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Various authors have suggested that critical velocities ve in liquid helium II may result from the forma
tion of vortex rings according to Landau's criterion, vG— (E/p)m\n, where E is the energy of the ring and p 
its impulse. In considering the possible formation of rings inside the channel from this point of view, however, 
the effect of the walls on E and p has been neglected. By solving Laplace's equation in series, we have evalu
ated the energy of a circular classical vortex ring with an empty streamlined core confined coaxially in a 
long circular tube of radius R; numerical results are presented for various core radii a and ring radii r0. 
E has a maximum at r0~0.9R, and approaches zero as ro —* R. Boundaries do not affect the impulse, so 
Landau's criterion applied to such a classical vortex ring gives vG=0, contradicting experiment. We may 
conclude that for some reason vortex rings must not be formed inside the channel, unless some special 
mechanism prevents their formation (or their causing friction if formed) too near the walls. Numerical 
results are also presented for the exact solution in an unbounded fluid. 

I. INTRODUCTION 

TH E superfluid component of liquid helium I I flows 
without friction only at velocities smaller than a 

certain critical velocity vc. This velocity has been ex
tensively investigated in films,1 slits,1 and capillaries1-6; 
it changes slowly with temperature, and is about in
versely proportional to the channel width in channels 
larger than 10 - 3 cm, but rises more slowly as the 
channel is made very small. Some typical values are 
plotted in Fig. 1. 

Many attempts to account for superfluidity and its 
breakdown at vc have followed the suggestion of 
Landau7 that the superfluid is the ground state of the 
liquid and that vc is the velocity needed to make an 
excitation. This velocity is found by a classical argu-

* Now at Department of Physics, California Institute of 
Technology, Pasadena, California. 

f Operated with support from the U. S. Army, Navy and Air 
Force. 

1 K. R. Atkins, Liquid Helium (Cambridge University Press, 
New York, 1959), p. 199. (A table of earlier measurements by 
various workers.) 

2 C. E. Chase, Phys. Rev. 127, 361 (1962). 
3 D. F. Brewer and D. O. Edwards, Phil. Mag. 6, 775 (1961). 
4 F. A. Staas and K. W. Taconis, Physica 27, 924 (1961). 
6 J. N. Kidder and W. M. Fairbank, Phys. Rev. 127,987 (1962). 
6 G. Careri, F. Scaramuzzi, and J. O. Thomson, Proceedings of 

the Seventh International Conference on Low-Temperature Physics 
(University of Toronto Press, Toronto, 1961), p. 502. 

7 L. Landau, J. Phys. (U.S.S.R.) 5, 71 (1941). 

ment. If the excitation has momentum (or impulse8) 
p and energy E in a fluid at rest, then its creation in a 
fluid moving with a uniform velocity v would add to 
the energy of that fluid an amount E + p - v . Since this 
process cannot change the total energy of the fluid, it 
can occur only if E= — p- v. Thus, the only excitations 
that can be formed are those for which E ^ pv, so that vc 

is the minimum value of E/p for all possible excitations. 
If the excitations formed were phonons or rotons 

(thermal excitations), then their energy would appear 
directly as dissipation of the kinetic energy of flow. 
But Landau's argument applied to phonons and rotons 
gave values of vc much higher than those actually ob
served. An explanation of vc in these terms therefore 
requires excitations of some other kind, with smaller 
(E/p)min. Feynman9 has suggested that for flow in 
channels these take the form of quantized vortex rings 

8 Hereafter, we shall always refer to the impulse (the time 
integral of the forces on the liquid required to set up the motion 
from rest) rather than the momentum (the volume integral of 
density times velocity). The two quantities are equal if the latter 
is well defined, but often it is not, because the fluid is an infinite 
sink for momentum. If the fluid is infinite and incompressible, so 
that momentum is instantly transmitted to infinity, then the 
integral for the momentum will not even be absolutely convergent. 
(See reference 13). When, therefore, for mathematical convenience 
we consider this limiting case, it is the impulse we must work with. 

