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A new method is presented for the calculation of the reaction 
matrix G of the Brueckner-Goldstone theory. The spectrum of the 
intermediate states is replaced by a "reference spectrum" of the 
form A-\-Bk2 where the constants A and B are chosen so as to 
approximate, as closely as possible, the actual particle energies 
for k between 3 and 6 F"1. The reason for this choice is explained. 
With the reference spectrum, the Brueckner integral equation 
reduces to a differential equation which is easily solved. The case 
of a repulsive core can be solved explicitly, and can be summed 
over angular momentum, taking into account the correct sta
tistical weights. If an attractive potential is added to the repulsive 
core, a simple "modified Born approximation" can be developed. 
Noncentral forces, such as tensor forces, are considered. 

The actual G matrix, GN, is calculated from the reference ma
trix GR. It is shown that this can be done to sufficient accuracy 
(0.1 to 0.2 MeV per nucleon) by a simple quadrature. The dif
ference GN—GR arises mainly from the Pauli principle which is 
not taken into account in GR. A small correction, less than 1 MeV 
per nucleon, arises from the inaccuracy of the reference spectrum. 

This shows that the details of the particle energy spectrum are 
not important for the calculation of the nuclear binding energy. 

The particle energy spectrum is carefully investigated. In 
agreement with Brueckner and Goldman, the G matrices determin
ing the potential energy of states in the Fermi sea are calculated 
"on the energy shell," and a more detailed justification is given 
for this procedure. Those for states above the Fermi sea are 
calculated "off the energy shell." This, in combination with the 
repulsive core, has the consequence of making the potential energy 
very large and positive for large k, corresponding to an effective 
mass between 0.8 and 0.9 for highly excited states. In addition, 
there is an energy gap at the Fermi momentum, a feature which 
helps to justify the reference spectrum. 

A modified Moszkowski-Scott separation into short- and long-
range potentials is developed and gives, in second order, results 
accurate to better than 0.1 MeV per particle. The wave functions 
of interacting particles are calculated in the reference spectrum 
approximation for central and tensor forces. 

1. INTRODUCTION 

TH E theory of Brueckner and co-workers1 permits, 
in principle, the calculation of the properties of 

complex nuclei in terms of the potential between two 
nucleons. The theoretical foundation of the theory has 
been given by Goldstone2 whose proof was generalized 
by Hugenholtz.3 Brueckner and Gammel,4 aside from 
further developing the method, did extensive numerical 
calculations, using the best results then available on 
the interaction between two nucleons,5 and obtained 
results in good agreement with experiment. 

The Brueckner-Goldstone (BrG) method can be 
criticized from two points of view: From the basic 
point of view it may be questioned whether it actually 
leads to the ground state of nuclear matter, and from 
the practical point of view the numerical calculations 
required are complicated and not very transparent. On 
the basic side, there are two questions, (a) whether 
perturbation theory is valid, and (b) whether the BrG 
theory gives the correct perturbation result. On ques
tion (b), Luttinger, Kohn, and Ward6,7 have shown that 
the BrG method is indeed correct to all orders of per
turbation theory if (1) the particles have spin 1/2, (2) 
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the interaction between them is isotropic, and (3) the 
Fermi surface without interactions is isotropic in mo
mentum space. These conditions are evidently satisfied 
for nucleons interacting with central forces. For elec
trons in solids, condition (3) is obviously violated, and 
Kohn and Luttinger6 show that a correct perturbation 
calculation deviates from BrG in second order. For the 
case of nucleons interacting with tensor forces, they 
showed that the BrG theory is correct in second order6; 
it is likely that it is correct in all orders but we have 
not seen a proof of this. 

On problem (a), i.e., whether perturbation theory is 
valid, the chief argument is that nuclear matter may 
exhibit a phenomenon similar to superconductivity. This 
was first suggested by Bohr et al.s who pointed out that 
the first intrinsic excited states of heavy, deformed, 
even-even nuclei lie at about 1 MeV while the spacing 
between single-nucleon levels is expected to be only 
about i MeV. Bohr et al., attribute this to a pairing 
energy similar to that found by Bardeen, Cooper, and 
SchriefTer9 in superconductors. Emery and Sessler10 

developed a theory of the energy gap in infinite nuclear 
matter, using for the interaction between two nucleons 
the singlet-even11 potential of Gammel and Thaler.5 

They found that the energy gap is very sensitive to the 
density of nuclear matter and to the effective mass Jkf* 
of the nucleons near the Fermi surface. For the ob
served nuclear density which Emery and Sessler10 used, 
corresponding to a Fermi momentum kF—lAF"1 

8 A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110, 936 
(1958). 

9 J. Bardeen, L. N. Cooper, and J. R. SchriefTer, Phys. Rev. 108, 
1175 (1957). 

10 V. J. Emery and A. M. Sessler, Phys. Rev. 119, 248 (1960). 
11 This state is likely to give the largest energy gap/See refer

ence 10. 

225 



226 B E T H E , B R A N D O W , A N D P E T S C H E K 

(F=fermi=10~~13 cm), the calculated gap is only 0.1 
MeV at ?n*=M*/M— 1, and falls to a negligible value 
when the effective mass is reduced to 0.75 which should 
be close to the actual value. At reduced density, kF 

= 1.0F_1, the calculated gap is much larger, from 1 
MeV at m*=0.75 to 4 MeV at w*= 1. Thus, the calcu
lated energy gap tends to be less than that deduced8 

from empirical data. To be on the safe side, we assume 
the latter, viz., AE= 1 MeV. But even then, the effect 
on the average energy per nucleon is likely to be less 
than 

AW=%AE2/EF = 0.008 MeV, (1.1) 

where EF is the Fermi energy, 47 MeV for kF— 1.5 F"1 

(which is the value we use), and the factor | is the 
statistical probability of having a pair of nucleons in a 
state of even relative angular momentum. We therefore 
believe that the "superconductivity pairing," while 
probably of interest for the detailed level structure of 
even-even nuclei, has a negligible influence on the 
average binding energy of nuclei. 

We therefore consider the Brueckner-Golds tone 
method as sufficiently established on theoretical 
grounds. However, the numerical work is complicated, 
especially due to the repulsive core in the nucleon inter
action. I t has therefore been suggested, especially by 
Levinger, Peierls, and collaborators,12 to ignore the re
pulsive core and to replace its effect by a velocity-
dependent potential. They have fitted the parameters 
of this potential so as to reproduce the observed phase 
shifts for nucleon-nucleon scattering. The resulting 
velocity-dependent potential is then "weak" enough 
to justify the use of ordinary perturbation theory, 
rather than BrG theory. 

There is no objection, in principle, against the use of 
velocity-dependent potentials. I t is well known that the 
measurement of scattering phase shifts of real nucleons, 
on the energy shell, does not fully determine the inter
action of nucleons. The interaction off the energy shell 
is still largely arbitrary, and can only be determined 
experimentally by studying processes involving more 
than two nucleons, e.g., the photoeffect on the deuteron, 
the structure of the triton and heavier nuclei, scattering 
processes involving these, etc. The velocity-dependent 
potential of Levinger et aL, while agreeing (by defini
tion) with the standard, static potentials for processes 
on the energy shell, differs from them in its predictions 
of phenomena off the shell. The theory of nuclear matter 
involves off-shell matrix elements to an important de-

12 R. E. Peierls, in Proceedings of the International Conference on 
Nuclear Structure, Kingston, Canada, 1960, edited by D. A. 
Bromley and E. Vogt (University of Toronto Press, Toronto, 
1960), p. 7; J. S. Levinger and L. M. Simmons, Phys. Rev. 124, 
916 (1961); M. Razavy, G. Field, and J. S. Levinger, ibid. 125, 
269 (1962); O. Rojo and L. M. Simmons, ibid. 125, 273 (1962). 
See especially the recent calculations of A. M. Green [A. M. Green, 
Nuclear Phys. 33, 218 (1962); Phys. Letters 1, 136 (1962)]. These 
show a distinct difference between the effects of a hard core and 
a velocity-dependent potential in nuclear matter. It does not seem 
that a velocity-dependent potential can account for the observed 
saturation. 

gree. A priori it is hard to tell whether a velocity-de
pendent or a static potential gives better results. 
However, Charap, Fubini, and Tausner13 have shown 
that at least at moderate energies, dispersion theory 
leads to an unambiguous definition of a (static) po
tential which can be calculated in terms of the exchange 
of one, two, etc., pions. The exchange of many pions or 
other particles influences the interaction at small dis
tance which may no longer be describable by a poten
tial. Now in nuclear matter, the filled states have 
momenta up to ^ = 1 . 5 F _ 1 which is moderate—a 
relative momentum of this magnitude corresponds to a 
free nucleon of less than 200-MeV laboratory energy 
colliding with a nucleon at rest. We therefore believe 
that an ordinary, static, nucleon-nucleon potential 
should give a good description of nuclear matter. How
ever, in calculating the energies of individual particles 
in nuclear matter we need (Sec. 9) the interaction of 
particles up to about 3.5 F""1 with particles essentially at 
rest; this corresponds to about 450-MeV laboratory 
energy where the static repulsive core is no longer 
clearly established by nucleon-nucleon scattering. 

Thus we are led back to the nuclear matter problem 
for a static potential with a repulsive core. Very im
portant progress in this problem was made by Moszkow-
ski and Scott14 (quoted as MS). They showed that the 
theory is greatly simplified if the nucleon-nucleon inter
action is separated into a short-range part, vs, and a 
long-range part, vi. The short-range part is then repre
sented by a reaction matrix Gs which is not very 
different for nuclear matter and for free nucleons. The 
long-range part can be treated by Born approximation 
in nuclear matter while for free nucleons this is not 
possible and a very different result is obtained. The 
separation between short and long range is made in 
such a way that the short-range reaction matrix for 
free nucleons, G8

F, vanishes. Then the total reaction 
matrix G consists of two main parts, the first Born 
approximation for vi, and the difference between Gs in 
nuclear matter, GS

N, and for free nucleons, G8
F; in 

addition, there are some small corrections. There is no 
problem about vh and MS show how to calculate 
GS

N—GS
F in terms of the spectrum of nucleons in 

nuclear matter, E(k). 
Kohler15 has further investigated the MS method. 

He finds that the MS calculation of GS
N—GS

F may not 
be sufficiently accurate and suggests an improved 
method which, however, may still leave appreciable 
errors. Thus the MS method, while a great simplifica
tion over the direct solution of the Brueckner integral 
equation, should be improved in accuracy. This is the 
first main task of this paper. In addition, we have been 
able to develop a method, even simpler than MS be-

13 J. M. Charap and S. P. Fubini, Nuovo Cimento 14, 540 
(1959); 15, 73 (1960); J. M. Charap and M. J. Tausner, ibid. 18, 
316 (1960). 

14 S. A. Moszkowski and B. L. Scott, Ann. Phys. (New York) 
11, 65 (1960). 

15 S. Kohler, Ann. Phys. (New York) 16,375 (1961). 
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cause it does not require separation into short and long 
range, which is probably more accurate than the original 
MS method. 

