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vanish for large q, when a series expansion in q is no 
longer legitimate. We show in Fig. 3 how the ratio of 
positron and electron bremsstrahlung cross sections for 
Fe and Th vary in the high-frequency region of the 
spectrum. The results for Th are, of course, less accurate, 
but they show how the factor e

2ira^~e/q) of the ratio 
keeps the cross sections significantly different much 
further back from the tip. 

Predictions for the two limiting regions of the pair 
production spectrum require no further work. I t has 
previously been shown9 that the cross section for a 
pair production process in which the positron takes 
almost all the energy is identical to the cross section for 

I. INTRODUCTION 

THE virtue of the proton-hydrogen scattering sys­
tem is that it is the simplest of the atom-atom1 

type. I t is worthwhile understanding this system as a 
prototype of a more general atom-atom collision thereby 
gaining some confidence in the theoretical methods 
which we would like to apply to these more complicated 
collisions. 

I t would appear that the general atom-atom scatter­
ing problem breaks into two natural subgroups. Firstly, 
at high energies (where the relative velocity of the 
atoms is larger than the circulating electron velocities) 
we have the problem of direct collisions (elastic and 
inelastic) and the problem of rearrangement collisions. 
The direct collisions are treated here neglecting re­
arrangement. The wave functions thus obtained can 
then be used to calculate the rearrangement collisions. 
The justification for this procedure is that rearrange­
ment probabilities are small at high energies.2 

Secondly, at low energies a molecular description is 
more appropriate and direct and rearrangement colli­
sions can be treated on almost the same footing.2 Only 
direct high-energy collisions will be treated here. 

1 By atom-atom collision we mean here the collision between 
two heavy bodies. One or both may be ions. 

2 M. H. Mittleman, Phys. Rev. 122, 499 (1961). 

the high-frequency region of the electron bremsstrah­
lung spectrum, under the usual assumption of a very 
high energy incident particle. Hence, all results for 
electron bremsstrahlung may be taken over without 
modifications, understanding q again as the momentum 
of the low-energy electron. In the same way, pair 
production in which the electron takes almost all the 
energy is identical with the high-frequency region of the 
positron bremsstrahlung spectrum, with q the momen­
tum of the low-energy positron. Figure 3 may hence 
also be interpreted as the ratio of pair production 
cross sections for these two cases, production of low-
energy positrons is suppressed. 

We have in mind the following experiment. A slow 
beam of ground-state atomic hydrogen is crossed with 
a high-energy proton beam. The slow hydrogen beam 
is then allowed to proceed sufficiently long for excited 
states to decay (~10~6 sec) leaving only the metastable 
2S state. The beam then passes through a small elec­
tric field where the 2S state is quenched. The resultant 
Lyman a radiation is then detected. This then measures 
the 2S population due to the collisions and cascade 
from higher states. 

In the next section we describe the population of the 
2S level by a calculation by the method of coupled 
states (1S,2S,2P). This method yields a result in sharp 
disagreement with so-called distorted-wave methods2,3 

but in qualitative agreement with the second Born 
approximation.4 The reasons for this are discussed. The 
method of closely coupled states is known to be an 
approximation to a more exact optical potential 
method.5 The modifications introduced by this last 
method are also briefly discussed. 

In the third section the population of the higher 

3 D. R. Bates, Proc. Phys. Soc. (London) 73, 227 (1959). 
4 A. E. Kingston, B. L. Moiseiwitsch, and B. G. Skinner, Proc. 

Roy. Soc. (London) 258, 273 (1960). The second Born approxi­
mation is not calculated exactly here. Only the 15, 25, and 2P 
states are allowed of the infinite, set of intermediate states. 

6 M. H. Mittleman and R. Pu, Phys. Rev. 126, 370 (1962). 
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The excitation of the metastable state (25) of atomic hydrogen by fast protons is discussed. The direct 
excitation cross section of 25 is calculated from a coupled set of equations (15, 2S, 2P). The indirect popula­
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Born approximation. The calculation is shown to apply to a fast crossed beam experiment. 
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(up to w=6) levels is calculated by Born approxima­
tion. The probabilities for the decay to the 2S level 
are then obtained from tables.6 The resultant popula­
tion of the 25 from higher levels is then given. This 
procedure can be justified as follows: Firstly, the Born 
approximation is probably fractionally better for the 
highly excited states than for the 25 excitation. 
Secondly, the cross section for excitation of the higher 
states is smaller than that for excitation of 25 so 
fractional errors are reduced, and finally the proba­
bility of decay to the 25 is small (a maximum of ~0.12) 
so that the fractional error in the total 25 population 
is still further reduced. 