9 R. P. Feynman, in Progress in Low-Temperature Physics, 
edited by C. J. Gorter (Interscience Publishers, Inc., New York, 
1955), Vol. 1, p. 19; see especially pp. 45-51. 

Copyright © 1963 by The American Physical Society. 
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FIG. 1. Critical velocity vc at 1.4°K in various channels plotted 
against hydraulic radius i?#=2X (cross-sectional area)/(perime
ter). This is the parameter that makes Geilikman's formula for 
narrow slits (see reference 10) most like that for circular tubes 
[Eq. (3)] .—, unsaturated films (reference 1); |, saturated films 
(reference 1); = , slits (reference 1); o , circular tubes—mass flow 
(references 1, 4, and 5); • , circular tubes—heat flow (references 2 
and 3); H, rectangular channels—heat flow (references 1, 2, and 
6). Solid lines are theoretical curves; see text. 

in the otherwise irrotational liquid, with strength equal 
to Planck's constant divided by the mass of the helium 
atom. The velocity field of one of these rings is supposed 
to be like that of a classical vortex ring except within 
and very near a core of about atomic radius. Energy 
might be removed from the steady flow of the liquid 
by the formation of these rings and their grow thin 
interaction with the walls, and then converted into heat 
by the interaction of the rings with the normal fluid or 
perhaps by their breakup into rotons. 

Feynman originally devoted most of his attention to 
the idea that the rings responsible for resistance to flow 
in a channel are formed at the orifice, and in view of the 
complexity of the problem he undertook only qualita
tive comparison with experiment. But Geilikman10 and 
Peshkov11 have proposed more detailed explanations of 
the experimental dependence of vc on channel size, 
based on the assumption that the rings are formed inside 
the channel. They used, as approximations, expressions 
due to Lamb12 for the energy E0 and impulse p of a 
circular classical vortex ring of strength K in an un
bounded perfect fluid with constant density p. In 
Lamb's model the vorticity is distributed uniformly 
through a core whose cross section is circular with 
radius a much smaller than the mean radius TQ of the 
ring. The results are 

EQ= Jp/cVoCln (8r0/a) - 7/4] , (1) 

p=TpKr0
2. (2) 

10 B. T. Geilikman, J. Exptl. Theoret Phys. (U.S.S.R.) 37, 
891 (1959) [translation: Soviet Phys.—JETP 10, 635 (I960)]. 

11 V. P. Peshkov, Proceedings of the Seventh International Con
ference on Low-Temperature Physics (University of Toronto Press, 
Toronto, 1960), p. 555; J. Exptl. Theoret Phys. (U.S.S.R.) 40, 
379 (1961) [translation: Soviet Phys.—JETP 13, 259 (1961)]. 

12 H. Lamb, Hydrodynamics (Dover Publications, New York, 
1945), 6th ed., Chap. 7, p. 202 (see especially Sees. 161-163). 

From Eqs. (1) and (2) it is clear that E0/p decreases 
monotonically as r0 increases. Both Geilikman and 
Peshkov assume that the presence of the channel walls 
does not greatly affect E and p, so that the minimum 
value of E/p will be for rings that are as large as 
possible—almost as large as the channel. Therefore, 
according to Geilikman, vc should equal the value of 
Eo/p for rQ—R, the channel radius: 

K f $R 7 \ 
Vo=— ( I n J. (3) 

27rR\ a 4 / 

This is very similar to Feynman's rough estimate for 
a slit, based on the idea that the liquid has to have 
enough kinetic energy to form vortex lines at the 
orifice. Since what goes on near the core is not, in fact, 
classically describable, a is rather an undetermined 
parameter of the theory than a physically measurable 
length; the result for vc is fairly insensitive to the choice 
of a as long as a <3Cfo-

It will be seen in Fig. 1 that if a=10~ 8 cm then 
Eq. (3) gives values that are in fair agreement with 
experiment for i ? ^ 10~~3 cm, but rather high for the 
smallest channels and for films. To remedy this, 
Peshkov proposed a more elaborate model involving a 
relaxation time r during which a fraction a of the 
kinetic energy in a stretch of liquid goes into making a 
vortex ring. He got 

v*R(R+veT) = (K2/wa) \n{R/a), (4) 

in which a, r, and a can be adjusted in various ways to 
give a good fit to the data. Peshkov's curve in Fig. 1 
is the one he gave for a—10~8 cm, T = 4 X 1 0 - 4 sec, and 
a = 0.122. 

