods in each of the three planes 
with the following results: 
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FIG. 4. Observed periods for H in the y-z plane and q\\x. 

A <B is the equation of an ellipse, A —B is a parabola, 
and A > B is a hyperbola. I t will be noticed that in every 
case the least-squares fit is slightly hyperbolic. This 
behavior was also observed by Eckstein. Cohen13 has 
pointed out that such nonellipsoidal behavior is to be 
expected for small band gaps and large anisotropy. 
There are not enough data to determine the extra 
parameters necessary to fit the surfaces he described. All 
analysis was carried out using an ellipsoidal model. 

Since A is equal to B within experimental error we 
take only the sum A+B in this discussion. We have 
with the tilt angle <j>, three experimental results for the 
new carriers. Since this is insufficient to determine an , 
«22, «33, and a23 we will combine the present data with 
those of Eckstein. The combined data are shown in 

* M. H. Cohen, Phys. Rev. 121, 387 (1961). 
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TABLE I. Summary of experimental data. 

Observed area in momentum space of (0.722±0.14)X10~40 cgs 
the x-z plane (q\\x) 

Observed area in momentum space of (0.828=L0.17)X10~40 cgs 
the y-z plane (q\\y) 

Observed angle of minimum area for H 4°±1° 
in the y-z plane (q\\x) 

Observed maximum projected momen
tum of x-z plane on the z axis (q\\x) 

Observed maximum projected momen
tum of y-z plane on the z axis (q\\y) 

Observed angle of minimum momen
tum for H in the y-z plane (q\\x) 

(0.350±1.7)XlO-20cgs 

(0.430±2.2)X 10-20 cgs 

3°±1° 

Table I. To compute the elements of the reciprocal mass 
tensor, we have to know which ellipsoid is making the 
dominant contribution to the period. Two possibilities 
were found that fit the data. The best combination 
found was to assume Eckstein was observing the non-
principal ellipsoid for H in the y-z plane and the 
principal ellipsoid for H in the x-z plane while the present 
experiment observed the principal ellipsoid for H in the 
y-z and x-z planes. 

The second possibility was to assume that with the 
field in the y-z plane, and we both observed the non-
principal ellipsoid while for the field in the x-z plane, we 
both observed the principal ellipsoid. If for the first 
possibility we use Eqs. (4) and (6) together with Eqs. 
(lb), (2a), and the tilt angle of Eckstein, then the data 
of Table I take the form: 

Present experiment 

(a) ana3 3=(0.626±0.025)X102 8£F
2 , 

(b) a 2 2 a 3 3 -a 2 3
2 = (0.477±0.019)X1028£,2, 

(c) 2a 2 3 / (a 3 3 -a 2 2 ) = 0.140±0.04; 

Eckstein 

(d) a 3 3 -3a 2 3
2 / ( a n +3a 2 2 ) = (1.485±0.059)X1014EF, 

(e) (a22«33-«232)/«22= (0.984±0.039) X1014EF, 

(f) 4a23o:1i/[3(Qj22a33—a23
2)+«33«n—4ana22] 

= 1.05±0.04. 

For the second possibility we use Eqs. (5) and (6) 
together with Eqs. (lb) and (2a) and the tilt angle of 
Eckstein and get: 

Present experiment 
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FIG. 5. Observed periods for H in the x-z plane and q\\y. 

Present experiment 

(c) 4a23an/[3(Q;22Q;33—a23
2)+a;33Q:1i—4ano;22] 

= (0.14±0.04), 

Eckstein 

(f) 4a23an/[3(a22a33—a23
2)+a33an—4ano:22] 

= (0.105±0.04). 

Possible values of the elements of the reciprocal mass 
tensor derived from these two sets of expressions are 
shown in Table I I . 

TABLE II . Values of aij for new carriers derived from 
experimental data. 