II. METHOD OF COUPLED STATES 

We are concerned here with relative energies of the 
order of keV. At these energies the proton wave packets 
can be made extremely small so that a classical de­
scription of the proton motion is sufficient. In addition, 
the cross section for appreciable proton deflection is 
small so that we may approximate the proton motion 
by a classical unaccelerated motion, the usual impact 
parameter method.7 The Schrodinger equation for the 
electron can then be written 

f d 2 
i—hV2H 

\dt | x— R/21 | x + R / 2 | 
U(x,o = o, (i) 

where 
R = b + V / . (la) 

Here b is the impact parameter and V is the relative 
velocity of the two protons. Dimensionless quantities 
are used, distances being measured in Bohr radii and 
energies in rydbergs. The lab frame energy of the 
proton is given by £ = 2 5 keVX (F/2)2 . We chose an 
initial state with the electron centered on the proton 
at - R / 2 . 

l fc=$x(x+R/2) e x p [ - i ( V - x / 4 ) - i ( ^ 1 + F 2 / 1 6 ) / ] , (2) 

here $ i is the ground state of the complete set of hydro-
genic states, $w, with eigenvalues Wn. 

[y2+(2/x)+Wn¥>n(x) = 0 (3) 

We may expand the total wave function in terms of 
these states as 

*(x,0 = E»a»(0*»(x+R/2) 
X e x p [ ~ i ( V - x / 4 ) - i ( F 2 / 1 6 + T ^ n ) 0 . (4) 

Substitution of (4) into (1) with some obvious manipu­
lation yields the coupled set 

&n 1 Z^m V nm{t)(lni (5) 

6 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Academic Press Inc., New York, 1957), 
p. 266. ' 

7 These approximations are discussed more fully in reference 
2 where Eq. (1) is derived. 

where 

Vnm(t)= d*X<S>n(x+R/2)~ 
| x - R / 2 | 

X M x + R / 2 y ^ - H - > . (5a) 

The initial condition can now be written 

lim an(t) = 8ni. (6) 
t->—00 

The infinite set of coupled equations (5) is of course 
intractable. We could arbitrarily cut off the sum in (4) 
at N and then determine the an variationally.8 We 
would then arrive at Eqs. (5) with the sum truncated 
as in (4) at N. Another method for determining an is 
the so-called optical-potential method. We can arrive 
at a finite set of coupled equations for an except that 
now Vnm in (5) is replaced by an equivalent potential 
Vnm to be determined from an integral equation.6 

1 

3>f Aj 
(7) 

Here Afl is the propagator of the unperturbed elec­
tron. I t should be pointed out that the infinite set of 
states has been removed from (5) at the expense of 
including it in (7). This is in principle exact. The diffi­
culty arises from our inability to solve (7). We may 
attempt the solution by iteration. The leading term 
agrees with the previous method. We may attempt to 
obtain corrections from the next term 

T) (2)= V V V • 
v nm / f y nj * jm* 

i>N Aj 

(8) 

This sum has been investigated previously.9 Its exact 

FIG. 1. Ratio to first Born approximation of: A, distortion ap­
proximation; B, second Born approximation; C, coupled states. 
The points x are optical-potential calculations. 

8 N . C. Sil, Proc. Roy. Soc. (London) 75, 194 (1960). 
9 M. H. Mittleman, Ann. Phys. (New York) 14, 94 (1961). 
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evaluation was not possible. However, its large distance 
(large \R\) behavior could be obtained. If for example 
we chose to keep the ground and first excited levels in 
our sum of (5), then it is known that the long-range 
potential on the electron is given incorrectly. The IP 
state supplies only 0.65 of the correct polarizability. 
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The situation is even worse for some of the off-diagonal 
elements of Do* Vis^s has a long-range behavior which 
is essentially e~mR. The correction Vis,2s(2) behaves 
like 1/JR4. We emphasize again that the short-range 
behavior of V(2) was not obtainable. The question of 
where the "long-range behavior" is indeed the true 
behavior of e0(2) could be answered at least qualita­
tively.9 The result is that the distance at which the 
asymptotic behavior takes over increases with energy. 
Thus, at high energies we are only able to find the true 
long-range behavior where its effects are negligible. 

