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The magnetic moment of a negative muon bound in the field of a nucleus is slightly less than the moment of 
a free muon. The binding corrections to the moment have been calculated accurately for a number of nuclei, 
using realistic nuclear charge distributions. Polarization of the nucleus and of the atomic electrons by the 
muon also give rise to significant corrections to the muon moment. Precise determinations of the magnetic 
moment of heavy mu-mesonic atoms afford a way to test for possible structure of the muon which might 
be exhibited through the polarization of the muon in the strong electric field of the nucleus. The theoretical 
and experimental g values are in reasonably good agreement in view of the uncertainties about chemical 
and solid state magnetic shielding effects. 

I. INTRODUCTION 

IN 1958 Hughes and Telegdi1 drew attention to the 
fact that the magnetic moment of a negative muon 

bound in an atomic orbit is altered from the moment of a 
free muon, and that the magnitude of this alteration 
is sensitive to the size of the nucleus. Measurements of 
magnetic moments of mu-mesonic atoms have recently 
been reported2 which are precise enough to demonstrate 
the binding effect and the finite nuclear size effect. We 
present here the results of theoretical calculations of 
the magnetic moments for a number of elements.3 

We limit attention at the outset to zero spin nuclei, 
since experiments have only been done for such nuclei 
and would be much more difficult for a nucleus with 
nonzero spin due to the depolarization of the muon 
associated with the muon-nucleus hyperfine structure 
interaction. Further, we consider that the muon is bound 
in a Is orbit about the nucleus. We also assume an elec­
tronic structure with zero total angular momentum 
which usually requires that the mesonic atom in fact 
be a singly charged ion; this point is discussed in Sec. IV. 

Corrections to the gyromagnetic ratio of a Dirac 
particle (go= 2) bound in the field of a zero spin nucleus 
and surrounded by a zero spin electronic cloud may be 
listed as follows: 

* This research has been supported in part bythe United States 
Atomic Energy Commission, the National Science Foundation, 
and the Air Force OSRD. 
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1 V. W. Hughes and V. L. Telegdi, Bull. Am. Phys. Soc. 3, 229 
(1958). 

2 D. P. Hutchinson, J. Menes, G. Shapiro, A. M. Patlach, and 
S. Penman, Phys. Rev. Letters 7, 129 (1961). 

3 Some of the results of this paper have been previously sum­
marized: K. W. Ford, V. W. Hughes, and J. G. Wills, Phys. Rev. 
Letters 7, 134 (1961). 

(1) radiative correction, gi] 
(2) binding correction to radiative correction, g2; 
(3) direct binding correction, g3; 
(4) nuclear polarization correction, g4; 
(5) electronic polarization correction, g5; 
(6) electronic diamagnetic shielding correction, gQ; 
(7) center-of-mass correction, gi] 

The radiative correction, gi, and the binding correc­
tion to the radiative correction, g2, have already been 
calculated and are written down in this section. The 
remaining corrections are discussed one by one in Sees. 
I I through V. The theoretical results together with 
their uncertainties are summarized in Sec. VI. 

The familiar radiative correction is 4~6 

gi/go = a/2<jr+0.75(a/<ir)2 = 0.001165. (1) 

The binding correction to the radiative correction has 
been derived by Lieb,7 and is given in nonrelativistic 
approximation by 

£2/go= (26/15ir)a<7>Me (2) 

where (V) is the expectation value of the potential en­
ergy and mn is the muon rest mass. [There is a reduced 
mass correction to Eq. (2) of the order of mjM where 
M is the nuclear mass, but since gz/go is small the re­
duced mass correction is negligible.] This expres­
sion is adequate for mu-mesonic atoms, since relativistic 
effects are small even for large Z, and g2 never exceeds 
2% of the direct binding correction, g3. The quantity 
(V) has been calculated numerically, as outlined in Sec. 
II . 

The radiative corrections embodied in (1) and (2) 

4 C . M. Sommerfield, Phys. Rev. 107, 328 (1957); Ann. Phys. 
(New York) 5, 26 (1958). 

5 H . Suura and E. Wichman, Phys. Rev. 105, 1930 (1957). 
6 A. Petermann, Phys. Rev. 105, 1931 (1957). 
7 E. H. Lieb, Phil. Mag. 46, 311 (1955). 
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are accurate to order a(aZ)n and a2. The first omitted 
terms are of order a2(aZ)2 and a3 and a(aZ)2(mM/M). 
These omitted terms are negligible for the present ap­
plication as, indeed, is the a2 term in gi. 

LI The Hamiltonian 

I t is convenient to enumerate the interactions con­
tributing to the magnetic moment schematically as 
illustrated in Fig. 1. The parts of the system are the 
muon field (/x), the nucleus (N), the electron field (e), 
the radiation field (7), and the static external magnetic 
field (B). Zero-order Hamiltonian terms may be des­
ignated by #(/x), H(N), etc., and interaction terms by 
JI(fjLB), H(ey), etc. The muon-nucleus interaction con­
sists of three parts : Ho(jiN), the interaction of the muon 
with the average central static Coulomb electric field 
seen by the muon; HI(IJLN), the residual nonstatic, 
noncentral Coulomb interaction between muon and 
protons; and H2(iiN), the spin-dependent muon-nucleus 
interaction. Similarly, the muon-electron interaction 
may be broken into a Coulomb part, Ili(fxe), and a spin-
dependent part, HzdjLe), which is the Breit interaction. 