The second problem discussed in this paper is the 
calculation of the energies of individual nucleons, E(k). 
We do not attempt here to calculate the actual energy 
required to remove a nucleon of given momentum 
k<kF from the nucleus, nor to calculate the optical 
potential seen by a real nucleon entering from the 
outside. We merely wish to define an energy spectrum 
E(k) in such a way that the calculation of the total 
energy of the nucleus converges as rapidly as possible. 
As we show in Sec. 4, this may be accomplished by re
quiring that the potential energy, U(k), compensate 
certain diagrams occurring in the third order of the 
BrG expansion. These diagrams correspond to the 
interaction of a nucleon in an intermediate state with 
all the nucleons in the Fermi sea. If the intermediate 
state is a hole in the Fermi sea, k <&F, the interaction 
should be calculated on the energy shell, as proposed by 
Brueckner and Goldman.16 If the intermediate state is 
above the Fermi sea, k>kF, the interaction must be 
calculated off the energy shell, as was indeed done by 
Brueckner and Gammel.4 The "potential energies" for 
these states k>kF, therefore, have nothing to do with 
the actual potential energy of a real nucleon of such a 
momentum, i.e., with the optical potential; our U(k) 
turns out much more positive than the optical potential 
(Sees. 4, 7, 8). In fact, we find that U(k), for large ky 

becomes large and positive, and proportional to the 
kinetic energy of the nucleon, thus giving the virtual 
nucleon an effective mass less than unity even in this 
limit. 

The aim of this paper is to provide a method for the 
calculation of the binding energy of nuclear matter 
which is accurate and simple once the potential between 
nucleons is known. At present our knowledge of this 
potential is still very incomplete although a lot of 
progress has been made, both experimentally and theo
retically.17 For instance it is quite uncertain what part 
of the binding energy of the deuteron is due to tensor 
and what part to central forces, and in nuclear matter 
the central forces seem to be more effective than the 
tensor. Also the repulsive core in odd-L states is not 
well known from nucleon-nucleon data. Once a reliable 
theory of nuclear matter is available the experimental 
properties of nuclear matter may shed light on these 
questions. In this paper we do not make any attempt 
to calculate nuclear binding energies quantitatively. 

16 K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207 
(1960). 

17 See the review articles by M. J. Moravcsik and H. P. Noyes, 
Ann. Rev. Nuclear Sci. 11, 95 (1961), and by H. P. Stapp, M. H. 
MacGregor, and M. J. Moravcsik, Ann. Rev. Nuclear Sci. 10, 
291 (1960). 

2. GENERAL THEORY AND MOSZKOWSKI-SCOTT 
METHOD 

The basic quantity of the Brueckner-Golds tone 
theory is the reaction matrix G which satisfies the 
integral equation 

Q 
G=v-v-G, (2.1) 

e 

where v is the potential between two nucleons, Q is the 
Pauli operator, and e is the energy denominator which 
we define18 so as to be positive definite. Throughout 
this paper, except where specially indicated otherwise, 
we define all energy quantities, such as e, v, and G, 
as the actual energy multiplied by Mfi~2. Thus, e has 
the dimension fermi-2. This choice of units, similar to 
atomic units in the theory of atoms, has the advantage 
that, e.g., the energy of a free nucleon is simply J&2. 
To translate back to familiar units, we note the relation 
(F=fermi) 

1F~2=41.467 MeV. (2.1a) 

G and v, being volume integrals of energies, have the 
dimension of a length which makes G directly related 
to the scattering length. (2.1) may be written explicitly: 

(k|G|ko,P)=(k|^ko)-(2x)-8f^k/<kb|k') 

Here k0, k', k denote the initial, intermediate, and final 
relative momentum of the two interacting nucleons, and 
P is their average momentum19 so that, e.g., the labora
tory momenta of the two nucleons in the intermediate 
state are P + k ' and P—k'. The Pauli operator is then 

Q = l if | P + k ' | > & F and | P - k ' | > £ F , (2.3) 
Q=0 otherwise. 

The energy denominator is 

e(k'fa,P) = E(?+V)+E(?-k')-H(ko,P). (2.4) 

Note again that e is positive definite. If | P + k 0 | and 
| P—k0 | are both < ^ , i.e., if we calculate the inter
action of two nucleons actually present in the nucleus, 
then the "starting energy" H is simply 

#(&o,P) = £ ( P + k 0 ) + £ ( P - k 0 ) . (2.5) 

If, however, |P-f-k0 | or | P—-k0| is >&/?, then the 
starting energy is much less than (2.5); this is discussed 
in Sec. 4. E(k) denotes the energy of an individual par
ticle of momentum k; the function E(k) is assumed to 

18 This Is opposite to the definition in most of the literature, but 
far more convenient. 

19 The momentum of the center of mass is thus 2P; the factor 
of 2 by which we differ from Brueckner and Gammel, Moszkowski 
and Scott, and others, makes the definitions of P and k sym
metrical and greatly simplifies the formulas. 
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be known before the calculation of G is begun. For the 
sake of rapid convergence, E(k) must satisfy conditions 
of reasonable self-consistency (see Sec. 4). If v is a 
simple, local potential, then its matrix elements depend 
only on the difference of the momenta occurring, 

<k |» [ko)s i ; (k -ko)= fv(r)e^k-k^rdT, (2.6) 

but for an exchange potential, also k + k o appears. 
Equation (2.2) should be considered an integral 

equation in the variable k only; the quantities P and 
ko are merely parameters. According to general scat
tering theory,20 

Gtf>=i^, (2.7) 

where <j> is the free-particle wave function for the state 
P, k0 and \f/ is the actual wave function of the two par
ticles interacting in nuclear matter. I t is useful to intro
duce the wave operator, &, thus: 

^ = 0 # , (2.8) 

so that (2.7) is equivalent to the operator equation 

G=vQ. (2.9) 

The Schrodinger equation for \f/ then shows that 

12=1 G. (2.10) 
e 

(2.9) together with (2.10) yields (2.1). Matrix elements 
in momentum space may easily be taken of all these 
equations, but it is also useful to consider ^ as a function 
of the relative coordinate r of the nucleons. 

The structure of the reaction matrix has been greatly 
clarified by the work of Moszkowski and Scott.14 They 
suggested the separation of the potential into a short-
and a long-range part, vs and vi> assuming a separation 
distance d, and denoting the part of v for r<d by vs, 
that for r>d by vi. In discussing the MS method, we 
leave d undetermined until Sec. 10. 

With these assumptions, Kohler15 has shown that 

G = G . + 0 . t » A (2.11) 

where Gs is the contribution to G from the short-range 
forces alone, and &s is the corresponding wave operator, 
Eq. (2.10). For a simple proof, see Appendix A, Eq. 
(A16). I t is easy to show (Sec. 10) that the second term 
in (2.11) is approximately vt. Using this in (2.10) we 
may write 

Q 
Q~as vh (2.12) 

e 
and inserting into (2.11) we get 

Q 
G=vl+Gs+W-l)vl+vl(Qs-l)-vl-vl, (2.13) 

e 
20 See, e.g., H. A. Bethe and J. Goldstone, Proc. Roy. Soc. 

(London) A238, 531 (1957). 

neglecting such higher order terms as 

Q Q Q 
(tts-l)

2vh Vl-Vl(Q9-l),. vl-vl-vh (2.14) 
e e e 

which can be shown to be very small (see Sec. 10). 
Equation (2.13) shows that G is given by five terms, 

the first two of which are large while the other three are 
small corrections. The first term is the first Born ap
proximation due to the long-range forces alone; it is by 
far the largest contribution to the nuclear binding 
energy per particle, amounting to about 50 MeV per 
particle.14 The last term is the second Born approxima
tion due to the long-range forces and is14 less than 1 
MeV per particle; its smallness is due to the Pauli 
principle; the first Born approximation is even better 
for the long-range forces, vh than for "conventional" 
nuclear forces21 (such as exponential and Yukawa, with
out repulsive cores). The second term in (2.13) is the 
contribution of short-range forces; it arises in the MS 
theory from the "dispersion effect," i.e., the fact that 
the one-particle energy E(k) in nuclear matter differs 
from that for free nucleons. According to MS (refer
ence 14, Table I) this contribution Gs is only about 
10% of vh but it is very important for the saturation 
of nuclear forces because it increases strongly with 
density: I t represents the residual effect of the re
pulsive core on nuclear matter. This is further discussed 
in Sees. 7 and 10. Finally, the third and fourth terms in 
(2.13) which are in many cases equal represent an inter
ference between short- and long-range potential; they 
are together about 2 MeV per particle according to 
MS (Table I) . 

Thus a successful calculation of G requires primarily 
the calculation of vi which is straightforward, and a 
good approximation for Gs. All other terms are small, as 
is discussed in Sec. 10. 

3. REFERENCE SPECTRUM 

We have shown that it is important to get a good 
approximation to the short-range reaction matrix in 
nuclear matter, GS

N, which satisfies (2.1) with v re
placed by v8. MS point out that Gs has matrix elements 
mostly to intermediate states of high momentum (of 
order 3&F, according to Sees. 7 and 9 of this paper). 
Consequently the Pauli principle (the operator Q) 
does not have much influence on GS

N but the energy 
spectrum "e" of the intermediate states does. 

This suggests that we approximate GS
N by another 

matrix which is easier to calculate. We define the 
"reference matrix" 

Gt*=va-v,(l/eB)Ga
R, (3.1) 

i.e., we omit the Pauli principle in this definition. The 
GS

R is easy to calculate if eR is a quadratic function of 
the momentum kr in the intermediate state. Accord-

21 H. A. Bethe, Phys. Rev. 103, 1353 (1956). 
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ingly, we define the reference energy of a particle by 

EB(k') = A+k'2/2rn*, (3.2) 

where m* is an effective mass. Because of our choice of 
energy units, w* is dimensionless, viz., 

m* = M*/M, .(3.3) 

in terms of the usual definition of effective mass. With 
(3.2), the energy denominator in (3.1) becomes 

eR = k'2/ni*+2A+P2/ni*-H(ko,P). (3.4) 

I t is important to note that (3.1) is easy to solve re
gardless of the value of H(ko,P), since H enters the 
integral equation only as a parameter, not as a variable; 
therefore the actual value of the "starting energy" H 
can be chosen, without approximation; it is not neces
sary and in general not desirable to use the reference 
spectrum in calculating H. The coefficients A and ni* 
in (3.2), of course, can be chosen so as to give the best 
average fit to the actual energy spectrum E(k') in that 
region of kf which matters most for the solution of 
(3.1). Suitable choices are discussed in Sees. 7, 8. 

The reference spectrum can, of course, also be used 
to advantage to calculate a reference reaction matrix 
for the complete potential 

GR^v~v(\/eR)GR, (3.5) 

rather than for its short-range part only. In many cases 
GR provides a sufficient first approximation, and when
ever this is the case it is unnecessary to use the MS 
separation into short- and long-range potential. This 
simplifies the calculation. 

MS have already shown how to solve (3.5) with en 
given by (3.4), only assuming w * = l (see Appendix of 
reference 14). The solution is most easily obtained by 
using (2.9) on both sides of (3.5) to replace G by 0, 

eB(l-toB) = vQB. (3.6) 

Applying this operator to the unperturbed wave func
tion <t>(ko,P,r) gives, according to (2.8), 

eR{<j*-ypR) = vtR. (3.7) 

The operator eR, by virtue of its quadratic dependence 
on k', may be written in coordinate space in terms of 
V2. I t is convenient to introduce the abbreviation 

^=I*+m*[2A--H(ko,P)3, (3.8) 

which is an effective energy in (3.7), and also 

f s 0 - * = ( l - Q ) 0 , (3.9) 

i.e., the difference between the free and the actual 
wave function. Then (3.7) becomes 

( f - ^ f ^ w V . (3.10) 

This is our fundamental differential equation. We 
solve this equation by means of the usual partial-wave 
expansion, with the notation £(L) — XL/kor, in analogy 

to \l/(L) — UL/kor. The resulting radial equations are 
given in (5.11). 