The above arguments depend, however, on the as
sumption that the energy and impulse of a vortex ring 
of given strength, ring radius, and core radius are not 
much affected by the presence of walls; otherwise, 
Lamb's formulas may not apply, since they were de
rived for an unbounded fluid. And indeed, there is 
reason to suspect that they do not. Most of the kinetic 
energy in the velocity field of a vortex ring is in the 
fluid fairly close to the core, so we should expect that 
the energy of a ring whose distance from the walls is 
small compared to its radius will be asymptotically 
equal to that of the same length of straight vortex line 
at the same distance from a plane wall. The energy of 
this configuration goes to zero as the core approaches 
the wall. Therefore, the assumption that Lamb's 
formulas are applicable seems most unlikely for rings 
near the wall, that is to say for just those rings that, 
according to the above theories, are responsible for the 
critical velocity. Hence, it is worthwhile to look more 
carefully at the actual behavior of the energy and 
impulse when the ring is in a channel. 

Now, the impulse does not, in fact, depend on the size 
or shape of the channel so long as it is simply connected, 

file:///geilikman
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This is shown by Lin,13 who notes that Lamb's deriva
tion does not use the assumption that the fluid is un
bounded. Only for the energy, therefore, is a special 
computation needed. This will be carried out in the 
following section. 

II. ENERGY COMPUTATION 

A. Assumptions 

For simplicity in computation, we shall consider a 
circular vortex ring of strength K in an incompressible 
inviscous fluid, confined coaxially in a very long tube of 
radius R (Fig. 2). The velocity field outside the core 
is assumed to be that of a classical ring with an in-
finitesimally thin core of radius r0, which we shall call 
the source circle. The core of the actual ring is taken to 
be empty, and to have a cross section bounded by a 
streamline. The core radius a is then defined as the 
distance from the source circle to the streamline bound
ing the core, measured radially toward the tube axis. 
If, as will usually be true, the core is very small com
pared to its distances from the walls and the axis of the 
tube, then it will be very nearly circular with radius a 
as in the case considered by Lamb. 

I t should be noted that the above model was chosen 
for mathematical convenience only, and is not meant 
as a physical proposal for the core of a real vortex ring 
in liquid helium. Rather, one hopes that the detailed 
assumptions about the core, which are physically 
meaningless, will have little influence on the result of 
the calculation. To see that this is so, and in order to 
be able to check the results against those of Lamb and 
of common sense, we shall consider briefly some effects 
of these assumptions. 

Making the core empty eliminates the kinetic energy 
of the fluid inside it. If #<<Cfo and the vorticity is uni
formly distributed through the core, as Lamb supposes, 
then the velocity field inside the core is like that inside 
the core of a straight vortex line. This velocity field can 
easily be shown to be Kx/2ira2 in magnitude, where x is 
the distance from the axis of the core. Hence, the kinetic 

K * $ v d l 

FIG. 2. Configuration 
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and the total kinetic energy in the core is %pK2r0. This 
is about 1.4% of Eq. (1) if r0/a = 107. 

Suppose instead, following Feynman's9 heuristic 
argument, we include the surface energy of the empty 
core, and assume that the core size is such as to mini
mize the total of surface and kinetic energy. Then if a 
is the surface tension, and a<£r0 as before, it turns out 
that a=pK2/8ir2(T and the surface energy is Jp/cVo, or 
four times the kinetic energy of a full core. 