The zero-order Hamiltonian is HQI)+HQ(JIN)+H(N) 
-\-H(e)+H(y), the first two terms of which are used to 
obtain numerically the muon eigenfunctions. The radia­
tive correction (1) includes third- and fifth-order cor­
rections contributed by H(ixy)y H(ey), and HQiB), with 
intermediate muons and electrons in free states. The 
term (2) corrects the third-order term for the action of 
the central nucleus Coulomb field on the virtual muons. 

The direct binding correction arises from the expecta­
tion value of H((JLB) in the muon bound state. The in­
teractions Hi(fiN) and H\(iie) contribute to the mag­
netic moment only through higher-order terms which 
are negligible. The important electronic diamagnetic 
shielding correction and significant nuclear and elec­
tronic polarization contributions due to H2(nN) and 
H2(/j,e) occur in second order £H2(fj,N) or H2(jjie) acts 
once and H(NB) or H(eB) acts once]. The polarization 
contributions give rise to the largest uncertainties in the 
predicted magnetic moments. In Fig. 1 solid lines 
designate those interactions which prove to be 
significant. In the following we set h — c = \. 

II. DIRECT BINDING CORRECTION 

The direct binding correction was given in nonrela-
tivistic approximation in reference 1. I t is 

Hamiltonian 

gz{T)/g^-2{T)/Zm, (3) 

where (T) is the expectation value of the muon kinetic 
energy and m is the reduced mass. The T on the left 
side of (3) identifies the method of calculating g3. For a 
point nucleus, this expression becomes for the Is state: 

g*(pi)/g^~l{<xZ)2 (4) 

A relativistic treatment of the magnetic moment of a 
Dirac particle in a central field may be carried through 

<*?(0)= H ( / i ) + H 0 ( / t N ) + H(N) + H(e) + H (y ) 

« W ( , , « H, (MN) + H 2 { / i N ) + H , ( / i e ) + H2(fte) 

+ H ( / i y ) + H ( / i B ) + H ( e y ) + H (eB) 

4 H ( e N ) + H (NB) + H ( N y ) 

FIG. 1. Diagram of interactions relevant to magnetic moment of 
mu-mesonic atom. The various symbols denote the nucleus, the 
muon, the electrons, the radiation field, and the static external 
magnetic field. Solid lines indicate those interactions which are 
significant, dashed lines those interactions whose effect is negligible 
(if nucleus and electrons have zero angular momentum in the 
lowest state). The lines 1 and 2 connecting muon and electrons 
refer to the Coulomb interaction and the Breit interaction, 
respectively. The three lines connecting muon and nucleus refer 
to (0) the average central potential, (1) the residual muon-proton 
Coulomb interaction, and (2) the spin-dependent muon-nucleus 
interaction. 

readily, using the interaction term ea-A(rM), where 
A= — Ir^XB is the vector potential due to a constant 
magnetic field B and — e is the charge of the muon. The 
result is 

go+gz(FG) = 
Sk 

( 2 J H - 1 ) ( 2 * - 1 ) 
FG(r/\c)dry (5) 

where \c=h/mc is the Compton wavelength of the re­
duced mass; r is the muon-nucleus relative coordinate; 
k is the angular quantum number (— 1 for an si/2 state, 
+ 1 for a pi/2 state, —2 for a p%/2 state, etc.); G is the 
large component and F the small component of the radial 
wave function, normalized according to 

(F2+G2)dr=l. (6) 

The sign in (5) re*sts on a choice of relative sign for F 
and G, and our convention is based on the choice of 
four-component wave function, 

/ r-lG{r)Xkm \ 
(7) 
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where Xkm is a two-component angle and spin function.8 

This choice leads to the radial equations 

dG/dr= -kr~1G+ (E- V+m)F, 

dF/dr=kr~1F- (E- V-m)G, 

which give F and G opposite signs in the Is state. 
We then define, for the Is state, 

g*(FG)/go= - W3) f FG(r/K)dr-1. 

(8) 

(9) 

Although this formula is an accurate expression in 
principle for the direct binding correction, it is im­
practical for calculation at low Z because of the near 
cancellation of the two terms on the right. A direct 
formula for gz itself is called for. This can readily be 
obtained by manipulation of the radial Eqs. (8). If the 
first of Eqs. (8) is multiplied by rG, the second by rF, 
and the equations are then added and integrated, one 
finds 

/

2k— l r 4:k r "I 
FG(r/Xc)dr= 1 / F2dr . (10) 

Equation (9) for the Is state (fe= — 1) may accordingly 
be written 

SS(^2)/go=-(4/3) F2dr, (11) 

where the F2 on the left designates the revised method 
of calculation. 

Final predicted magnetic moments make use of Eq. 
(11), but calculations with Eqs. (3) and (9) are made 
for a test of accuracy. For the heavy elements ( Z ^ 24), 
gz(F2) and gz(FG) agree to a few parts in 104, while the 
approximation £3(2") differs from these by a maximum 
amount of 3 % . For the light elements gz(F2) and gz(T) 
agree, while gz(FG) differs from them because of calcu-
lational errors. In the evaluation with Eq. (3), we define 
the mean kinetic energy by 

(12) 

(13) 

where 
(T)=E-m-(V)J 

(V)= / (F2+G2)Vdr. 

One may note, incidentally, that an interesting but 
less direct way to get from Eq. (9) to (11) is by means 
of the Foldy-Wouthuysen transformation.9 The per­
turbing Hamiltonian is H'—^eR- (rMX«), or in terms of 
relative and center-of-mass coordinates (r and R), it is 

H'^HM/iM+mJleB- (rX«)+l«B- (RXa). (14) 

8 H. A. Bethe and E. E. Salpeter, in Encyclopedia of Physics, 
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. XXV, 
p. 149. 