To discuss (3.10), the approximation to GN obtain
able from the reference spectrum, we now consider the 
short-range potential v8 alone. Formulas (3.6) to (3.10) 
can be taken over, with a subscript s attached. Since vs 

is defined to vanish for r>d, an L = 0 solution of (3.10) 
behaves for r>d as 

X . , ^ o * = <r-Tr. (3.11) 

Other angular momentum components behave simi
larly. Thus x and f tend rapidly to zero, the more so 
the larger y. Typical values of 7 for states inside the 
Fermi sea are of order 2 F _ 1 , and for states outside the 
sea even larger, insuring a very rapid decay of £S

R. 
The reference wave function \p8

R, Eq. (2.8), thus tends 
rapidly towards the free-particle wave function <£, cor
responding to rapid "healing" in the sense of Gomez, 
Walecka, and Weisskopf.22 The "healing distance" is 
0.5 F or less, beyond the separation distance d. 

In its rapid healing property, the reference wave 
function is similar to the Bethe-Goldstone (BG) wave 
function.20 The BG function takes the Pauli principle 
into account but replaces, in general,23 the energy spec
trum by the free nucleon spectrum, thus 

Q 
GBG = V—V—GBG. (3.12) 

eo 

The BG wave function has the disadvantage that 
fBG==0_^BG 0SCiiiates for large r, with frequency hwy 

rather than decreasing exponentially, like our (3.11). 
Therefore, our reference wave function is easier to 
work with and, hence, preferable. Moreover, \pR is a good 
approximation to the true wave function at small r 
while \j/BG is not, because at small r the correct energy 
spectrum of the intermediate states is much more 
important than the Pauli principle (see the beginning 
of this section). 

We now consider the solution fR of (3.10) if v is the 
complete potential rather than just its short-range part, 
vs. The asymptotic behavior of fR then depends on that 
of v: If v decreases faster than e~yr, Eq. (3.11) still 
holds for fR; but if it decreases more slowly, then 

£R~v as r—>oo. (3.13) 

In any case, however, rapid "healing" is assured. 
The Question is now whether GR so defined is a good 

approximation to GN. We have already shown that 
GS

R is a good approximation to GS
N (see Sec. 10 for 

further discussion), thus we are mainly concerned with 
the long-range part of the potential. Now it is well 
known that for the long-range potential the first Born 
approximation is good,14 i.e., Gt

N^vi. This means that 

22 L. C. Gomez, J. D. Walecka, and V. F. Weisskopf, Ann. Phys. 
(New York) 3, 241 (1958). 

23 A spectrum of the form (3.2) is, however, also considered as 
a possibility, cf., Eq. (2.27) of reference 20. 
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the wave function \pN in nuclear matter for r>d must 
be close to the unperturbed wave function <£, i.e., 
healing must be rapid. But this is precisely the property 
of our reference wave function \pB. I t does not matter 
greatly how \p approaches 4> for larger r, the leading term 
in Gi is just 

<k |G, |k o >«<0(k)H*(ko)>. (3.14) 

Therefore any f which goes rapidly to zero is acceptable, 
and our ^^ is thus a reasonable first approximation also 
for calculating the long-range contribution Gi. 

I t is a quantitative question whether GR is a suffi
ciently good approximation to the actual reaction matrix 
GN. If it is, we can use GR directly and thus avoid the 
MS separation. If it is not, we can use the MS separation 
and calculate GS

R. This is discussed in detail in Sec. 10. 
In the following we speak of GR but the argument is 
essentially the same for GS

R. 
To determine GR, the wave equation (3.10) is solved 

(Sees. 5-9), then 

<k|G*|k0 ,P) 

= U(k}t)vtR(k0jr)dT, (3.15) 

= (m*)-1 / 0 ( k , r ) ( T
2 - V 2 )^(k 0 , r )Jr , (3.16) 

: ( W * ) - l ( 7 2 + £ 2 ) 
/ • * 

r)f*(ko,r)dT. (3.17) 

This last step involves integration by parts. I t is 
equivalent to taking the matrix element of the identity 

G*=eB(l-QR). (3.18) 

In various connections, different expressions are 
preferable. 

Once GR is obtained, the actual nuclear reaction 
matrix can be calculated from the exact integral equa
tion (see Appendix A) 

GK=GR+GRi( - - W . (3.19) 
\eR e/ 

We have chosen en to be a good approximation to e in 
the region of kf important for the short-range forces so 
that the second term in (3.19) should be small for these. 
For the long-range forces, the second term is also likely 
to be small, partly because of the Pauli operator and 
partly because en is fairly large for all intermediate 
states.24 Therefore, it should be a good approximation 

O O 
m ( Q ) 

O — - « U ( m ) 
(0 (b) 

FIG. 1. Lowest order diagrams 
in the Goldstone expansion. Dia
gram 1(b) does not enter in the 
expansion. 

24 This is another way of arguing that GR should also be a good 
approximation^for the long-range forces. 

Or̂  O^ Or-O •*U(m} 

(a) (b) (c) (d) 

FIG. 2. Lowest order of class A diagrams, as defined in Sec. 4. 
These may be made to cancel "on the average" by a suitable 
choice of U(jb), U(m). 

to replace GN by GR in the second term. If this is done 
GN can be obtained simply by quadrature; the diagonal 
terms are 

)i2 (k01GN | k0>«<ko| G* | k0>+ ( 2 T ) - 3 fd'k' | <k' | GR | k„; 

X( — ) , (3.20) 

W O e(¥)J 
where we have used the fact that GR is Hermitean 
(Appendix A). 

In Sec. 10 we further discuss the second term of 
(3.20), especially the accuracy of the approximation 
GN—GR in the second term of (3.19). We also give the 
additional terms introduced by the MS separation. 

4. PARTICLE ENERGIES 

In the Goldstone formalism the initial choice of the 
particle energies E(k) is arbitrary. This, in fact, is an 
important reason for the power of the method, as 
compared with perturbation theory. The freedom of 
choice can be used to make the contributions of the 
third-order diagrams very small if not zero. 

I t is well known that in the Goldstone theory there 
is no second-order diagram because the only possible 
one, Fig. 1(b), is made up of Goldstone ^-interaction 
diagrams that have already been included in the first-
order one, Fig. 1(a). Wavy lines denote interactions by 
G, dashed lines by v, solid lines going up are nucleons in 
"particle" states kb>kp, lines going down are "holes" 
in states km<kF, and circles denote nucleons in nor
mally occupied states, kn<kF. Throughout this paper 
we follow the convention that a, b, c, etc., refer to states 
above the Fermi sea, while I, m, n, etc., denote states 
in the sea. The latter may or may not represent 
"holes," depending on the context. 

The third-order diagrams fall into two classes, A and 
B (as do the higher order diagrams). In class A dia
grams, such as Figs. 2(a) and 2(b), one of the lines 
produced by the original interaction, either a particle 
[Fig. 2(a)] or a hole [Fig. 2(b)] interacts with an 
additional particle in the sea. We may say, in analogy 
to field theory, that the class A diagrams are self-
energy diagrams. The diagrams 2(a), 2(b) represent the 
simplest self-energy insertions, namely, single "bubbles," 
which can be made into Fig. 1(a). Class B diagrams do 
not have the character of insertions, thus they corre
spond to genuine many-body clusters, examples of which 
in third order are the "particle-hole" and "hole-hole" 
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diagrams of Figs. 3(a) and 3(b). [The so-called "three-
body cluster" diagram, Fig. 3(c), can be considered an 
exchange graph associated with Fig. 3(a).] 

There has been a tendency to regard class B diagrams 
as small. This was apparently confirmed by Kohler25 

who used the MS separation method and found the 
total contribution of third-order clusters to be only 0.1 
MeV. However, Rajaraman26 has pointed out that, in 
third order, the class B diagrams are quite similar to 
class A. If they are suitably interpreted, they may also 
be considered as self-energy diagrams. This involves an 
approximation, which, however, works quite well. 
Rajaraman estimates that class B diagrams are about 
as important as class A, which is reasonable. We have 
estimated that their influence on the binding energy 
per nucleon may be several MeV unless there is an 
accidental cancellation. The reason for the difference 
from previous estimates is that our theory attributes 
much greater importance to the hard core interaction 
far "off the energy shell." For simplicity, however, we 
ignore class B diagrams in this section and return to 
Rajaraman's suggestion at the end of this section and 
again at the end of Sec. 8. 

The free choice of E(k) can now be used to com
pensate, as far as possible, the diagrams of Fig. 2. If 
we choose 

E(k) = U2+U(k), (4.1) 

then —U(k) is part of the perturbation Hamiltonian. 
We therefore try, as closely as possible, to make the 
diagrams of Figs. 2 (a) and 2 (c) cancel by defining 

U(fi)= Z (bn\G\bn-tib), (4.2) 
Jcn<lcF 

where we have indicated the direct minus the exchange 
elements of the reaction matrix27 for the interaction of 
nucleons b and n, summed over all nucleons n in the 
Fermi sea. Equation (4.2), in fact, is the definition 
used by Brueckner in all his papers.28 

However, (4.2) does not completely define U because 
G depends not only on kb and kn but also on H, see Eq. 
(2.4). But H depends generally on all the particles and 
holes present while the interaction occurs,29 not only on 
the two interacting particles, b and n. For instance, in 
order to find out the proper H for Fig. 2 (a) we expand 

a o o 
(a) (b) (c) 

FIG. 3. Lowest order of class B diagrams, as defined in Sec. 4. 
Rajaraman has shown that these may be considered approximately 
equivalent to class A diagrams, i.e., insertions. Diagrams (a), (b), 
and (c) are commonly called the particle-hole, hole-hole, and three-
body-cluster diagrams. 

25 S. Kohler, Ann. Phys. (New York) 12, 444 (1961). 
26 R. Rajaraman, following paper [Phys. Rev. 129, 265 (1963)]. 
27 The notation is different from that in Sees. 2 and 3; we have 

k&= P-(-k and kn~ P—k in terms of the previous notation. 
28 See especially reference 16. 
29 Reference 21, Sec. 3, especially Eq. (3.13). 

FIG. 4. Typical ^-interaction ladder dia- [ ] f W"VA 
gram contained in Fig. 2(a). 1 L I jc"dy" 

the interaction with the bubble on the right into ladder 
diagrams such as Fig. 4. Then in the step which con
tains the particle states c and d, the energy denominator 
is obviously30 

e=E(c)+E(d)+E(a)-E(l)~E(m)-E(n), (4.3) 

so that, using the definition of H in (2.4), 

H=E(l)+E(m)+E(n)-E(a). (4.4) 

Since state a is above the Fermi sea, and /, m, and n 
are all in the sea, it follows that 

H«E(n)+E(kF-e), (4.5) 

whereas, if b and n interacted "on the energy shell," 
we would have 

H' = E(n)+E(b)y>E(n)+E(kF-e). (4.6) 

This shows that the interaction is "off the energy shell," 
and that the "starting energy" H is always considerably 
less than the on-energy-shell value H'. Furthermore, 
(4.4) shows that H is not uniquely determined by b 
and n, but depends also on I and m, the nucleons which 
originally interacted. It should be noted that 

k a =kH-k m -k 6 , (4.7) 

so ka is not an additional variable. 
The dependence on I and m means that the definition 

(4.2) is ambiguous for states kb>kp, since the right-
hand side depends on three parameters while the left 
side must depend only on state b. The best that can be 
achieved then is to make 

Z7(6) = average X) (bn\G\bn—nb\lm). (4.8) 
l,m hn<hF 

Then the potential is not truly self-consistent; for a 
given I and m the sum of the diagrams 2(a) over all 
n do not cancel Fig. 2(c). But we may expect that after 
summation over I and m the cancellation will be quite 
close.31 Fortunately, the dependence on I and m is not 
very strong because H is not very sensitive to these 
parameters. For instance, if kb is very large, (4.7) 
gives ka~kb, and (4.4) yields32 

H~E(n)+2E^-E{b), (4.9). 
30 This is essentially in agreement with Brueckner and Gammel, 

reference 4, Appendix A. 
31 That "cancellation on the average" is the best we can hope to 

achieve was pointed out by Goldstone, reference 2, and by D. J. 
Thousless, Phys. Rev. 112, 906 (1958). 