The effect of allowing the core to depart from circu
larity is small unless either ro or R—ro is of the order of 
a, in which case a classical ring is no longer a good ap
proximation anyway. This is discussed in the appendix. 

B. Computation 

For the numerical solution of the problem, we use 
cylindrical coordinates r1 6, z, with the source circle in 
the 2 = 0 plane (Fig. 3). Since the fluid is incompressible 
(V*v=0) and the motion is curl free (VXv=0) except 
for the singularity at the source circle, the velocity field 
v is the gradient of a potential (j> that is a solution of 
Laplace's equation V24>=0 in any simply connected 
region away from the source circle. We take for this 
region the whole interior of the tube except for a barrier 
consisting of the disk bounded by the source circle. On 
crossing this barrier, <j> changes discontinuously by an 
amount equal to the line integral of v along a path that 
goes from just below the barrier to just above it without 
crossing it; that is, by just the circulation K through the 
ring. By symmetry, the flow across the barrier is normal 
to it, so that <j> is constant over the barrier. Therefore, 
choosing the arbitrary constant in <j> agreeably to the 
symmetry of the problem, we must have for the 
boundary condition at 2 = 0 : 

13 C. C. Lin, lecture notes, Enrico Fermi International School 
of Physics, Varenna, Italy, 1961, (unpublished). Chap. 1 (see 
especially pp. 10-17). 

^ = ± ! K , 0^r<r0 

= 0? r0<r^R 
±0. (5) 
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The velocity at the wall must be tangential, so the 
boundary condition at r~R is 

dcj)/dr=0. (6) 

Since the problem has cylindrical symmetry, the 
solution has the form 

*=Ei4^o(f t«r)^*» l ", (7) 

where the An's and kn's are constants. Equation (6) 
then gives 

kn=%n/R, (8) 

where xn is the nth root of J\{x) — 0. Expanding Eq. (5) 
in the orthogonal functions Jo(xnr/R) and equating 
term by term to Eq. (7) with 2 = 0, we obtain 

An — -
KroJi(xnro/R) 

XuRZloMJ2 
(9) 

The kinetic energy E equals the integral of |p(V<£)2 

over the volume of the tube outside the core. To 
evaluate it we integrate by parts, converting the 
volume integral to a surface integral by applying the 
divergence theorem to the vector field <£ V$. The result14 

is 

* / / <j> V0 • dS, (10) 

where the integral is over the boundaries of the simply 
connested region in which <f> is defined and continuous. 
Since the velocity is tangential at the walls and at the 
boundaries of the core, the only contribution to Eq. (10) 
is from the flux through the barrier, and we have for 
the energy 

1 rr{ 

E=—KP 

2 Jo 
(dcl>/dz)z==o2Trrdr 

rQ
2 oo Ji(xnro/R)J1[mXn(rQ—a)/R~] 

= * • / * * - £ • (11) 
R n=0 #n[/o(#n)]2 

The convergence of this series is extremely slow for 
interesting values of the parameters, the number of 
terms required being of order greater than R/a. There
fore, we sum to a practical value of n, say N, and inte
grate the summand as a continuous function of n from 
iV+f to oo, using trigonometric approximations for the 
Bessel functions of large argument. This gives for the 
summation in Eq. (11) 

00 R 

2 > Ci| 
n=0 2nTo [( 7V+- — 

2/R. 

N 

w=0 
(12) 

14 See, e.g., J. Serrin, in Handbuch der Fhysik, edited by 
S. Flugge, (Springer-Verlag, Berlin 1959), Vol. VIII, Part I, 
p. 159. The procedure is perfectly analogous to finding the mag
netic field energy of a current loop by an inductance calculation. 