9 L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950). 

The second term has zero expectation value. The first 
term is transformed, to lowest order, into 

H"= (^/2wMc)/5(o-+Lrei) -B. (15) 

The expectation value of H" leads to a g factor given by 

g=**[i--(i+^)yw], (i6) 

where gk and g-k are the nonrelativistic g factors for the 
large and small components. This result is the same as 
(9) and (10). In particular for s states, gk=2, g_ f c=2/3, 
and (16) leads to (11). The result is precise because all 
higher terms in the complete Foldy-Wouthuysen trans­
formation contain powers of B higher than the first and 
do not contribute to the magnetic moment. (Note that 
our Foldy-Wouthuysen transformation differs from 
the usual one in that the a • p term is not transformed. 
The transformed Hamiltonian remains relativistic with 
a four-component solution.) 

An interpretation of Eq. (16) may be given by writing 
it in the following form: 

g = gk jG2dr-g^k F2dr. (17) 

The probability that the muon is in the nonrelativistic 
state k (e.g., Si/2) is fG2dr\ the probability that it is in 
the nonrelativistic state — k (e.g., pi/2) is fFHr. The 
sum of these two probabilities is, of course, lpEq.(6)] . 
The minus sign in (17) arises from the j3 matrix in (15) 
and is familiar in problems involving negative energy 
states. The ft matrix changes the sign of the mass for 
the lower two components and therefore changes the 
sign of the Bohr magneton. 

II. 1 Numerical Calculations 

The direct binding correction and the binding correc­
tion to the radiative correction have been obtained from 
relativistic bound state muon wave functions calculated 
on an IBM 704 computer.10 The radial Dirac equations 
were integrated numerically with trial eigenvalues, and 
an iteration scheme was used to converge on the correct 
eigenvalue. The wave functions were then normalized 
according to (6) and with these wave functions the 
quantities needed in (2), (3), (9), and (11) were calcu­
lated. Accuracy of the results was verified by alteration 
of the integration interval size, by agreement with 
perturbation theory for low Z, and by agreements among 
the values of gz calculated in different ways. Agreement 
with previous calculations of 2p —> Is transition energies 
was also obtained. 

10 Most of the computations were carried out at the Los Alamo. 
Scientific Laboratory, and a few at the MIT Computation Centers 
We are indebted to the authorities at both places for the oppor­
tunity to use these computers. 
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The muon mass assumed was11,12 

mM= 206Mme= 105.69 MeV. (18) 

The reduced mass used in the calculations was m—ixm^ 
where fi is given in terms of the mass number A by 

TABLE III. Direct binding correction. 

tx=A/(A+0A135). (19) 

The muon was taken to move in a central potential 
arising from the nuclear charge distribution, 

(20) 
p(r)=(Z^/47rnW0)(l-|e-w(1-^), x<l 

= (Ze/4nm W0) Gk-»C-D), x^ l' 

where x—r/ri, and 

No=i+2n-2+n-h-n. (21) 

The parameters Y\ and n, which characterize the nuclear 
radius and surface thickness, were chosen to be those 
which have been used to fit high energy electron scat-

TABLE I. Elements and parameters.* 

Element n/A1* ReJA^ 

2 
6 
8 
12 
14 
16 
20 
24 
30 
42 
50 
64 
82 

He 
C 
O 
Mg 
Si 
S 
Ca 
Cr 
Zn 
Mo 
Sn 
Gd 
Pb 

4.00 
12.01 
16.00 
24.3 
28.1 
32.1 
40.1 
52.0 
65.4 
96.0 

118.7 
157 
207 

0.825b 

1.009 
1.045 
1.03 
1.03 
1.04 
1.063 
1.07 
1.07 
1.08 
1.08 
1.095 
1.11 

3.0 
3.5 
3.5 
3.8 
4.0 
4.1 
4.8 
5.5 
6.8 
7.3 
7.5 

10.0 

1.30 
1.69 
1.59 
1.56 
1.49 
1.46 
1.47 
1.38 
1.31 
1.24 
1.22 
1.23 
1.19 

a Distances are in fermis (10~13 cm). 
b Gaussian charge distribution used for helium, p =Z7r~3/2n~3 exp( —r2/n2). 

TABLE II . Some calculated quantities for muon ground states.6 

z 
2 
6 
8 
12 
14 
16 
20 
24 
30 
42 
50 
64 
82 

a Energ 

Element 

He 
C 
O 
Mg 
Si 
S 
Ca 
Cr 
Zn 
Mo 
Sn 
Gd 
Pb 

ies are in MeV. 

(V) 

-0.0219 
-0.1987 
-0.3512 
-0.7700 
-1.0347 
-1.3287 
-1.984 
-2.741 
-4.014 
-6.789 
-8.669 

-11.772 
-15.881 

<r> 
0.0109 
0.0989 
0.1741 
0.3766 
0.5029 
0.6407 
0.9366 
1.270 
1.805 
2.852 
3.469 
4.313 
5.286 

fFWr 

0.000053 
0.00047 
0.00083 
0.00178 
0.00238 
0.00303 
0.00441 
0.00596 
0.00845 
0.0133 
0.0161 
0.0199 
0.0244 

1 1E. R. Cohen, K. M. Crowe, and J. W. M. DuMond, Phys. 
Rev. 104, 266 (1956); G. Shapiro and L. M. Lederman, ibid. 125, 
1022 (1962). 

12 The precise value of the muon mass used in the calculations is 
unimportant. It affects the calculated g factors only through its 
influence on the ratio of nuclear radius to muon Compton wave­
length, and the uncertainty in nuclear radius is considerably 
greater than the error in the chosen mass value in (18). 