Possibility 1 Possibility 2 

an=0.0067 Xl014£i, 
a22=0.4506Xl014E2r 
«33=95.8Xl014£ i, 
a23 = 6.60Xl014£i, 

aii = 0.0128Xl014£i, 
a22 = 0.562 X10UEF 

a33 = 84.2Xl014£i, 
a23=6.84Xl014& 

The fit is better for the first possibility but the 
anisotropy is greater. Considerations as to which periods 
should have been observed in a derivative technique 
lead us to discard the first possibility. I t will be noticed 
that the anisotropy is very large. Introduction of non-
ellipsoidal model would probably reduce this anisotropy. 
I t will be noticed that in every case the periods of the 
new carriers disappear when the field is perpendicular 
to cross sections of the Fermi surface of large area. To 
investigate these portions of the surface, high fields will 
be required. A principal axis transformation on the 

FIG. 6. Observed 
periods for H in the 
x-y plane and q\\z. 

40 60 80 100 
$ from y axis 
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reciprocal mass tensors reveals that the Fermi surface is 
disk shaped. 

CONCLUSIONS 

An ellipsoidal fit has been made to the Fermi surface 
of the new carriers. The fit is in all likelihood a distortion 
of the true surface. Analysis beyond the data given in 
Table I should await high-field dHvA measurements. 

I. INTRODUCTION 

TH E renewal of interest in the anharmonic 
properties of solids during the last few years 

draws attention to the problem of determining the 
force constants which appear in the theory of lattice 
dynamics. For the case of central forces, the inter
atomic potential can be characterized by two parame
ters, the well depth and the equilibrium interatomic 
separation. These are determined by measurement of 
the sublimation energy of the crystal and of its lattice 
spacing, respectively. The force constants are then 
obtained directly by differentiation of the interatomic 
potential with respect to the atomic separation. How
ever, it has been shown1 that a potential, such as the 
Mie-Lennard-Jones (w,6) potential, does not give very 
good agreement with the experimental data available 
for the inert gas solids for any of the values m= 10, 11, 
12, 13, 14. The parameter m is a measure of the steep
ness of the repulsive part of the potential well. I t has 
been suggested1 that a third term might reasonably be 
added to the Mie-Lennard-Jones potential. If this 
term represents the dipole-quadrupole contribution to 
the van der Waals energy, the interatomic potential 
will have the form 

0 (r) = Ar~m+Br-*+Cr-s, 

where r is the interatomic separation. Since there are 
now three parameters apart from m in the expression 
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for <p(r), it is necessary to have experimental data in 
addition to that mentioned above in order to determine 
the third parameter. Though difficult to obtain in the 
case of the inert gas solids, the elastic constants are an 
obvious choice for this purpose. Therefore, it seems 
worthwhile to set forth here relations between the 
elastic constants and the force constants. Furthermore, 
in obtaining these relations we ascertain the number of 
independent force constants which arise in the lattice 
model under consideration.2 This information is im
portant when one is considering the possibility of 
extending a nearest neighbor, central force theory to 
noncentral forces, and further neighbors. I t must be 
emphasized that the force constants are derivatives of 
the potential energy evaluated at the minimum of the 
potential energy, and that in the relations which we 
obtain, the elastic constants are also appropriate to 
the configuration which corresponds to the minimum 
of the potential energy. Since dynamic effects are 
excluded, the relations which we obtain correspond to 
elastic constants at the absolute zero of temperature in 
the approximation for which there is no zero-point 
motion. In order to determine these elastic constants 
from the experimental data, the zero-point energy of 
the lattice must be taken into account and the temper
ature dependence of the elastic constants must be 
determined. This problem will not be considered here. 

2 The independent force constants for fee and bec lattices with 
nearest neighbor interaction have also been obtained by G. 
Leibfried and W. Ludwig in Solid State Physics, edited by F. Seitz 
and D. Turnbull (Academic Press Inc., New York, 1961), Vol. 
12. 
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The symmetry properties of a lattice are used to relate the second and third order force constants to the 
elastic constants of the lattice and to ascertain the number of independent force constants. Explicit relations 
are obtained for a face-centered cubic lattice with*nearest neighbor interaction between atoms, and for a 
body-centered cubic lattice with nearest and next-nearest neighbor interactions. Corresponding relations 
are obtained for central forces in these two lattices. 