TABLE I. Energy E, in units of p/cVo, of a circular vortex ring 
of strength K with an empty streamlined core, confined coaxially 
in a long tube full of an incompressible fluid of density p, for 
various ratios of the ring radius r0 and the core radius a to the tube 
radius R. This is R/TQ times the quantity plotted in Fig. 4. 

ro/R 

0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.85 
0.90 
0.95 
0.98 
0.99 
1.00 

a/R=10r 

6.949 
7.291 
7.482 
7.601 
7.668 
7.686 
7.648 
7.527 
7.414 
7.235 
6.903 
6.449 
6.103 
0 

7 1 0 " 6 

5.798 
6.140 
6.331 
6.449 
6.516 
6.535 
6.497 
6.376 
6.263 
6.083 
5.752 
5.298 
4.952 
0 

E/PK2rQ 

10~6 

4.646 
4.989 
5.179 
5.298 
5.365 
5.384 
5.345 
5.225 
5.112 
4.932 
4.600 
4.146 
3.801 
0 

10~4 

3.496 
3.838 
4.028 
4.147 
4.214 
4.233 
4.194 
4.074 
3.960 
3.781 
3.449 
2.996 
2.652 
0 

10"3 

2.350 
2.690 
2.879 
2.997 
3.065 
3.083 
3.045 
2.924 
2.811 
2.633 
2.303 
1.857 
1.523 
0 

10-2 

1.244 
1.568 
1.749 
1.863 
1.928 
1.946 
1.908 
1.789 
1.680 
1.508 
1.198 
0.806 
0.552 
0 

where Ci x^~ Jl00 f1 costdt is the cosine-integral 
function,15 and we have neglected two small oscillatory 
terms. As N is increased, the right-hand side of Eq. (12) 
eventually oscillates about the true value of the sum 
with decreasing amplitude and with period R/r0 (if 
r0^R) or R/(R-r0) (if r^\R). An IBM 7090 com
puter was programmed to carry out the calculation for 
each N at least up to A7=50 (to insure the validity of 
the approximations used) and as far beyond as necessary 
to make the amplitude of the oscillations in the estimate 
for E/p/cVo less than 0.05. The midpoint of the oscilla
tions could of course be estimated to within a con
siderably smaller range. The results, which are pre
sented in Table I, are thus always good to at least two 
decimal places, and the third decimal place is sig
nificant or certain when a/R is very small and r0/R is 
not too close to 1, so that the series converges rapidly. 
I t should be recognized, however, that this accuracy 
obtains only for vortex rings whose core has the par
ticular form assumed. As was shown in Sec. IIA, the 
differences due to making other assumptions about the 
core can be much greater than the estimated errors in 
the calculation. 

The results are also plotted in Fig. 4, normalized 
using R rather than r0 so that the dependence of E on 
ring radius for a fixed tube radius can be seen. 

C. Limiting Cases 

If ro/R is small enough, the walls will not affect the 
energy much, and as long as ro/a remains very large, 
the results should be given by Lamb's formula [Eq. (1)] 
corrected for the difference in assumptions about the 
core, that is, 

£ 0 =|pK 2 f 0 [ ln(8foA)-2] . (13) 

16 E. Jahnke and F. Emde, Tables of Functions with Formulae 
and Curves (Dover Publications, New York, 1945), 4th ed., 
Chap. 1, p. 1. 
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In fact, e.g., if a/R=10~7, then Eq. (11) differs from 
Eq. (13) by less than 1% for r0 as large as 0.5R. When 
a/R is larger, E falls off from E0 more rapidly. 

If the ring is almost as large as the tube, so that 
R—ro<^r0, then the argument in Sec. I tells us that E 
should be the energy of a straight vortex line of length 
27rro at a distance s=R—ro from a plane wall. The 
velocity field of this configuration can be got from that 
of a line in an unbounded fluid by superposing the 
velocity field of an opposing image line at a distance s 
behind the walls. (See Fig. 5.) The fluid velocity in the 
plane of the source lines is (K/2TT)[_(X—S)*1— (X+S)~~1'], 
where x is the distance from the wall. Therefore, using 
the same method as for the ring in Sec. B, we get for 
the energy 

IMAGE 

\4:T/Js+a 

» / R-n \ 
(14) 

FIG. 4. Energy, in units of pK2R, of a circular vortex ring of 
strength K confined coaxially in a long tube of radius R full of an 
incompressible fluid of density p, as a function of the ring radius 
r0 for various radii a of the empty streamlined core, each being 
given in terms of R [Eq. (11) J 

This is in excellent agreement with the result of Eq. (11) 
for rQ near R, differing from it, e.g., by less than 1% if 
a/R=10-7tmdr0>0.9R. 