Z Element -g,(FG)/g0 -gz(F*)/g0 -gz(T)/gQ -gs(pt)/go 

2 
6 
8 
12 
14 
16 
20 
24 
30 
42 
50 
64 
82 

He 
C 
O 
Mg 
Si 
S 
Ca 
Cr 
Zn 
Mo 
Sn 
Gd 
Pb 

0.000074 
0.000638 
0.001104 
0.002380 
0.003290 
0.004069 
0.005883 
0.007952 
0.01130 
0.01770 
0.02148 
0.02660 
0.03249 

0.000071 
0.000629 
0.001104 
0.002379 
0.003172 
0.004035 
0.005883 
0.007952 
0.01126 
0.01769 
0.02146 
0.02659 
0.03248 

0.000071 
0.000629 
0.001106 
0.002387 
0.003185 
0.004056 
0.005925 
0.008026 
0.01140 
0.01801 
0.02191 
0.02723 
0.03336 

0.000071 
0.000639 
0.001136 
0.002556 
0.003479 
0.004544 
0.007100 
0.01022 
0.01598 
0.03131 
0.04438 
0.07270 
0.1194 

TABLE IV. Sensitivity to parameter variation. 

Element d(lngz/go)/d(\nri) d(\ng3/g0)/dQim) 

6 
22 
51 
83 

C 
Ti 
Sb 
Bi 

-0.0277 
-0.302 
-0.718 
-0.953 

0.0181 
0.113 
0.109 
0.121 

tering results,13 or else were interpolated between such 
values. For the lightest element considered, helium, the 
form (20) is inappropriate, and a Gaussian charge den­
sity was used instead.14 

Detailed calculations have been carried out for 35 
elements, of which a representative sample of 13 are 
included in this paper.15 Table I lists these elements and 
the assumed parameters of the nuclear charge distribu­
tion. The equivalent uniform radius, Req, is denned by 
i£eg=[5(f2)/3]1/2. Table II gives calculated energies 
and the integral, fFHr* 

Table III shows the binding correction gz/go 
calculated in three different ways, together with the 
nonrelativistic point-nucleus value of gz/go. The value 
gz(F2)/g0 is accurate over the whole periodic table and 
is adopted for the final predicted magnetic moment. 
The error appears to be a few parts in 104. The error in 
g3 contributes an error of a few parts in 106 to g for the 
heavy elements, and less than 1 part in 106 for the very 
light elements. 

Table IV shows the sensitivity of the calculated g% 
to variation of the nuclear parameters, and permits gz 
to be readily corrected for different nuclear radii or 
surface thicknesses. (This calculation happened to be 
carried out for the odd nuclei 5iSb and 83Bi, but inter­
polation for even nuclei is possible.) 

13 U. Meyer-Berkhout, K. W. Ford, and A. E. S. Green, Ann. 
Phys. (New York) 8, 119 (1959). 

14 R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957). 
15 More extensive tables of numerical results are available in 

Los Alamos Scientific Laboratory Report LAMS-2387. See also K. 
W. Ford andlJ. G. Wills, Nucl. Phys. 35, 295 (1962). 
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III. NUCLEAR POLARIZATION EFFECT 

A nuclear polarization correction term, g^ arises in 
second order from H2(fiN) and H(NB) each acting once. 
The nucleus is virtually excited from its 0 + ground 
state to a 1 + state, and the muon is left alone: 

£4 = 
4w„ 

eBntj 
•ReE* ' 

(0\H(NB)\k){k\H2(nN)\0) 
(22) 

where my=zh | is the projection of the total angular 
momentum along the direction of the magnetic field. 
The form to adopt for H(NB) is fairly unambiguous, 
since there is no reason to do better than a nonrelativistic 
approximation. We use 

eB 
H(NB)= 1 ; ^ , (23) 

2MN 

where MN is the mass of a nucleon, \ j ; is the total mag­
netic moment (dimensionless) of the ith nucleon, and B 
lies along the z axis. The matrix element (0| H(NB) | k) 
connecting the 0 + ground state to the 1 + excited 
state is proportional to the M l gamma-ray matrix 
element between these levels. 

For the spin-dependent muon-nucleus interaction, 
H2(JJLN), the most natural choice is a form relativistic 
for the muon and nonrelativistic for the nucleons: 

r 1 v»*Xr/ 

L2MN wy 
(24) 

where i labels all nucleons, and p the protons, and the 
last term, containing noncommuting factors, is under­
stood to be symmetrized. In this formula, ^ s is the 
nucleon spin moment, \p is the proton velocity, and 
r / = r — Rt is the muon-nucleon relative coordinate. 

The expansion of (24) to find the part which con­
tributes to Eq. (22) for g4 is sketched in the Appendix. 
The result for the matrix element of H2(IJLN) is 

<A|H20*iV)|0>=(A»y/2ilfjyr) 

x{{k\Y,i™Mzs+giikz)\Q) 
+ ^ | E ^ 2 [ ( 2 7 T ) 1 / 2 ( M S F 2 ) , 2 - ^ A - J | 0 ) } , (25) 

where gu is the nucleon orbital g factor; 9fTCi and 2fTC2 are 
functions of the nucleon radial coordinates, 

Mi(Ri)=-(8/3) FGr-Hr 

m,2(Ri)=(S/3Ri*) FGrdr, 

/.00 

J R% 

rRi 

io ' 

(26) 

with F and G being the muon radial functions; and 
{lxsY2)iZ designates a tensor product, 

G" 5F 2) ;S=£*C(121; q9 - q , 0)fa)qiy2 (Siji). (27) 