32 I t may be noted that if (4.9) is rewritten as H=2Ea,v—A, then 
A—E(b)—E(n). Clearly A depends strongly on kb. In view of the 
influence of H on the resulting U(b), it is not a good approximation 
to replace A(b) by an average value, as done by Brueckner and 
Gammel. They justified this by the weak dependence of their 
U{b) on A, but, as shown below, this was a result of their incorrect 
treatment of the hard cores. 
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where E&v is the average energy of a nucleon in the 
Fermi sea. 

The definition (4.2), or more accurately (4.8), is of 
course in the spirit of the Hartree-Fock method. I t is 
reasonable to hope, but it still has to be proved, that 
this choice also minimizes contributions from the most 
important fourth and higher order graphs. 

For the potential energy of states m below the 
Fermi sea, or "holes," Brueckner has always calculated 
G on the energy shell, i.e., with 

H=E(m)+E(n). (4.10) 

This is reasonable, but not obviously the best choice. 
At first sight, (4.10) is suggested by the fact that it 
makes diagram 1(c) cancel the sum over diagrams 1(a). 
But this is not particularly useful: In the total energy 
of nuclear matter, in first order in G, there is no such 
cancellation because we must take one-half the sum 
of diagrams 1(a) over m and n, minus the full sum of 
diagrams 1 (c) over m. Instead, as we have said in con
nection with (4.2), U(tn) in Fig. 2(d) should compensate 
the diagrams of Fig. 2(b). In fact, as Goldstone has 
demonstrated, the Hartree-Fock definition of U(m) in 
perturbation theory does even better: The term — U(nt) 
in the perturbing Hamiltonian identically cancels all 
diagrams which contain a "bubble interaction" in
serted into an upgoing or downgoing line of some simpler 
diagram. This is no longer true in the G-diagram ex
pansion, because the starting energies for the G's 
associated with the bubble interactions depend on the 
remainder of the diagram. 

From the foregoing it might seem reasonable to pro
ceed by analogy to our choice for H(b), but this leads 
to a difficulty when we follow the Goldstone theory in 
a straightforward manner. In this theory, the ladders 
of v interactions which combine to form G can only 
exist between particle states k>JtF, so that a typical 
ladder contained in Fig. 2(b) is shown in Fig. 5. The 
energy denominator in the section involving c, d can 
easily be read from the diagram, and the starting en
ergy is 

H=E(l)+2E(m)+E(n)-E(a)-E(b). (4.11) 

I t is easily seen that this is even lower then (4.4) 
since it involves four hole energies minus two particle 
energies, rather than 3 and 1. On the basis of this 
definition of H, Bethe and Goldstone33 concluded that 
the G matrix due to a pure repulsive core is about the 
same for Figs. 4 and 5 if fa is large. We have confirmed 
this conclusion under the assumption (4.11). 

Unfortunately, in attempting to find the potential 
energy as a function of km only, we have obtained a 

t i l f ln FIG. $' Typical ^-interaction ladder dia-
[cJJy gram contained in Fig. 2(b). 

^3 Reference 20, Note added in proof. 

result (4.11) which depends strongly on kb. We mention 
two ways out of this difficulty. One is to adopt the 
on-energy-shell definition of U(m) as done by Brueck
ner, and then to consider the difference between Figs. 
2(b) and 2(d) as a contribution to U(b). The hole-
bubble G matrix depends strongly on fa and only weakly 
on km, so it is reasonable to average over m states as in 
Eq. (4.8). This contribution to U(b) has a strong quad
ratic dependence on £&, of sign opposite to that from 
Fig. 2(a). We show below, and in Sees. 5 and 7, that the 
quadratic term from Fig. 2 (a) leads to an effective mass 
considerably less than unity. The result of including 
Fig. 2(b) in this manner is to cancel most of this quad
ratic term so that m* is much closer to unity. This 
interpretation of Fig. 2(b) is due to Bethe and 
Goldstone.38 

The method which we adopt, however, is based on a 
suggestion of Brueckner and Goldman.16 A fourth-order 
v diagram contained in Fig. 2(b) is shown in Fig. 6(a). 
They argue that another fourth-order diagram, Fig. 
6(b), should be combined with this because it is of the 
same order of magnitude (see Appendix B). They show 
that in perturbation theory the energy denominators 
of Figs. 6(a), 6(b) combine to give the same result as if 

(a) (b) 

FIG. 6. Fourth-order diagrams combined by Brueckner and 
Goldman (reference 16) to suggest that the hole-bubble inter
action be evaluated "on the energy shell." 

Fig. 2(b) were evaluated with the "bubble" energy 
denominator evaluated on the energy shell, corre
sponding to (4.10). The basic idea is then that by in
cluding suitable higher order diagrams together with 
Fig. 2(b) one obtains the same result as by evaluating 
the complete hole-bubble interaction on the energy 
shell. Although Brueckner and Goldman only showed 
this to fourth order, the result is, in fact, valid to all 
orders of perturbation theory and thus can be used for 
G matrices. We prove this in Appendix B. We must 
include all diagrams of the type shown in Fig. 7. Two 
holes are created in the state my by interaction with 
holes / and n. (It does not matter which interaction 
occurs first.) The particles b, c which arise from the two 
holes in m, interact alternately with the particles a, d 
which originated from the holes in I and n. Ultimately, 
the two holes in m are filled again, the first by inter
action with n, the second with /. Summing over all 
diagrams of this type, and adding 2(b), we obtain 
exactly the same result as by evaluating 2(b) on the 
energy shell. 

I t is interesting that when we evaluate 2(b) on the 
energy shell the result depends only on the energy of 
the interacting particles m and n, not on that of any 
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other particles as in (4.4). Therefore the cancellation of 
2 (b) and 2 (d) can now be made exact, while Figs. 2 (a) 
and 2(c) only cancel in an average sense. Furthermore, 
this method can be applied to any hole bubble appear
ing in any diagram, so that this useful cancellation 
feature of Hartree-Fock perturbation theory may be 
carried over into the G-matrix expansion, but for hole 
states only. (For the difference between particle and 
hole states, see end of Appendix B.) 

Note that this discussion has led us back to just the 
definitions of U{m) and U{b) used by Brueckner, which 
are obtained by ignoring Fig. 5. However, our results 
for the G-matrix elements which contribute to U(b) 
differ from his in the region of large fa. We find that 
U(b) should asymptotically be quadratic in kb, corre
sponding to an effective mass w* less than unity, 
whereas Brueckner and Gammel4 obtain U(b)—±0 as 
ki —> oo. The reason for the quadratic term in kb may 
easily be seen as follows. 

Consider Fig. 2(a), as shown in more detail in Fig. 4. 
I t is easier to visualize the relations between the various 
momenta by means of a "momentum diagram/' Fig. 8. 
A number of simplifications result from considering the 
asymptotic limit of large kb. Figure 8 shows that inter-

FIG. 7. Typical Goldstone diagram included along with Fig. 
2(b) when the hole-bubble interaction in Fig. 2(b) is evaluated 
"on the energy shell." 

mediate states c, d with small momenta should not be 
important. For this reason the Pauli exclusion operator, 
<2, may be neglected and the reference spectrum ap
proximation should be very good. For the same reason, 
and because we are only interested in quadratic effects, 
we need only consider the hard core part of the two-
nucleon interaction. Now we use Eqs. (4.4) and (3.8) 
to write, for the interaction of b and n, 

7
2 = P 2 + 4 2 i - £ ( I ) - £ ( f w ) - £ W + £ ( a ) ] , (4.12) 

P 8 = i ( k 6 + k n ) 2 , (4.13) 

« = i ( k f e - k „ ) 2 . (4.14) 

Now use Eqs. (3.2) and (4.7) to define E(a). After 
averaging over directions of the momenta I, m, n, no 
terms remain which are linear in fa. Dropping terms 
which are small compared to kb2, 

(4.15) 

(4.16) 

T 7 

'•\kb\ 

Inside the core, \p vanishes but v= oo. Their product is 
finite, however, and is found from Eqs. (3.9) and 
(3.10) to be 

^ = (m^iyt+h2)^ (w*)-1**2*. (4.17) 

# FIG. 8. Momentum-space diagram for Fig. 4, showing the rela
tions among the states due to momentum conservation. The 
Fermi sea is represented by the circle. 

There is also a core boundary term in v\f/, which arises 
from the discontinuous change in slope of yp at r=c. 
This term is proportional to the radial slope of \p just 
outside of the core boundary, and from Eqs. (3.11) and 
(4.15) it is seen to be linear in kb. For the present we 
may neglect this term in comparison to kb

2. Then the 
(direct) G-matrix element becomes simply 

r 47r 
(bn\G\bn)** / $*v^dT~-~(?kb2(ni*)-\ (4.18) 

J r<c *$ 

The exchange matrix element becomes 

(bn | G | rib) « (w*)-1^2 / e~2ik« •rdr, (4, 19) 

which vanishes in the limit ko —> oo. The summation 
over the states n reduces to a multiplication of Eq. 
(4.18) by the density, 

'-^MrO' (4.20) 

where r0 is given approximately by the constant in the 
empirical nuclear radius formula. Then from (4.18) 
and (4.20) 

c* kb2 

U{b)~ , (4.21) 

and using 

we find 

U(b)+-
2 Im* 

(4.22) 

m * « l - 0 . 5 6 6 ( ^ ) 3 - l - 2 ( c A o ) 3 . (4.23) 

This result was obtained before by Bethe and Gold-
stone,20 but was then rejected by them in a note added 
in proof. This was because they considered only dia
grams like Fig. 5 for the hole-bubble interaction, as 
mentioned above. 

Inserting the values ^ = 1 . 5 F - 1 , c=0.4 F, we obtain 
w*=0.88. The value of m* obtained in Sec. 8 is smaller 
than this, due to the effects, for finite values of kb, of 
the core boundary term and the different statistical 
weights of even and odd angular momentum states. In 
fact, the quadratic part of U(b) is approximately 
doubled by these effects.34 The contribution to w* from 
the potential beyond the core is indeed negligible. 

34 Because of these corrections for finite fa, the cancellation in 
Figs. 2(a) and 2(b) in the Bethe-Goldstone treatment is not 
complete, and one still obtains an m*<l. 
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n O n FIG. 9. Typical ^-interaction ladder diagram 
contained in Fig. 1(a). 

If we interpret Fig. 2 (b) according to the suggestion 
of Brueckner and Goldman, an effective mass w* < 1 is 
unavoidable for large fa. We may inquire, then, why 
Brueckner and Gammel4 did not find this result. One 
reason is their neglect of the "core volume" term, Eq. 
(4.18), which we have shown to be the only contribu
tion to 1—w* in the asymptotic region. In the calcula
tion of U(m), however, this "core volume" term is 
negligible, as shown by Bethe and Goldstone.20 Another 
reason is Brueckner and Gammel's neglect of any inter
action, including the repulsive core, in odd angular 
momentum states. Using the results of the next section, 
we have found (Sec. 8) that most of the quadratic part 
of U(b), in the important region of fa, comes from P 
states (cf. Fig. 10).34a 

We now want to return to the contribution of Class 
B diagrams, Fig. 3. Rajaraman has observed that these 
diagrams can also be considered, with good accuracy, 
as self-energy insertions in the particle line b of Fig. 9, 
hence they may be cancelled by a suitable choice of 
U(b). This means that a first-order calculation of the 
nuclear binding energy with this U(b) is, in fact, 
approximately correct to third order. Rajaraman's pre
liminary estimates indicate that the effect of including 
the third-order diagrams of Class B, shown in Fig. 3, 
in U(b), is to roughly halve the contribution to 1 — w* 
from Fig. 2(a) alone. We return to this point at the end 
of Sec. 8. 