The way the actual value of E deviates from these 
two limiting cases is shown in Fig. 6 for two values of 
a/R. 

III. DISCUSSION 

I t is clear from the foregoing [see Fig. 4 and Eq. (14)] 
that E —» 0 as r0—±R. Thus, the minimum value of 
E/p for a classical ring confined in a tube does indeed 
occur for the largest possible rings; but this value is 
zero for all tube radii. The classical computation is pre
sumably not a good approximation to the actual 
quantum-mechanical problem when the core gets 

FIG. 5. Straight vortex line and image line equivalent to a 
vortex ring almost as large as the tube. Here s=R—rQ. 

within a few core radii of the wall, but before this 
happens the energy is already considerably smaller 
than that of the unenclosed ring. For example, if 
R-r0=5a, then E0/E is 6.75 for r0/a=107, and 3.87 
for ro/a=10A. Therefore, critical velocities as large as 
those actually observed cannot be accounted for on the 
hypothesis that vortex rings are formed and cause 
friction wherever v^ (E/p)m-m. Indeed, if this hy
pothesis were true, and the classical formula were valid, 
superfluidity would never be observed at all. Thus, 
Landau's condition alone, applied to vortex rings, 
cannot be taken as sufficient for the appearance of 
friction, though it may still be necessary. 

The smallest effective change one could make in the 
model is to suppose that rings very near the walls do 
not cause friction for some reason, even though they 
may be formed at very low velocities. (More specifi
cally, one could argue that rings larger than that of 
maximum energy cannot get away from the walls, 
since to do so they would have to become smaller and 

FIG. 6. Energy of a vortex ring in a tube in terms of the energies 
of two limiting configurations: an unenclosed ring of the same 
radius rp [£0 , Eq. (13) or (18)], and the same length of straight 
vortex line at the same distance from a plane wall [2£i, Eq. (14)]. 

, a/R=>10~7; , a/R=lQ-*; a = core radius; R=tube 
radius. 
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their energy would have to increase. I t seems im
plausible, however, to imagine that such rings would-
be stable against dimpling and tangling.) Alternatively, 
it might be that rings that are too large cannot be 
formed at all. In either of these cases, the critical 
velocity will be the value of E/p at some value of ro 
fairly near R, but not so near that the effect of the walls 
on E is very large. This velocity will not be very dif
ferent from the value for an unenclosed ring with 
TQ—R as given in Eq. (3). Thus, such a model could be 
made to fit the experimental results about as well as 
Geilikman's. We have not, however, been able to make 
a convincing argument along the above lines. 

Another possibility is to go back to Feynman's 
original picture in which the tube "blows smoke rings" 
at the orifices. In this approach the production of vor-
ticity is not deduced from the Landau criterion, but is 
regarded as a quasiclassical phenomenon due to the 
abrupt acceleration required for irrotational flow around 
the corner of the orifice. The quantum nature of the 
process appears only in the relation it imposes between 
energy and vorticity, and perhaps in the details of the 
subsequent propagation of vorticity along the tube. 

Finally, the breakdown of the superfluid regime may, 
at least in some situations, have nothing to do with 
quantized vorticity at all. This is suggested by the ob
servations of Meservey,16 Chase,2 and Staas et at.11 that 
vc can sometimes be described in terms of a Reynolds 
number. Also, in an elegant recent experiment, Peshkov 
and Tkachenko18 have shown that turbulence in a long 
tube may nucleate at either end and spread down the 
tube toward the other, or (at somewhat higher ve
locities) start within the tube and spread toward both 
ends. Although they give a qualitative explanation in 
terms of vortex rings, the reported behavior somewhat 
resembles that of classical turbulence, which nucleates 
on boundary irregularities at a flow velocity dependent 
on their size. 