In the low-Z limit, 9Tli»2nZ2, and 91Zi^(8/3) (wM
2) (aZ)3, 

independent of R{. Even for high Z, the nuclear radial 
integral over 3TC2 is no greater than 1/5 the radial in­
tegral over 9TCi. In view of the general uncertainty in 
making a numerical estimate of g\> we ignore the second 
term on the right of (25) for all Z. In this approximation, 

8 a 4 Z % / 0 \Z iH*\k 2 

=-- y(Z)E* ' , 
3 MN

2 Ek 

(28) 

where ixiz-=^izs+gukz' The factor y(z) in (28) corrects 
for the fact that 2flXi is smaller than (8/3)wju2(aZ)3 at 
high Z, and varies with Ri. The function 3Tli has been 
evaluated numerically for several elements, and y is 
arbitrarily set equal to 3TCi(<;), where c is the half density 
radius of the nucleus. Some sample values of y(Z) are 
7 (0) = 1, 7(6) = 0.81, 7(22) = 0.38, 7(37) = 0.17, 7(82) 
-0 .018 . For Z < 1 5 , y(Z) = l-Z/32. In Eq. (28) and 
the following equations we take Eo=0. 

We have also examined an alternative choice for 
H2(IJLN), in which the orbital and normal spin moments 
are treated by means of a Breit interaction, and the 
anomalous moments are treated by a nonrelativistic 
term like that which appears in (24). The result for 
the matrix element H2([JLN), is exactly the same as (25), 
except that 11s is replaced by /xA (anomalous moment), 
and liz is replaced by Mjv(R;Xa4-)s. This modified form 
of H2(ixN) therefore leads to no significant difference, 
and, in the approximation of ignoring the second term in 
(25), Eq. (28) again results. 

The nuclear polarization contribution g4, in the ap­
proximation of Eq. (28), may be related to Ml gamma 
transition rates by 

g^S(aZYmfy(Z)Zk (Ek)-*TMi(k -> 0), (29) 

where TMI is the Ml transition rate (sec-1) from the 
state ^ ( 1 + ) to the ground state (0+) . The same formula 
may be rewritten 

32TT a4Z3mM
3 

£4^~ 
BMi(k-*0) 

7 ( Z ) E / , (30) 

where BMI is the reduced matrix element as defined by 
Bohr and Mottelson.16 These formulas are, in fact, not 
too useful since so few Ml rates are known experi­
mentally in any one nucleus, but they provide a con­
venient way of putting a lower limit on g4. 

For the numerical estimates of g^ finally included in 
Table V, we use the radial correction factor y as defined 
above and use a closure approximation for the Ml 
matrix elements, ignoring all correlation terms. Specific­
ally, we take 

L f c K 0 | E , ^ | ^ ) | 2 = 7 . 8 0 Z + 3 . 6 5 i Y + | Z ( / ( / + l ) ) p , (31) 

in which 7.80=//p
2, 3.65 = jLtjv2, and (1(1+1))? means the 

16 A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab, 
Mat.-Fys. Medd. 27, No. 16 (1953). 
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mean square orbital angular momentum of the protons. 
Finally then, 

4a4Z3wM
37(Z) 

gi/go = 
3 MN*(E) 

X[7.80Z+3.6SiV r+|Z(K/+l)>p]. (32) 

The quantity (l(l-\-l))p is set equal to zero for He, 1.33 
for C, 1.50 for O, and is smoothly varied from 2.1 for 
Mg through 5.1 for Zn, 7.5 for Sn, to 10.0 for Pb. For 
the numerical estimates in Table V, (E) is taken to be 
15 MeV. 

Within the \p shell, the estimate (32) for g4 may be 
checked roughly in two ways—by an explicit jj coupling 
shell model calculation from Eq. (28), and by the sub-
sitution of known strong Ml transition rates into Eq. 
(30). For O16, the simple shell model picture gives g4=0, 
and indeed Ml transitions are known to be inhibited in 
this nucleus.17 The estimate (32) is therefore likely to 
be a substantial overestimate for O16, by perhaps a 
factor of 10. For C12, the jj coupling shell model gives 
Sfc 1(0 S * Viz I k) 12= 16, to be compared with the value 
71 from (31). Again the estimate (32) appears to be too 
large. Using the Ml width of the 12.76 MeV state in C12 

to be less than 44 eV, and the width of the 15.11 MeV 
state to be 55 eV,17,18 we find that these two transitions 
contribute to g4/go at most 1.05 X10~6. The closure 
estimate (32) is4X10~6 . 

IV. EFFECT OF ATOMIC ELECTRONS 

The important effects of the orbital electrons may be 
classified as electronic polarization, g5, and diamagnetic 
shielding, g6. Since the electrons are very distant from 
the nucleus compared to the muon, the muon may be 
treated as fixed at the origin, and the already existing 
theory of these effects of electrons on nuclear moments19 

may be taken over intact. 
The electronic polarization correction for an isolated 

atom is given by 

gz/go= ( a / W ) E * ' [ l /CE*-£ 0 ) ]<01 £ < hz+2siz I k) 
X(k\Zi n-VizSiz+tiSi • TiWr*] 10), (33) 

where i labels the electrons, me is the electron mass 
(fi=c=i)y |0) is the electronic ground state, and \k) 
is an electronic excited state. This is a generalization 
to include spin of a result of Ramsey.19 For a Ŝo state, 
the polarization correction #5 vanishes. For 3P0 j

 5#o, 
7Fo, • • • states, #5 could be quite large, as much as +0.05, 
since the matrix elements in (33) do not vanish and the 
energy denominator (£&—E0) is a fine structure split­
ting, e.g., between ZP\ and ZPQ. 