We do not consider this to be a sufficiently thorough 
discussion of the single-particle energies for states 
above the Fermi sea. I t is quite possible that other 
higher order diagrams may be important; if so, it is 
likely that most of these may be cancelled or minimized 
by further modifications of U(b). Note that the require
ment of self-consistency for U (Sec. 7) amounts to mak
ing the assumption that our U(b), Eq. (4.8), is a good 
choice also for the intermediate states occurring in the 
particle-bubble interaction. 

In conclusion we want to make two general remarks 
about our particle energies. In the first place, these 
energies are not meant to give the observable energies 
of particles in the nucleus. For example, for states in 
the Fermi sea, —E{m) does not give the energy neces
sary to remove particle m from the nucleus. This re
moval energy is the analog, for hole states, of the optical 
potential and is a measurable quantity, at least in 
principle. I t can be calculated within the Brueckner-
Goldstone formalism, as the difference between the 
total energies of nuclei containing A and A — \ par
ticles. The removal energy differs from our —E(m) by 

u»Note added in proof. A further, and important, reason for 
their different result is that their approximation to the off-energy-
shell starting energies, H, was independent of kb. See our foot
note 32. 

the oft-discussed rearrangement energy.16 Likewise, for 
states above the Fermi sea, U(b) does not give the 
optical potential: Our states b are intermediate states 
occurring inside a complicated diagram; for a real state 
b interacting with n the starting energy is on the energy 
shell, 

H=E(b)+E(n), 

rather than (4.4), and the resulting U(b) is, therefore, 
quite different from ours. The only purpose of our 
single-particle energies is to facilitate the calculation of 
the total energy of nuclear matter, by making the sum 
over Goldstone diagrams converge rapidly. 

The second remark concerns the occurrence of Cooper 
singularities, analogous to the Bardeen-Cooper-Schrief-
fer theory9 of superconductivity. Such singularities are 
apt to occur if the single-particle energies E(k) are con
tinuous at the Fermi surface.10 Our particle energies are 
discontinuous because of the different choice of "starting 
energy" below and above kF, Eqs. (4.10) and (4.4). 
The averaging over I and m required in (4.8) then 
ensures an energy gap at kp- [If we choose specifically 
k z + k m = 0 , ki and km=kF~e, and kb=kF+e, then H in 
(4.4) joins continuously to (4.10) below kF; therefore 
for this particular choice of momenta, there is no jump 
in E at the Fermi surface, and the BCS phenomenon 
could occur.] With such a gap there are no Cooper 
singularities. I t has been made plausible by the work of 
Emery and Sessler10 that the Cooper singularities do not 
have a substantial influence on the bulk properties of 
nuclear matter. Our theory, which avoids formal diffi
culties from these singularities, has the advantage, com
pared with other theories, of (a) preserving the sim
plicity of the Goldstone approach, (b) giving a logical 
reason for the appearance of an energy gap, therefore 
(c) avoiding difficulties associated with vanishing energy 
denominators, (d) including the Pauli principle in a 
simple way, (e) permitting accurate calculations of the 
total energy, and (f) avoiding reformulation of the 
two-body problem in terms of an artificial, e.g., ve
locity-dependent, potential. 

5. METHOD OF CALCULATING GB 

The introduction of l/eR in place of Q/eN in the 
G-matrix equation has reduced this equation to a set 
of ordinary second-order differential equations for the 
various partial waves. This has the great advantage 
that a number of standard techniques may now be 
applied. I t also leads to some new features that are 
quite helpful in understanding the essential physics of 
nuclear matter. 

We show in this section that GR may be separated 
into two contributions, one representing the effect of a 
pure hard-core interaction only, and the other the effect 
of the outer potential. By outer potential we mean the 
total interaction beyond the hard-core radius. Given the 
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reference spectrum, this separation is exact.35 This is 
convenient for several reasons. There is less contro
versy about the existence of a core than there is about 
the detailed form of the interaction for r>c. I t is easier 
to study the consequences of various assumptions for 
the outer potential after the core effects have been 
isolated. Also there are several subwaves, with various 
statistical weights, for each value of L. The situation 
for the outer contributions is rather complicated, and 
this discussion is deferred to the next section. However, 
the core contributions from all the subwaves combine 
to give this term a simple statistical behavior. If we 
assume the same c in all states, several Bessel function 
identities may be used to express the total core con
tribution in closed analytic form. This requires only a 
very minor approximation so that the core expression is 
essentially exact. We then show that there is an itera
tion expansion for the outer contribution which is 
directly analogous to the usual Born series. We call 
this the modified Born expansion, leading to various 
orders of modified Born approximation (MBA). 

To illustrate the method we first discuss the "direct' ' 
diagonal element of GR for two particles of relative 
momentum &0= i |ka— k&|, and distinct (spin, isospin) 
states. (In this section and in Sec. 6, we assume that 
ni*— 1. Modifications for w* =̂  1 are discussed in Sec. 7.) 
Using Eq. (2.7) and the partial wave Eq. (5.11) ob
tained by separating (3.10), we find, similar to (3.17): 

<*o|G*|feo> 

= 4 7 r Z ( 2 L + l ) ^ o - 1 / jL(hr)vuL
Rrdr (5.1) 

= 47r(7 2+^o 2 )E(2^+l)^o- 1 jL(kor)XL
Rrdr. (5.2) 

L Jo 

The x's are defined by 

f = * - * = (fcor)-1 £ L ( 2 L + 1 ) ^ X L P L ( C O S 0 ) . (5.3) 

We omit the R labels from now on. I t is convenient to 
introduce the following definitions: 

$L(r) = korjL(hr), (5.4) 

HL^(yr) 
WL(r)^3L(c) 

HL^(yc) 
(5.5) 

where HL{±)(yr) are the solutions of (5.10) with the 
asymptotic forms e±yr. In terms of the usual spherical 
Hankel functions, 

HL c±> (x) = ;<L+1> (rFix)kL
a) (=F^) 

= i~iL+1) (±ix)hL™ ( ± & ) . (5.6) 
I t is clear that 

XL=3L—UL. (5.7) 
35 Brueckner and Gammel, reference 4, mention such a separa

tion, but they are unable to do this in an exact manner since they 
use the complete nuclear propagator Q/eN. 

For r<c, XL=$L since \// vanishes. Thus, the integra
tion of (5.2) over the core interior region is straight
forward. If there were no interaction beyond the core, 
we would find XL=3£L for r>c. Note especially that 

3L(C)=WL(C) = XL(C) (5.8) 

holds for a general interaction beyond the core. 
The transformation (5.1) —» (5.2) involved integra

tion by parts. If we were to reverse this procedure for 

(y2+h2) f SLXLdr, i 
nonvanishing boundary terms would now appear. In
stead, we compare the three differential equations 

L(L+1) 

.dr2 

2]C3L=0, 

~d2 L{L+\) ~] 

.dr2 r2 J 

rd2 L(L+1) 

Ldr2 r2 -y 
? lx L = -= —vuL. 

(5.9) 

(5.10) 

(5.11) 

We multiply (5.9) by XL, (5.11) by $L , subtract, and 
integrate to obtain 

(72+£o2)/ 3L*Ldr 

d 
= UL—3L-3L—XL)\ + J 

\ dr dr J\c Jc 

$LvuLdr. (5.12) 

Combining (5.10) and (5.11) similarly gives 

/ d d \\ r00 

(3Czr-XL-XL—3CL = / WLvuLdr. (5.13) 
V dr dr J\c Jc 

Thus we find, using (5.8), 

f SLVULdr= (y2+ko2) f 3L2dr+$L(3L'-WL') \ c 
Jo Jo 

+ ($L-3CL)vuLdr. (5.14) 

All the effect of the outer potential is contained in 
the last integral, so that an exact separation into "core" 
and "outer" terms has been achieved. The meaning of 
the derivative terms becomes apparent when we try 
to derive (5.14) by means of (5.1) and (5.11) without 
using integration by parts. Inside the core, vuL has the 
indeterminate form oo X0, but we know20 that this must 
include a term of the form \5(r—c), which comes from 
the discontinuous change in slope of XL &tr=c. Accord-
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ing to (5.13), the slope of XL at r=c+e is 3CL'(c), the 
result for a pure hard core, plus a correction due to the 
outer potential, namely 

LSL(C)']~1 3CLvuLdr. 

The slope of XL at r=c— e is $L(C), thus if the outer 
potential were absent, the change in slope would be 

3 C L - S i -
There is a simple interpretation for the outer integral 

in (5.14). For a pure hard core, uL(r>c)~$L—3CL so 
that this term has the familiar form 

/ 
(unperturbed u£) (perturbing v) (exact Ui)dr. (5.15) 

This separation formula, (5.14), is actually the partial-
wave decomposition of a general reaction-matrix iden
tity which is derived in Appendix A (Eq. A16). 

Core Contribution 

We may use several spherical Bessel function identi
ties to obtain the total core contribution to (5.1) in 
closed form. These identities follow immediately from 
the usual partial-wave expansion.36 

Z ( 2 L - H ) i z , 2 ( M = (47r)~x / d2rer-*k°-Vk°-r= 1, (5.16) 

d 
T,(2L+l)jL(kor)r-jL(kor) 

L dr 

(5.17) 

= (47T)-1 / cPfer^^r—e***'* 
dr 

• (4x)" 

<22 

-1 [<Pf(ik0-r) = 0, 

£ (2L+ l)jL {hrY—JL (hr) 
L dr2 

(5.18) 

The symbol d2f is used here to indicate integration over 
the entire solid angle. As a simple illustration, we note 
that 

rc 47r 
4 7 r £ ( 2 L + l ) / jL

2(k0r)r2dr=—c\ (5.19) 
L Jo 3 

which is just the hard-core volume. These identities 

36 These sum rules may all be obtained, either directly or by 
differentiation, from Gegenbauer's addition theorem. See, e.g., 
G. N. Watson, Theory of Bessel Functions (Cambridge University 
Press, New York, 1952), 2nd ed., Sec. 11.4. 

have a useful corollary. 