I t thus appears that there is no straightforward way 
to account for vc in terms of the production of vortex 
rings in the region of uniform flow according to Landau's 
criterion. However, those who wish to consider new 
versions of this notion may find the above numerical 
results useful. 
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APPENDIX. ENERGY OF A VORTEX RING 
IN AN UNBOUNDED FLUID 

The limit EQ of E in Eq. (11) as R—> oo cannot be 
obtained directly because the summation converges 
more and more slowly as R increases. I t can, however, 
be got by an independent computation letting the sum 
go over into an integral, and this is worth doing as a 
check on Eq. (11) for small ro/R and to find the limits 
of applicability of Lamb's approximation [Eq. (1)J. 

We choose the configuration and define the parameters 
just as in Sec. IIA, except that the walls are removed. 
The solution of Laplace's equation then takes the form 

•f 
J o 

A(k)J0(kr)e~k^dL (15) 

Using the orthonormality of the Jo's over the interval 
from zero to infinity19 we express </>2=:o as an integral 
with kernel rJo(kr). Comparison with Eq. (15) then 
gives 

A(k) = ±KrQJi(kr0). (16) 

Therefore, using Eq. (10) we get 

Eo=TrpK2ro(r0—a) j Ji(kr0)Ji[_k(ro—a)~]dk. (17) 
Jo 

The integral is of a kind treated by Watson20; the result 
is 

£ o = W A W 2 * i ( i i ; 2 ; 7 ) , (18) 

where y^= (1 —#/V0)
2 and the hypergeometric function21 

2 - (»+i)[r (*+*)]* 
2^(1,1; 2; 7) = - E ' — ^ (19) 

7r^o(H-i)[r(H-l)]2 

If a<<Cfo, then 7 ~ 1 and the series converges very slowly. 
We may again, however, derive an approximate ex
pression for the tail after the Nth. term by integrating 
Eq. (19) as a continuous function of n from iV+2 to °° • 
To facilitate the integration, we use Stirling's approxi
mation for the gamma functions and simplify the re
sulting expression by the additional approximation 
(1 — l /m) m ~e _ 1 ( 1—1/2m), where m—2n—2. This gives 
for the summation in Eq. (19): 

n=0 
•f E i [ ( t f+4 ) l n T ] - 7 ( t - i 1*7) Ei[(2\T-£) l n 7 ] 

, • £ , (20) 
4(iV+2) n=o 

19 See, e.g., P. M. Morse and H. Feshbach, Methods of Theo
retical Physics, (McGraw-Hill Book Company, Inc., New York, 
1953), Vol. 1, p. 766. 

20 G. N. Watson, A Treatise on the Theory of Bessel Functions 
(Cambridge University Press, New York, 1952), p. 401. 

21 Reference 20, p. 100. 
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TABLE II . Energy, EQ, in units of PKV0, of a circular vortex ring 
of strength K with an empty streamlined core in an unbounded 
fluid, for various ratios of the ring radius YQ to the core radius a. 

r0/a 

10 
20 
30 
40 
50 
60 
70 
80 
90 

Eo/p/cVo 

1.109 
1.487 
1.703 
1.855 
1.971 
2.066 
2.145 
2.214 
2.274 

ro/a 

100 
200 
300 
400 
500 
600 
700 
800 
900 

E0/pK2r0 

2.328 
2.681 
2.887 
3.032 
3.144 
3.236 
3.313 
3.381 
3.440 

ro/a 

1 000 
2 000 
3 000 
4 000 
5 000 
6 000 
7 000 
8 000 
9 000 

10 000 
>10 000 

E0/PK% 

3.492 
3.840 
4.043 
4.187 
4.298 
4.389 
4.466 
4.533 
4.592 
4.645 

Jln(8/-oA0-

where the exponential integral Ei is a tabulated func
tion15 denned by — Ei(—x)z=Jl°° t^e^dt. Values of 
Eo/pr0K