The electronic polarization correction arises primarily 
from virtual excitation of outer electrons and hence is 

17 D. A. Bromley (private communication). 
18 E. Almquist, D. A. Bromley, A. J. Ferguson, H. E. Gove, and 

A. E. Litherland, Phys. Rev. 114, 1040 (1959). 
19 N. F. Ramsey, Phys. Rev. 78, 699 (1950). 

quite sensitive to the chemical20 or solid state21 en­
vironment of the mesonic atom. For this reason we have 
not attempted a careful evaluation of (33), since the 
perturbing effect of neighboring atoms would invalidate 
the result. In the experiments reported so far,2 there is 
no evidence for a large electronic polarization effect, 
suggesting that in the mesonic atoms studied, electron 
spins are paired. For unpaired spins, e.g., a triplet state, 
the correction #5 should be so large as to be immediately 
obvious experimentally. For paired spins, g$ should be 
small and positive (a paramagnetic effect), and sensitive 
to the environment of the mesonic atom. In one case, for 
silicon, the polarization correction (the Knight shift) 
has been estimated2'21 to be gz/go= +0.00018. The cor­
rection £5 is not included in Table V. 

The diamagnetic shielding correction22 is 

g*/go=-WZi<<h/r{), (34) 

where do is the Bohr radius and the sum is taken over 
all electrons. Numerical values of gs/go included in Table 
V are taken from Dickinson's work,23 assuming that 
the mesonic atom exists as a positive ion with Z-2 
electrons. This correction is nearly independent of the 
chemical state of the atom since the shielding arises 
largely from inner electrons. 

Since the average muon-proton Coulomb interaction 
has been included in the zero-order Hamiltonian but 
the average muon-electron Coulomb interaction has not, 
there is an extra magnetic moment correction to consider 
for the electrons, which occurs in second order and has, 
schematically, the following form: 

gB-<0|F(M5)|A><ft|Hi(Mc)|0>. (35) 

We have estimated this term and find g$= 7.6X 10~6 Z_1 , 
negligible for all Z. The effect of Hi(fxe) on the muon 
energy level differences is also negligible. 

V. CENTER-OF-MASS CORRECTION 

The magnetic moment of a muon in its lowest state is 
predominantly a spin moment, which requires no center-
of-mass correction. The orbital contribution to the 
moment is of order (aZ)2, and the center-of-mass 
correction to the moment is therefore of order 
(mjM)(aZ)2= (aZ)2/9A. This is negligible for all A. 

In the Dirac equations (8) we follow the prescription 
of Breit and Brown,24 simply using the nonrelativistic 
reduced mass m=Mmfi/(M+mfi). The first term in (14), 
whose expectation value determines the magnetic mo­
ment, has a mass dependence m/m^. The m^r1 is ab­
sorbed in the Bohr magneton, leaving a proportionality 
to the reduced mass m= Xc*"1, which appears,for example, 
in Eq. (5). This direct proportionality to m is apparent 

20 N. F. Ramsey, Phys. Rev. 86, 243 (1952). 
21 W. D. Knight, in Solid State Physics, edited by F. Seitz and D. 

Turnbull (Academic Press Inc., New York, 1956), Vol. 2, p. 93. 
22 W. E. Lamb, Jr., Phys. Rev. 60, 817 (1941). 
23 W. C. Dickinson, Phys. Rev. 80, 563 (1950). 
24 G. Breit and G. E. Brown, Phys. Rev. 74, 1278 (1948). 
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only, and not real. For a pure Coulomb field, the Dirac 
equations (8) depend only on the dimensionless variable 
mr, Similarly, the expression (5) for g depends only on 
mr and is independent of the length scale, except in­
sensitively through its dependence on mR, where R 
is the nuclear radius. 

A crude procedure for estimating the error in our 
procedure is the following. In Eq. (16) there occur gk 

and g-h, which, for the lowest state, are 

gk=g(Sl/2) = gs=2, 

g-k=g(pi/2)=igi-hs 
(36) 

If, arbitrarily, gi is modified nonrelativistieally, 
gi-^l—(mli/M), and gs is unchanged, the expression 
(11) for g3 becomes 

(gs+gi)/go= - (4/3)111 - 1/2 (tnjMKJFHr, (37) 

or 

gi/go= (2mfl/3MNA) fpdr, (38) 

which varies from 10~6 for He to 10"~5 for Pb. The coef­
ficient on the correction term may be incorrect, but it 
seems clear that g^ is of order {mjM)f~FHr. For pres­
ent purposes this is negligible; the exact magnitude of 
the correction would require a more searching investiga­
tion of the relativistic two-body problem. 

VI. THEORETICAL RESULTS AND ERRORS 

The gyromagnetic ratio of the bound negative muon 
is given by 

«=2D+Z: (&/*>)], (39) 

where gi/g0 is given by (1); g2/go is given by (2); gs/g0 

is given by (11); g^/go is given formally by (22), ap­

proximately by (28), and crudely by (32); g5/g0 is 
given formally by (33) iga/go is given by (34); and g7/go 
is given crudely by (38). Numerical values for various 
contributions to g/go are given in Table V, g% gs, and g6 

being accurate. The final numerical estimate for 
2 » (gi/go) omits the electronic polarization correction 
gb/go, because of its dependence on chemical and solid 
state effects. (For an isolated atom in a xSo state, g& 
vanishes.) 