Y,(2L+l)jL*(k0r)L(L+l) 
L 

= r E (2L+ l)jL(k0r)lL (L+ l)/f*yjL(k*) 
L 

rd2 

= rZ(2L+l)jL(k0r) 
L .dr2 

rjL{hr) (5.20) 

= E ( 2 X + 1 ) 
r d2 

•JL+2jLr—JL+ (hr)2jL
2 

dr 

-Uhr)2 

Now consider 

3HL' I c= 3L2(C) (d/dr) lnffL<-> (yr) \ c. (5.21) 

The logarithmic derivative of ZTL ( _ ) is a rational func
tion, and for (yr)2^>>L(L-{-l) this may be expanded in 
an asymptotic series. But (7f)2^>L(L+l) is just the 
region of validity for the WKB approximation to 
7 / L ( - ) . The WKB result for the logarithmic derivative is 

- 7 [ l + Z ( L + l ) / ( T r ) 2 ] : 1/2 (5.22) 

Expanding this, we see that the leading terms in the 
asymptotic expansion must be 

-y£l+L(L+l)/2(yr)2l. (5.23) 

Now thanks to the $L2 factor, we are only interested in 
the first few L's, those where L<koC. We show in Sec. 7 
that &o2<30y2, so that the ratio of the second term to the 
first is of order <&O 2 /2T 2 , which is considerably less 
than unity. The first term is what would be obtained 
if J9"L (_) were replaced by HQ{~\ that is if HL{~} were 
a simple exponential. The WKB result suggests that 
the second term in the asymptotic expansion over
estimates the correction, which is really quite small. I t 
is reasonable then to group the leading "exponential" 
terms together, by means of the Bessel sum rules given 
above, and leave the remaining small corrections to be 
approximated in some manner. Using (5.16) and (5.17) 
to sum over L's, and remembering the normalization 
from (5.1), Eq. (5.14) then gives 

<*o|G*|*0>c 

+Z(2L+l)c2jL
2(koc{ 

±7r\Uy2+h2)c*+c(l+yc) 

d I 
-7 lniJz/-) 

dr I I (5.24) 

This result is not too surprising. I t is possible to find 
the "inner boundary" term (the sum of the $L$L 
terms) and the "core volume" term in (5.24) without 
making a partial-wave expansion at all. This is true 
also for the "outer-boundary" terms provided that we 
approximate 3CL by an exponential, which amounts to 
assuming 

( d / d f ) ( f f ) U . « - 7 c f ( c ) . (5.25) 
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Now we claim that a suitable approximation for the d 
correction term is £ {2L+\)jL{hr)r-jjL{k^) 

even L dt 

[ - 7 - ( ^ r ) l n 3 C L < - ) | c ] 
yL(L+l)Z2yc(yc+l)-]-\ (5.26) = H**)-*f*t ^ • • ' ( • V K * - - * . - * - " . - ' ) 

This is justified in connection with Eq. (5.34). This ^-lifaiA*)-1 f*t PiiL-t)^**-* 
was chosen to be exact for Z=0 and 1, and to have the 2 J 
correct WKB limit. Then (5.20) gives , , ,ni , 

= -Uorji(2k(f), (5.31) 
E ( 2 L + l ) c ^ ( ^ c ) r _ T inffL(-)| 1 £ (2L+l)yL(*«ry—iiOfcor) 
i L <fr I c J even L dr2 

a n d f i n a l l y - C (M 2 C3( T C +l) ] - i , (5.27) = _ i ( 4 7 r ) _ 1 / ' ^ e - i k o . r ( k o . 1 . ) 2 ( e i k o . r + e _ i k o . r ) 

<fto|GB|*o>«« 
f c3 r (£0c)2 "11 

*4x ( 7
2 + W ) - + c 1+7C+ . (5.28) 

I 3 L 3(7C+1)JJ 

= l^of)2[2i2(2AoO-io(2V)-1] 

3(TC+1)JJ 

Core Statistics 

H M ^ I + ^ T T ) - 1 / " ^ 

X[2P2(^0- ?!)+i>o(*o- r)]e-2ik»r 

The result, for the core contribution, of including the ^ ^ / ^ M - H M ^ M - H M 2 . (5.32) 
exchange matrix element of GB and averaging over the 
spins and isospins of the interacting pair, is to multiply In the last step here we have exploited the recurrence 
the even states by 3/4 and the odd states by 5/4. relation 

{(ab\GR\ab)-{ab\GB\ba)}core, spinaverage ^ (2L+l)jL
2(k0r)L(L+l) 

(3 5 1 e v e n L 

= 4ir - E + - E (2i+l) (5.29) r J2 d -, 
14 even L 4 odd L J = £ (2L+1)\ jLT2—jL+2jLr~jL+{hr)2jL

2 \ 
even L L 6̂ f2 Jr J 

x l (72+W) /" ii2(^or>2^+^o-^L(5L'-3CL') /" ji2(korydr+ko-*3L(3L'-KL')\ ) = i(*or)2-i*or/i(2*or). (5.33) 

The analogous identities for odd states are easily found 
That these are the correct statistical weights may be by subtracting these results from the previous results 
seen as follows: Given the momentum states ka, k&, for all L's. Corresponding to (5.28), 
3/4 of the time the (spin, isospin) states of the two /* \^R\U \ 

.* i js'rc n i .1 j j j ^ - i \*0 w #o/core, spin average 

particles differ, allowing both even and odd spatial 
wave functions to contribute. The exchange term van- =4rr{(5/4) X ~~i H } (2Z.+1) 
ishes because the spin states are orthogonal. The re- a11 L even L 

maining 1/4 of the time the (spin, isospin) states r ^c 
coincide, only odd states exist, but there is a factor x j (Y2+&O2) / JL2(hr)r2dr 
of two since the direct and ̂ exchange terms both ' Jo 
contribute. " +cjL(hc)[_c{d/dr)jL(hr) \ c+jL(k0c)2 

Identities corresponding to (5.16), (5.17), (5.18), and i 
(5.20) exist for sums over even states only, as can be +c2jL

2(koc)y+c2jL
2(k0c)l—y-(d/dr) Infix,^ | <G f 

seen by replacing c > 
eik0.x b y i(^ko.r_]_e-ik0.r)? ~kTrc\\(x2+y2)-\c~l(x2+y2) / j0(2k0r)r2dr 

at the appropriate steps in the derivations. +J*/1(2*)+ ( l+y) [ l - i /o (2*) ] ) 

£ (2L+l)jL
2(hr) > 

even L +4xC[20-+l)]-i{ (5/4) E - i E } 
all L even L 

= h(4r)-*fffit e-ik„.r(eik„.r+e-ik„.r) x (2L+l)jL*(x)L(L+l) 

, =47rC{K*2+3'2)+l^(l-3'2/^)ii(2x) 

=i+i(4»)-iJ dvp.tf,-^*-' + (1+y) [1_i io (2^ ) ] 
= § [ l + / o ( 2 M ] , (5.30) +(l+>')-1CI^+W1(2x)]}, (5.34) 
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where 
%=zkoC, y^yc. 

We have made a detailed calculation of this core 
term both by means of (5.34), and by evaluating the 
correction terms in (5.26) without approximation for 
L=l, 2, and 3. The approximation is worst for large 
values of ko where Z7s>l are important. We used the 
parameters A=0.75, c=0A F, kF~ 1.5 F"1, as discussed 
in Sees. 7 and 8. In the region from kb=kF to ki>=5kF, 
the correction term was < 3 % of the total core term, 
while the error in the correction due to this approxima
tion was <2%. Thus, the over-all error in (5.34) is 
<0.06%, which leads to an error of <0.1 MeV in the 
calculation of U(b) (Sec. 8). 

Outer Contribution 

Referring to (5.1) and (5.14), 

{ (ab | GB | Ob) — (ab \ GR | ba)}outer, spin average 

L,S Jc 

• 3 C L ) 

Xko-2v(L,S)u(L,S)dr. (5.35) 

In general, the statistical weights, v(LS), are more 
complicated than for the core terms. An exception is 
the simplified interaction used in Sec. 9. Equation 
(5.35) also neglects the additional complications due to 
tensor forces. These matters are discussed in detail in 
Sec. 6. 

From the definition of XL (index S suppressed), we 
may write 

uL= (3L-WL)+ (WL-XL). (5.36) 

Then (5.10) and (5.11) are combined to give 

rd2 L(L+1) I 
72 ( 3 C L - X L ) 

Ldr2 r2 J 

and 
= VI($L-WL)+(&L-XLD, 

•XL(T)1= f <3L(r\r')v(r') 
J c 

(5.37) 

X{l3L(r')-KL(r')2+LKL(r')-XL(r')-]}dr', (5.38) 

where QL is the Green's function corresponding to the 
operator on the left of (5.37). 

Equation (5.38) may be formally solved by iteration 
to generate a modified Born series. It is shown in Sees. 8 
and 9 that this series actually converges fairly rapidly, 
so that a form of perturbation theory is possible even in 
the case of a hard core. The first few terms of this series 
form what we call a modified Born approximation 
(MBA). In first MBA, the "unperturbed" wave func
tion is ^L(O) = $Z,—3CL. The Green's function is deter
mined by the boundary conditions that 3C/,—XL—0 at 

r~c and <*>. Using the definition (5.6), the result is 

lrHL^(yc) 
8L(r|rO = - P 

27L. 
-HL^(yr)HL^(yr') 

2yLHL^(yc) 

(5.39) 

for f < 0 > . 
Equation (5.38) is quite useful for qualitative dis

cussions. WTriting 

UL= (3L-WL)+ (WL-XL) (1)+ (WL-XL) (2)+ • • ' 

= uL(o)+UL(i)+uLi2)-{ , (5.40) 

one sees that the first MBA correction, #L(D, is inversely 
proportional to y2, at least in the region of large y. One 
factor of y~l comes from the coefficient in QL, while the 
second comes as a result of the integration. The 7 de
pendence is perhaps clearer when CjL is expressed in a 
form suitable for momentum-space calculations. 

2 r - r HL^(yr)n 
gL(r | f ' )= —fr* / jL(kr)-Mkc)——— 

7T Jo L HLl-)(yc)J 
h(kr') 

X k2dk. 
y2+k2 

(5.41) 

If the Fourier-Bessel transform of uL is such that 
(&2)av?>72> then the first MBA correction varies more 
slowly with y than Y~2. 

It appears now that 7 has two effects. It defines a 
"healing distance"22 of order y~l, through the "pure-
core" term ($L—5CL). It also tends to stiffen the wave 
function so that, for nuclear matter, it is not very dif
ferent from the case of a pure hard core. Brueckner 
and Gammel4 have noted the latter effect; compare the 
curves labeled U(r) and S(r) in their Fig. 5. 

When the tensor force is considered, VUL must be 
replaced by Y^L'VLL'UL'* It is well known that the tensor 
force vanishes in S states so that in the deuteron state 
its effect first appears in the second Born term. The 
tensor force is quite strong, causing a large admixture 
of D state within the range of the force. A short-range 
admixture of D state corresponds to a moderately large 
k2. It turns out that the fractional difference between 
(&2)av+72> and {k2)^—k^2 [the corresponding de
nominator in (5.41) for free-particle scattering] is not 
large, so that the effect of the tensor force, relative to a 
central force, is only moderately reduced by yP How
ever, it turns out (Sec. 7) that 7 increases about as kp, 
so that at higher densities the tensor force is consider
ably less effective. There is another reason why the 
tensor force appears to be weakened by the presence of 
nuclear matter. This is a consequence of the effective 
mass being less than unity, and is discussed in Sec. 7. 
These effects are both important in obtaining saturation 
at the observed density. 

37 E. J. Irwin (private communication). 
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For a detailed numerical calculation it is doubtful 
whether (5.38) is very useful. (A computer could be 
programmed to iterate this equation several times, in 
effect generating the MBA series.) It is probably simpler 
to solve (5.11) directly. In the case of tensor forces, 
there are pairs of coupled differential equations. 

We have only discussed the diagonal elements of GB. 
These are the most important, but for evaluating 
GN—GR and for higher order clusters it is also necessary 
to know the off-diagonal elements. The procedure is 
straightforward, as we show in the next section. 