2, which are given in Table I I , were computed 

I. INTRODUCTION 

TH E potential ejection of electrons from solid sur
faces by low-energy ions has been studied exten

sively both experimentally and theoretically.1-6 Since 
the phenomenon is sensitive to the surface structure, 
both the experimental and theoretical treatments are 
quite complicated. In this paper we give the preliminary 
results of a calculation (based on a mechanistic model 
of the process) of the energy distribution of electrons 
ejected from tungsten by He+ . We attempt to take into 
account the interactions of the electrons excited in the 

f The research reported in this paper was made possible by 
support extended to the University of Illinois, Coordinated Science 
Laboratory, jointly by the Department of the Army (Signal 
Corps and Ordnance Corps), Department of the Navy (Office of 
Naval Research), and the Department of the Air Force (Office of 
Scientific Research, Air Research and Development Command) 
under Signal Corps Contract DA-36-039-SC-85122. 

1 H. S. Massey, Proc. Cambridge Phil. Soc. 26, 386 (1930). 
2 S. S. Shekhter, J. Exptl. Theoret. Phys. (USSR) 7, 750 (1937). 
3 A. Cobas and W. E. Lamb, Jr., Phys. Rev. 65, 327 (1944). 
4 H . D. Hagstrum, Phys. Rev. 96, 336 (1954). 
5 H. D. Hagstrum, Phys. Rev. 119, 940 (1960). 
6 D . Sternberg, Ph.D. thesis, Columbia University (un

published). 

on a desk calculator using Eq. (20) with iV=20. They 
are accurate to within 0 .1%. 

The difference between these values and those given 
by Eq. (13) is indeed small for reasonable a, being less 
than 1% if r0/a> 100, and less than 0 . 1 % if r0/a>500. 
As is to be expected, the results are also very close to 
those of Eq. (11) if a/r0 and r0/R are both very small. 
Hence, as is shown in Fig. 6, the ratio of the energy of 
an enclosed ring to that of an unenclosed ring with the 
same r0 and a goes to unity as ro becomes small, as long 
as ro does not become comparable with a. If this last 
condition is not satisfied, the energy of the enclosed 
ring actually becomes a little higher than that of the 
unenclosed ring, owing to distortion of the core. The 
effect is about loo for 10a—ro=OAR. I t is clearly irrele* 
vant to the present application of this calculation. 

primary Auger process with those of the band structure 
of the solid. In the case under discussion, these interac
tions appear to give rise to about 50% of the total 
measured yield. 

In order to calculate the energy distribution of elec
trons ejected by ions, we must know: (1) the distribu
tion in energy and angle, N(E,Q), of the electrons excited 
inside the metal in the primary process; (2) the escape 
probability, F(E,ti), of the electrons; and (3) the effect 
of interactions between the primary electrons and the 
electrons of the solid. These items are treated in the 
following sections. 

II. ENERGY DISTRIBUTION OF 
PRIMARY ELECTRONS 

Figure 1 shows a sketch commonly used to describe 
the situation that exists when an ion approaches a solid 
surface. One electron falls into the vacant atomic level. 
The energy released in the transition is then absorbed by 
a second electron from the solid. We can look at the 
process in two ways. First, we can assume that the 
Coulomb interaction between the two participating 
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The results of a calculation of the energy distribution of electrons ejected from tungsten by low-energy 
He+ are presented. The calculation is based on a mechanistic model of the process in which the ejected 
electrons are divided into two groups: (1) the electrons excited in the primary process that can escape 
directly; and (2) the electrons that escape because of interactions between the primary electrons and those 
of the band structure of the solid. Secondary electron data are used to predict the portion due to this second 
mechanism. 