Table V also includes some information on the elec­
tronic structure of the once-ionized mesonic atom. In 
all but two cases, the mesonic atom is expected to stabi­
lize as a positive ion with Z—2 electrons because the 
last electron in the odd element Z—1 is more loosely 
bound than the last electron in the even element Z. 
Neighboring atoms can, therefore, not furnish the last 
electron to the mesonic ion. For the lightest two 
elements in the table, results are included for the 2s 
state as well as for the Is state, since the 2s state may 
be metastable. The 2s states are designated by He* and 
C*. 

The theoretical error in go+gi+g2+gz is less than 
1X 10~6 for He and ascends gradually to about 10~~3 for 
Pb. The error in gi is roughly g4, itself, about 8X10 - 6 

for C up to 1X 10~2 for Pb. The error in g5 is negligible 
only if the atom is in a singlet state. 

VII. CONCLUSIONS 

As seen in Table V the agreement between theory and 
experiment is close, particularly in view of uncertain­
ties about the electronic state of the \x—mesonic atom 
(the state might even have electronic angular momentum 
J nonzero and then the hfs interaction between muon 
and electrons would be important), about chemical 
effects, and about solid-state effects such as the Knight 
shift. The chemical shift and the Knight shift are para­
magnetic effects having the same sign as that required 
to account for the small remaining discrepancies. 

TABLE V. Corrections to gyromagnetic ratio of bound negative muon. 

Ele-
Z m e n t 

Radia t ive 
binding 

gz/go 
Direc t binding* 

gs/go 

Nuclear Diamagne t i c 
polarization^ shielding 

gi/go i g^/go 

(Ag/g)theor 
8 

= 2 gi/go° Hg-g+) 
10*theor d lOVpt e 

Ion 
s table ? 

Ion electron 
configuration 

Lowest 
electron 

1 + s t a t e 
(eV) 

2 
?. 
6 
6 
8 

12 
14 
16 
20 
24 
30 
42 
50 
64 
82 

H e 
H e * 
C 

c* O 
M g 
Si 
S 
Ca 
Cr 
Zn 
M o 
Sn 
Gd 
Pb 

- 0 . 0 0 0 0 0 1 
- 0 . 0 0 0 0 0 0 
- 0 . 0 0 0 0 0 8 
- 0 . 0 0 0 0 0 2 
- 0 . 0 0 0 0 1 3 
- 0 . 0 0 0 0 2 9 
- 0 . 0 0 0 0 4 0 
- 0 . 0 0 0 0 5 1 
- 0 . 0 0 0 0 7 6 
- 0 . 0 0 0 1 0 5 
- 0 . 0 0 0 1 5 3 
- 0 . 0 0 0 2 5 9 
- 0 . 0 0 0 3 3 1 
- 0 . 0 0 0 4 4 9 
- 0 . 0 0 0 6 0 5 

- 0 . 0 0 0 0 7 1 (0) 
-0 .000018(0 ) 
-0 .000629(0 ) 
-0 .000159(0 ) 
-0 .001104(1 ) 
-0 .002379(6 ) 
-0 .003172(10) 
-0 .004035(15) 
-0 .005883(31) 
-0 .00795(5 ) 
-0 .01126(10) 
-0 .01769(22) 
-0 .02146(30) 
-0 .02659(44) 
-0 .03248(62) 

~ 0 
~ 0 

+0.000004 
~ 0 

+0.000012 
+0.000053 
+0 .000090 
+0 .00014 
+0.00029 
+0.00051 
+0.00089 
+0 .0020 
+0 .0028 
+0 .0040 
+0 .0046 

0 
0 

- 0 . 0 0 0 1 9 
- 0 . 0 0 0 1 9 
- 0 . 0 0 0 3 2 
- 0 . 0 0 0 6 2 
- 0 . 0 0 0 7 9 
- 0 . 0 0 0 9 6 
- 0 . 0 0 1 3 3 
- 0 . 0 0 1 7 1 
- 0 . 0 0 2 3 8 
- 0 . 0 0 3 8 4 
- 0 . 0 0 4 9 
- 0 . 0 0 6 9 
- 0 . 0 0 9 8 

+0.001093 
+0.001147 
+0 .00034 
+0.00081 
- 0 . 0 0 0 2 6 
- 0 . 0 0 1 8 1 
- 0 . 0 0 2 7 5 
- 0 . 0 0 3 7 4 
- 0 . 0 0 5 8 3 
- 0 . 0 0 8 0 9 
- 0 . 0 1 1 7 3 
- 0 . 0 1 8 6 
- 0 . 0 2 2 7 
- 0 . 0 2 8 8 
- 0 . 0 3 7 1 

- 0 . 7 2 
- 0 . 1 8 
- 8 . 2 ( 1 ) 
- 3 . 5 

- 1 4 . 3 ( 2 ) 
- 2 9 . 8 ( 6 ) 
- 3 9 . 1 ( 1 0 ) 
-49.1(15.) 
- 7 0 . 0 
- 9 2 . 6 

- 1 2 9 . 0 
- 1 9 7 . 9 
- 2 3 8 . 9 
- 2 9 9 . 4 
- 3 8 2 , 9 

-7.5(7) 

- 9 . 3 ( 1 0 ) 
- 2 6 . 3 ( 7 ) * 
- 3 6 . 1 ( 1 1 ) 
- 4 8 . 1 ( 1 6 ) 

yes 
yes 
yes 
yes 
no 
yes 
yes 
no 
yes 
yese 
yes 
yes 
yes 
yes 
yes 

no electrons 
no electrons 

2*2 
2*2 
2*2 2£2 
2*2 2^6 
3*2 
3*2 3^2 
3*2 3p6 

3d* 
3s2 3p«3du> 
M* 
(55)2 
4/6652? 
(65)2 

»5o 
i6'o 
3P0 
1S0 
16*0 
3Po 
1S0 
5Do 
i.S'n 
5£>0 
1S0 
7P0? 
1S0 

16.08h 
16.08b 
0.00609 

36.34 
11.31^ 
0.02065 

22.71 
0.004468 
2.975 
0.019707 

11.64 
? 