6. TRIPLET STATES, GN-GR CORRECTION TERM 

The detailed treatment of the coupled triplet states 
was not discussed in the last section for the sake of 
clarity. There are 16 different (S,Sz,T,Tz) states, 
available with equal probability, for a pair of particles 
in momentum states ka, k&. What is actually needed 
for a lowest order calculation of the ground-state energy, 
or for the single-particle potential, is the average over 
these 16 states of the matrix element of (3.19), 

(ab\GN\ab-ba) 

<ab—ba\ / l Q\ \ab—ba\ 
\G*+G*n )GN\ >. (6.1) 

V3 I \e* eNJ I v2 / 

The simple arguments which gave the statistical average 
over the core contributions do not apply to the outer 
terms. To properly treat the triplet states, we follow 
the method described by Brueckner and Gammel.4 We 
present their method in some detail, instead of merely 
quoting their result for the diagonal element of GR 

because we need also the nondiagonal elements of GR 

in order to obtain GN, see Eq. (3.20). 
Consider the 3 states (5=1, M=0, ± 1 , T=0). We 

replace the spin projection by M, since the interaction 
can induce "local spin flips." M and S% coincide beyond 
the "healing distance/' The free-particle wave func
tions are 

ab—ba 

v2 > 
' ( £ = 1 ( £ = 1 , M , T = 0 ) 

even L 

= ( S T T ) 1 ' 2 ^ ) - 1 £ Z* L (2 i+l ) 1 / 2 

even L J 

XC(LU;OMM)gL\yL,jM)\o°. (6.2) 

The nuclear matter "reference" wave functions are 

even L J 

XC(LU;0MM)UL,JM\ ^L . J^XO 0 . (6.3) 

There is a physical reason why the u's should depend on 

M; this is discussed in connection with (6.11). Thus, 

<*i.o*|G*|* l l 0*>=<*i>o*M*i.o , '> 

= 8TT E E i ( L ' -L )(2L+l)1 /2(2i '+l)1 / 2 

even L,Lf J 

XC(LU;0MM)C(L'U;0MM) 

Xkf2\ gLVL,vJuL,,jMdr. (6.4) 
J o 

We have defined 

VL.V^i^L.jMW^L',^), (6.5) 

which is independent of M.38 In terms of 

fi,oM=«1,oM-^1,oM 

= W W 1 E E^(2£+i)1/2 

even L J 

XC(LIJ;OMM)XL,JM\^L,JM)\O°, (6.6) 

the differential equation for the coupled states is 

-d* L(L+1) 

'IlVLtL>JfL>,JMUL>,JM, (6.7) 

where 
/ L ) / = i L ( 2 L + l ) 1 / 2 C ( I l / ; 0 M ¥ ) . (6.8) 

In order to conveniently sum (6.4) over M=0, ± 1 , 
we follow Brueckner and Gammel4 by introducing radial 
functions for the "entrance channel'' description which 
satisfy 

p P _ Z ' ( L ' + l ) 

Ldr2 r2 - Y 2 ] (dL,L>$L-UL>,JiL)) 

= -ZvL>,L»JuL,r,j(L\ (6.9) 
L" 

subject to 

WL' , / ( L ) W = 0, uL>tJ
iL)->5L,L'$L as r—>oo. 

(Our notation and normalization differ from Brueckner 
and Gammel.) The primes in (6.9) have been placed so 
that L refers to the dominant wave, or entrance channel, 
while L'T^L or U'T^L denotes the subsidiary wave. 
Now we multiply (6.9) by JL,JM and sum over L. This 
results in Eq. (6.7) when we make the identification 

/ L ' , J % ) / = E L / L I ; % L ' 1 ; ( L ) . (6.10) 

In terms of these new radial functions, the sum over M 
takes on a rather simple form with the (L,J) channels 

38 The appropriate matrix elements of the tensor operator 6*12 
are tabulated in J. Ashkin and Ta-You Wu, Phys. Rev. 73, 973 
(1948). 
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uncoupled, situations. M—Q refers to the interaction of a pair 
whose resultant spin is perpendicular to the relative 

V ((h M I C R I ch M) momentum, while M = =bl describes collisions with spin 
M^-I 1,Q ' 1,Q parallel to the momentum. The dependence on M is 

given explicitly by (6.10). We have made a canonical 
— 87r]C X) £ /L,JM fL",jMko~2 transformation to the entrance-channel description, 

even L,L ,L where each (L,J) channel has the relative weight 
r* (27+1) and includes an appropriate mixture of M 

X / SLVLfL'JuL\jiL,,)dr (6.11) states. 
«̂o As in Sec. 5, we separate the core and outer terms by 

ft W 9 T JL n V^ 1,-2 C a J CD J U S i n S ( 5* 9 ) ' ( 5 - 1 0 ) ' a I l d (6-9)* 
= 8 T T 2 D ( 2 / + 1 ) Z h 2 3LVL,L>JuL',j(L)dr, 

J even L,Lf J Q 

thanks to the Clebsch-Gordan identity89 £ / , 3Li>L,L>JUL',j(L'">dr 

E C (ZS7; OMM)C (L"SJ; OikfM) r r° 
* =*L.W (72+*o2)/ Si?dr+3L(3L'-3CL')\ 

2 / + 1 L ^o = ^ " ^ r (6-12) r 
^ + / (5L-oeL) L ^ L , L ^ ^ , J ( L , , ) ^ . (6.13) 

Note that for each value of L (except L=0) there are •*e L' 
three values of J to consider in (6.11). This result is the 
same as Brueckner and GammePs Eq. (63), except for We only need this result for the case L"=L. 
a factor of two and the restriction to even states, which Now that we have described the sum of diagonal ele-
occur because we have included the exchange term. ments of GE for the triplet-even states, the result for 

In the original M description, the wave functions de- the other (S,T) states is obvious. The statistical average 
pend on M because they describe physically different for the GR diagonal element is 
A £ (4>8.T"\G*\4>S.TM) 

(S,M,T,TZ) 
r - /»00 /.00 

= 8TT & E (2L+l)£o-2/ $i*(s=0, T=Q)uuIr+& £ .(2I+l)*o-*/ gLv{s=0,T=l)ujjir 
L odd L J Q even L J 0 

+ A E Z(2J+l)h-*f 8LvL,L,J(S=l,T=0)uL,y»dr 
even L,L' J J Q 

+& E E(2/+l)*o- 8 / ' i (L« 'L. i ' / (*=l > r=l)« i , . /«<ir l (6.14a) 
odd L,L' J J H J 

= ^ [ { 1 E +(5/4) E )<2L+l)kAw+h*) ( 3L2dr+3L(3L'-KL')\c\ 
L even L odd L i J Q J 

+ 1 E (2£+l)£<r2/ (^L-3e£>(i=0> r=0)«x4r+ i E (2L+l)k<r2 {gL-KL)v{s=0,T=\)uLdr 
odd L y c even L y c 

/»oo 

+ i £ zZ(2J+l)k<Ti (3L-3CL)vL,L,-r(s=l,T=0)uL>,/»dr 
even L,L' J J c 

+1 E E(2/+i)^0-2f ( ^ - 3 c L ) ^ , L / ( 5 = i 5 r = i K / ) / % 
odd L,L' J J c 

(6.14b) 

Use of (6.13) has permitted us to group the core terms together. Of course, the result is the same as (5.29), 
obtained by simpler arguments. Note that since we are leaving a factor W"M~X understood, the quantity 
k(T2v is dimensionless. 

39 SeeM. E. Rose, Elementary Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957), Chap. 3. The relevant equa
tions are (3.17a) and (3,7), 
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GN-GR Correction 

In order to calculate the correction term, we use 
(3.6) in the form 

1 
1—0«=— G* (6.15) 

eR 

to simplify the expression,40 see (3.19), 

Z 1 Q\ Z 1 Q\ 
GN-GR = GRH )GN~GRH ]G*. (6.16) 

\eR eNJ \eR eNJ 
Thus for a given (S,M,T,T%) state, 
(<I>S,TM\GN-GR\<I>S,TM) 

~(<l>s,T
M\(l-tiR)HeN-QeR)(eR/eN)(l-ttR)\(l>s,TM) 

= L (k',M'\(eN-QeR)(eR/eN)\k',M') 
k',M' 

X \(k',M'\(l-nR)\d>s,T
M) |2. (6.17) 

From here on, we restrict the discussion to the case 
where the center-of-mass momentum P is zero. Then 

= f 8(k')$s,T
M(k')dkf, (6.18) 

Jo 
where 

<§(&')=<k',M' | (eN~QeR)eR/eN| k ' ,M'), (6.19) 

w J 

Xk'*\(kf,M'\(l-ttR)\cl>s,T
M)\\ (6.20) 

The natural quantization axis to use for the inter
mediate states is kf. These states are plane waves in 
relative-coordinate space, so Af i /=0 and therefore 
Mf=Ms

f. These states must have the same (S,T,Tz) 
as the original <f>, thus in general one must consider all 
2 5 + 1 possible values for if'. I t is only for the special 
case where %' — ±&o that Mf is definite, when it is clear 
that A f ^ d z M . 

The intermediate states | kf
9S,Mf,T,Tz) are not (and 

need not be) antisymmetrized. They may be expanded 
in terms of products of simple one-particle states. Each 
of these one-particle states has an energy which de
pends only on its total momentum magnitude, hence the 
matrix element in (6.19) is independent of (S,Mf,T,Tz). 
Assuming P = 0 , it is also independent of k'. In this case 

6(k') = e*9 kr<kF 

= {eN-eR)eR/eN, k'>kF, 
(6.21) 

40 In this section we use eN=*eto clearly distinguish the correct 
"nuclear" energies from the "reference" energies. 

and the integral in (6.18) divides naturally into two 
regions, which we call the "Pauli" and "spectral" cor
rections. Also in this case 

eR'X=2[T(kf)+UR>N(kf)-T(ko)--UN(ko)J (6.22) 

The use of UN(ko) for eR is explained in Sees. 3 and 7. 
Then to find the statistical average of (6.16), it is suffi
cient to average over the quantity &S,TM* 

The singlet-odd state is quite straightforward. M' — 0, 
and 

|k , ,M /)=(47r)1/2 £ iL(2L+iyt* 
a l l L 

XiL(^V)FL°(^-r)Xo0Xo0, (6.23) 

(l-OB)|0o io°> = foio°=(&r)1/2(*or)-1 £ iL(2L+i)"* 
odd L 

X X L F L H J & O ' - W X O 0 . (6.24) 

The familiar addition theorem for spherical harmonics 
gives 

<k',M' | (1-Q*)|0o.o°> 

= 4TT £ [ 8 7 r ( 2 L + l ) ] 1 ^ o - 1 f jL(k'r) 
odd L • J 0 

XXurdrYL«(k'-ko), (6.25) 
/4TT\ 3 

(Fo,o°(*/) = 2 — ) £ (2L+1) 
\ 2 7 r / odd L 

xlh-1 f k'rjL(k'r)XLdr~\ . (6.26) 

Note the occurrence of the factor 2. This has come from 
taking |<£) to be antisymmetrized and | k') unsym-
metrized. The same result would be obtained by taking 
|<£) unsymmetrized, = \ab), computing (ab\G( )G\ab) 
for given (S,M,T,Tz), then finding the corresponding ex
change term and subtracting. 

For the triplet-even states we have 

|k , ,M ,)=(4x)1 /2 £ -£iL(2L+iy'*C(LlJ-,0M'M') 
a l l L J 

Y.JL{Vr)\yL,j,vM')\<? (6.27) 

= (4ir)1'» E E h,JM'JL(k'r)\yL,j,vM')\<?, 
a l l L J 

and 

(i-os)l^,oM)=fi.oM= <frcyi*<jt*)-i-
X E HfL,jMXL,,j^\yL.,jM

M)\o°. (6.28) 
even L,Lf J 

We have used (6.6), (6.10), and the obvious definition 

XL>^L) = ZL,L>8L-UL>,J{L). (6.29) 

The axes of quantization, k0 and k', are shown explicitly 
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for the total angular momentum eigenstates. Thus 

(k ' . i l f 'Kl-Q*)!*! . , ,") 

= 4xV2 E Zh'.jVfL.j" 
even L,Lf J 

x < ^ / , k ' M ' | £ y L , j , k o M > 

Xh~l f ju{kfr)XL,,j^rdr. (6.30) 
Jo 

Note that 

= H.uta%a'tj.j'3>jM''M{h-*%'). (6.31) 

We may regard (6.31) as a definition of the £)'s, which 
are called rotation matrices. Obviously one interpreta
tion of the SD's is that they describe the canonical trans
formations of total angular momentum eigenstates 
which arise from rotation of the coordinate system. 
Although the matrix elements conserve L, the resulting 
rotation matrices are L independent.41 Now we use the 
identity 

In view of the form of (6.26) and (6.34), it is convenient 
to define 

FL (*') = ko~l [ kfrjL (k'r)XLdr, (6.35) 
J 0 

F L ' , J ( L ) ( * , ) = *O-1 f k'rjL,(k'r)XL,tJMdr. (6.36) 

/ 
= V , M ' 5 M , M 8 / . , J 4 X ( 2 / + 1 ) - 1 (6.32) 

to write 

(2TT)-3 fd*k' k'>| (k',M' | (1 - a * ) 14>i,oM) |2 

= 2(4ir/2*)« E E C 2 / + 1 ) - 1 

even LtL',Lrr,Lnf J 

XfL"'.JM'fL~,JM*fL',JM'*fL,JM 

x[k<rlf k'rJL-(k'r)XL,,j(»dr\. (6.33) 

The sum over M and ikf' is now only a matter of apply
ing the identity (6.12) twice. 