We could also obtain an approximation to 1)(2) for 
high energies.9 The principal effect there is to give "0 
an imaginary part representing excitation to all the 
states omitted from the sum in (5). We shall see in the 
next section that this is not a large effect so that its 
contribution was not included in (5). Finally we might 
point out that the optical-potential method for arriving 
at (5) is not variationally based. We may, therefore, use 
the wave function obtained from (5) to obtain a 
variational correction to the cross section due to the 
long-range or inelastic effects mentioned above.5 

We have solved (5) in the approximation of keeping 
the (15), (25), (2P0), and (2Pi) states10 in (5). First, 
we use just Vnm for the potentials in (5). The ratio of 
the cross section11 for 25 excitation from this calcula­
tion to the first Born approximation is shown in Fig. 1. 
The distortion approximation in which only Vis,is, 
V2s,2s, and V2S,is are kept, and the second Born ap­
proximation4 are also shown in ratio to first Born 
approximation. Note that the second Born approxima­
tion is in qualitative agreement with our result while 
the distortion approximation goes in the wrong direc­
tion from the Born approximation. This may be under­
stood qualitatively. The distortion approximation in­
cludes phase factors in the approximation to (4) which 
makes the overlap integral of the Born approximation 
oscillate more rapidly2 thus reducing the result. The 
increase in the cross section, above the Born value in 
the other two curves, comes from the transition to the 
25 state via the strongly coupled 2P state which is 
coupled to the ground state by an allowed transition. 
Fixplicit calculations show that at large impact pa­
rameters the amplitude for direct transition to the 
25 state behaves like e~(mb while the indirect transi­
tion through the IP state behaves like e~^mhlv. The 
second may dominate at high velocities. Both the 
second Born approximation and our calculation con­
tain this term. 

We have also obtained solutions12 to (5) when the 
long-range approximation for eU(2) was included. A 

10 The 2P, m = ± 1 states enter symmetrically so that only their 
sum need be kept. 
11 The cross section is obtained as 

FIG. 2. (a) Born approximation cross section for the excitation 
of the level (n,l) in units of (71-a2). (b) Born approximation cross 
section for the excitation of the level (n,l) in units of (xa2). 

<r»=lim 2TT fK' bdb\an(t,b)\2-
t-**> Jo 

12 These calculations were carried out with an IBM 650. Thanks 
are due to Tom Haritani for his invaluable assistance. 
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TABLE I. Probability of 25 population from 

n \ 0 

3 0 
4 0.0494 
5 0.0654 
6 0.0690 

1 

0.118 
0.118 
0.119 
0.120 

2 

0 
0.0302 
0.040 
0.046 

3 

0 
0.011 
0.016 

state (nl). 

4 

0 
0.005 

5 

0 

reasonable cutoff was included for each term. These 
are shown as points in Fig. 1. They are not to be taken 
seriously. They certainly overestimate the magnitude 
of the effects they represent. 

The corrections due to excitation of higher states 
which are neglected in (5) can be estimated by evaluat­
ing (8) in the high-energy limit.9 The results of (5) 
can then be used to find the contribution of this high-
energy limit. These give an estimated correction to 
curve C in Fig. 1 of no more than 10% in the direction 
of lowering the curve. 

III. CONTRIBUTION FROM HIGHER STATES 

The proton may excite higher states during the colli­
sion which may decay and populate the 2S state. We 
are therefore interested in the probability that a given 
state will decay to 26*. This may be obtained from the 
tables6 of transition probabilities between the various 
levels. We must simply add the probabilities of the 
various cascades. The results are given in Table I. 

The cross section for excitation of these states has 
been calculated in the Born approximation. The result is 

16 C dzk 
<Tnlm=— / — \\nlm(k)\*d(kz-Wn/V), (9) 

where 

- / • 

X»ta,(*)= d»y$nim*(y)$is(y)eik-«, (9a) 

FIG. 3. 2S cross section in units of (ira2). 

and the excitation energy is Wn= 1 — i/n2. The summa­
tion over the magnetic quantum number may easily 
be performed. The resultant cross sections are shown 
in Figs. 2(a) and (b). 

The total 2S population is obtained by multiplying 
these curves by the appropriate number from the 
tables and summing. We then add the contribution 
from the direct excitation of 2S represented by curve 
C in Fig. 1. This contribution from excited states is 
small compared to the direct contribution; about 1% 
at 7 = 2 and about 10% at V=7. The result is shown 
in Fig. 3. 

The remarkable similarity of the curves for fixed I, 
could be used to extrapolate to higher n values. We 
could then sum over all n. This must be done with 
care. The lifetimes of the higher n states are longer. 
The number of such states which must be included 
depends on the experimental situation since only those 
states which can decay to 2S in the time between the 
excitation and the observation should be included. 
Strictly speaking, only those cascades which can end 
in the 2S in the available time should be included. 