13.04 

a N u m b e r s in parentheses are uncer ta in t ies arising from 2% unce r t a in ty in nuclear rad ius . 
t> Crude es t imates based on E q . (32) wi th average energy denomina tor of 15 MeV. 
0 Does not include electron polar izat ion correction gs. 
d T h e numbers in parenthesis are es t imated theoret ical errors for the cases for which experimental d a t a are available. 
e See reference 2. Exper imenta l errors in parentheses . 
1 Fo r M g in MgH2, t h e measured value is —29.6(7). Pr iva te communicat ion from J . Menes. 
« Ion s table b y only 0.02 eV. 
h Lowest 1 + s t a t e with single part icle exci tat ion. There is"a somewhat lower 1 + s ta te with a two-part icle exci tat ion. 
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Thus far, all evidence indicates that the muon and 
the electron have the same interactions with other 
particles. The most precise test of this is given by 
the muon g-2 experiment25 whose result is (g — 2)/2 
= 0.001162(5) in excellent agreement with the theo­
retical value, gi, given in Eq. (1). Still it is of importance 
to look for some intrinsic difference between the elec­
tron and the muon other than their mass, which may 
possibly be of electromagnetic origin. I t is conceivable 
that the muon is a polarizable structure whose magnetic 
moment will be altered by the strong electric field in the 
vicinity of the nucleus. 

A crude estimate for the alteration of the magnetic 
moment of a muon due to polarization by the Coulomb 
field is given by: 

Ag/g~(aZy(l/K)2, (40) 

where / is the "size" of the muon, and Xc is its Compton 
wavelength. Because of the finite size of the nucleus, 
this will be an overestimate for very high Z. The result 
(40) arises from picturing the electron and muon as Is 
and 2s states, respectively, of some hydrogen-like 
structure whose dipole matrix elements are of order /, 
and whose energy level differences are of the order wM, 
the muon mass. This method of estimating a muon 
polarization contribution to g was suggested by H. 
Primakoff. 

I t is interesting to consider what limit the present 
experimental and theoretical knowledge of the g values 
of mu-mesonic atoms places on such a muon polariza-
bility. The most sensitive test is given by the g value of 
li— with S for which the experimental error is about 1 
part in 104 and the theoretical error is also about 1 part 
in 104 due to the uncertainty in the nuclear polarization 
correction g4. If Ag/g is taken to be 10~~4 for 5, we find 
from Eq. (40) that / can be no larger than 10 F. 

APPENDIX. REDUCTION OF SPIN DEPENDENT 
INTERACTIONS 

Consider the term appearing in Eq. (24), 

T ^ ( r / ) - 3 a - ^ X r / , (Al) 

where r / = r — R4, the muon-nucleon relative coordinate. 
I t is desired to find the part of T which is the product 
of a pseudovector in the muon variables and a pseudo-
vector in the nucleon variables. This may be done con­
veniently by working with the spherical components of 
the vectors, using relationships such as 

Xr £ , , C ( l l l ; q', q-q', qh^Yi^^ (A2) 
25 G. Charpak, F. J. M. Farley, R. L. Garwin, T. Muller, J. C. 

Sens, V. L. Telegdi, and A. Zichichi, Phys. Rev. Letters 6, 128 
(1961); Phys. Letters 1, 16 (1962). 

and expanding (r')~3 as 

4TT(-1)™ 

(rTd = Zi E * gibfiDYUWi^i). (A3) 
2 /+1 

After a good deal of algebra, the contributing part of 
Ti reduces to 

2V= -*(87r/3){ (-rgo+iRigi)W' ( a ^ 1 ) 1 ] 

+ {2vyi\\Rigl-\rgm»lY2\x' &ry]UM) 
where the tensor product notation is defined by 

( 4 r 3 ' V = E C(rst; q', q-q', q)Aq^Bq^% (A5) 

and the quantities within square brackets are ordinary 
scalar products. If we define 

fi(r,Ri)=-g0+URi/r)gi, 

/2(r,2?;) = A ( - ^ A ) £ i - k 2 , 
(A6) 

and note that only the z components of the vectors can 
contribute to the matrix elements of interest, then 7\-c 

may be written 

ZV= Um,+ (2X) 1 ' 2 /2 (MF 2 ) <J(«Xr) , . (A7) 

The radial functions are 

/ ! = - r - 3 , r>Ri, 
= 0, r<Rt 

/ 2 = 0 , r>Ri 

= +Rrz, r<Rt 

(A8) 

(A9) 

and (jiY^iz is defined by (27). Finally, one takes the 
diagonal matrix element of Ti with respect to the muon 
ground state to give the effective nucleon operator 
appearing in (25). The functions Wli{R%) and 9fTC2(jRt) 
given by (27) are defined by 

Mk(Ri) = mrx(% I /* (r,Ri) ( aXr) , 10M>. (A10) 

A similar reduction may be applied to the orbital term 

UP=(rp')~
l<X'VP (Al l ) 

in Eq. (24), where it is understood that the term should 
be symmetrized between xv and \p. The result of this 
reduction to the contributing part of Up is 

E V = ( / r / 2 ) I , . ( e X r ) , . (A12) 
2MN 

The results (A7) and (A 12) are combined in Eq. (25). 