E si.,,* (*0 

= E (2x)-3 / W £'2 [ (k',M' I (1 -fiB) I *!.,*) 12 

AT 

= 16 E E(2 /+ l ) 
even L , I / J" 

x f V 1 /" k'rjv (k'r)XL,,jWdrl. (6.34) 

41 This, and the identity (6.31) are discussed in reference 39, 
Chap. 4 and Appendix II . 

Then the desired statistical average of $S,TM becomes 
simply 

*o \k j sp in average = = j~g" E SS,T
M(k') 

(S,M,T,TZ) 

= E (2L+l)F!?(k')+3 E (2Z+l)Fi2(^0 
odd L even L 

+ E E(2/+l)FJ/.j(«*(* /) 
even L , L ' J 

+3 E E(2/+l)*W<«*(fc'). (6.37) 
odd L,L' J 

Note.that the F's have the dimension [length]2. FQ is 
simply the Fourier sine transform of ^o_1^o. Continuity 
of xo, and the fact that its first derivative is discon
tinuous, imply that Fo~k'~2 in the asymptotic region 
of large kf. All other F's behave similarly because 
k'rjL(kfr) asymptotically approaches a sine wave. 

The structure of (6.14a) and (6.37) is a reflection of 
the fact that when the center-of-mass momentum, P, 
is zero, J is a good quantum number. Thus each of these 
quantities is a sum over separate terms for the scatter
ing eigenstates belonging to each (SyT,J). Because of 
this feature, it is also possible to introduce a 
Moszkowski-Scott separation in any of these (S,T,J) 
states without altering the formalism for the remaining 
states. 

Of course, formulas (6.18), (6.21), and (6.37) are only 
valid when P = 0 . There are three effects to consider 
when this is not true: 

(1) The region of relative-momentum space ex
cluded by the Q operator is no longer spherical. (Note 
that the region is not a displaced sphere, but has a 
"dumbbell" shape.) In the GN-GR calculation, the 
various J ' s in each (S,T) state are coupled together.42 

(2) eN is, in general, a function of P, P> ko, and 
P' kf, but eR is unaffected. 

(3) The volume of relative-momentum space ex
cluded by the Q operator increases. The result is quali
tatively the same as using a larger "effective kp" in 
(6.21). 

Note that calculations with GR are unaffected. 

7. REFERENCE SPECTRUM PARAMETERS 

Our goal is to achieve a sort of self-consistency for 
the reference spectrum. The choice of UR should lead 

1 See, (or example, E. Werner, Nuclear Phys. 10, 688 (1959). 
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to a U which is well approximated by the original UR. 
This only needs to be true for &&>& ,̂ as shown in the 
beginning of Sec. 3 where the reference spectrum is 
introduced. I t turns out that there is a large quadratic 
term in U(b) for k£$>kF, as shown in Sec. 4, so that U 
indeed has approximately the form assumed in (3.2) 
for UR. The quadratic term is easily combined with the 
kinetic energy by defining an effective mass, m* 
= M*/M. Then the reference spectrum may be written 

UR=A2+Bk\ 

T{k)+Bk?^T{k)/rn*. 

This form for UR is valid for all k, by definition of the 
reference spectrum, but it approximates the actual 
U(k) only for certain k£Z>kF, and in any case not for 
km<kF. We now define, for simplicity, an approximate 
(not reference) spectrum E° for states in the Fermi sea, 
and we assume that the same effective mass m* applies 
to this as to the reference spectrum, thus 

W(m) = A1+BkJJ (7.2) 

with the same B as in (7.1). The energy denominators 
eR contain UR(b)-—U°(m) and hence 

A2-A1=(h2kF
2/Mni*)A. (7.3) 

Clearly the reference energy denominators eR are de
termined by the two parameters A and m*. Note the 
distinction between our approach and that of previous 
authors: We define w* by the behavior of U for k£^kF, 
while the usual practice has been to do this for km<kF. 

The approximate potential energy, U°(m)} is obvi
ously not equal to the actual potential energy, U(m), 
for states in the Fermi sea because of our assumption 
that B is the same for m states as for b states. However, 
we believe that this assumption is a fair approximation 
for several reasons: (1) Several previous works have 
shown that U(m) is very nearly quadratic, and that 
the corresponding m* is not too different from what we 
find below for the b states. (2) We are mainly interested 
in calculating U(b), and although the energies E(m) 
for particles in the sea enter the calculation of U(b)9 

they are less important than the reference energy ER(b), 
and, in addition, they enter only in an average manner. 
I t is, of course, easy to make U°(m) exactly equal to 
U(m) for an " average'' state, which we may symbolize 
by m. Assuming only that U(m) is roughly quadratic 
in km, an "average" state is one whose momentum is 
given by km

2—0.6kF2. In this case we need only assume 
that 

Ax= U(m) -0.6kF
2B, (7.4) 

and the detailed form of U(m), i.e., the appropriate 
value of tn* for states in the Fermi sea, becomes unim
portant for calculations of U(b). (3) When we actually 
make the final and detailed calculation of U(m), i.e., 
the G matrix elements involved in it, we are free to use 
the exact starting energy by substituting the correct 
values in (2.5),, in effect associating a different value of 

A with each state m\ therefore, we only need to use the 
reference energies for intermediate states above the sea. 
These three points are also the reasons why we have 
chosen to determine w* from the behavior of U for 
reasonably large kb rather than for km<kF-

For the purpose of this exposition, we use the further 
two approximations 

*/(&)« E (bn\G*\bn-nb) 
kn<kp 

ttp((btl | GR | bn — nb))spin average. (7.5) 

The first near equality amounts to neglecting the dif
ference GN—GR, while the second consists of multiply
ing an "average matrix element" by the number of 
states in the Fermi sea. Since the G-matrix elements 
have been multiplied by the volume, for convenience in 
passing to the limit of infinite volume, the "number of 
states" is replaced by the density, Eq. (4.20). To find 
the "average matrix element" we will average over all 
hole states, partly for simplicity and partly for the 
reasons given in Sec. 4. Referring to Fig. 4, we have 
seen that it is necessary to average over the states I 
and m, but to average over n is a new approximation. 
Both of these approximations in (7.5) are reasonable 
for kh^kp, but they would not be satisfactory for a 
calculation of U(m). For a general orientation, however, 
it is useful to also begin the discussion of U{m) with 
these same approximations. In this section we do not 
discuss Rajaraman's suggestion26; that is we ignore the 
diagrams in Fig. 3. 

To calculate U{m) and U{b), we must know ym
2 and 

7&2. As discussed in Sec. 4, these parameters are denned 
differently. The Goldstone diagram for the calculation 
of {run \ GR21 mn) is shown in Fig. 9. (We have now 
added the subscript 2 to indicate that two particle-
hole pairs are involved in the intermediate states.) 
Assuming (7.1), (7.2), and (7.3), the energy denomina
tor at the level of intermediate states a, b is 

eR
2=ER(a)+ER(b)-E°(ni)-E0(n) 

= M - 1 f c i
2 - i » 2 + 2 A M (7.6) 

= (W*)- I (7m 2 -V 2 ) , 

where 
£a &

2 ->-V 2 , 7 » 2 = 2 A V - W , (7.7) 
and 

ko2=kmn'=i(krn2+kn^2km'kn). (7.8) 

For simplicity we average over kn; then the scalar 
product vanishes and kn

2 —•» 0.6&F2. This averaging is 
somewhat justified because often the dominant terms 
in U are quadratic functions of k, as seen, for example, 
from a power-series expansion of (5.34), our expression 
for {GR) due to the core. Thus we use 

^ o 2 = i ( V + 0 . 6 W ) . (7.9) 

To calculate the average potential energy U(m) we 
set km

2=0.6kF
2 so (&o2)av=0.3&F2. We note also that 
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(P2)av=0.3kF
2 for pairs of particles in the sea, but in 

this section we are consistently ignoring all PT^O cor
rections since they may be considered as part of the 
QN__QR correction (Sec. 6). 

The corresponding diagram for (bn\GzR\bn), which 
determines U(b), is shown in Fig. 4. At the level of 
intermediate states c, d, 

eR
z=ER(a)+ER(c)+ER(d)-E0(l)-E°(m)-E°(n)J 

= (m^-KkJ-kuf+kcf-hf+SAkF*), (7.10) 

= ( W * ) - 1 ( T 6 2 ~ V 2 ) , 

where 

c ' (7.11) 

Vb2=kab2—kbn
2-kim

2+3AkP
2, 

and the initial relative momentum is 

k0
2=kbn

2-> l(kb
2+0.6kF

2). (7.12) 
Note that (7.12) is similar to (7.9), so ko is a continuous 
function of the single-particle momentum. 

Clearly, (7.11) depends strongly on ka which is given 
by (4.7). Inserting this into (7.11), 

Kb2—hn2-kim
2==lkb

2— k&-(krt-kw—%kn) 

+ k r k m - i & w
2 . (7.13) 

Averaging again over directions for I, m, and n, and 
finally over the magnitude of kn, we get 

yb
2=3AkF

2+lkb
2-OA5kF

2=3k0
2+(3A-0.6)kF

2. (7.14) 

This averaging is, of course, not really justified, espe
cially if kb is close to kF. In this case the state a is more 
likely to be outside the Fermi sea if k&-(krl-km) is 
negative, thus increasing (7.13) to a value greater than 
(7.14). Conversely, for large kb, the matrix element 
(ab | G | Ini), which in Fig. 4 creates the state b, will be 
larger if ka<kb. For "average" &&'s, i.e., those which 
give the greatest contribution to Fig. 8, (7.14) should 
be about right. 

The first point to observe in (7.14) is the strong 
quadratic dependence of yb

2 on kb. This leads, largely 
through the core-volume term in (5.14), to a large quad
ratic term in U(b), and, therefore, to the term Bkb

2 in 
(7.1). Thus the term f&6

2 in (7.14) is the main reason 
why in* 7^1 even for large kb. Secondly, we may com
pare (7.14) for kb=kF+€ with (7.7) and (7.9) for km 

— kF— e to see that 

7b2(kF+e)-yJ(kF-e) = ( 1 + A ) W . (7.15) 

Therefore, y2 makes a considerable jump at the Fermi 
surface. This is due to the extra pair /, a which con
tributes to yb

2. Brueckner expresses this by saying that 
Gz is "off the energy shell," while by definition, G2 is 
"on the energy shell." This jump in y2 in turn causes a 
jump in U, and thus it contributes in some measure 
to A. Since the jump (7.15) contains A as a major con
tribution, A is to some extent self-generating. To be 

sure that this is not a circular argument, we must in
vestigate the other contributions to A. 

The A defined in (7.3) represents an "averaged" 
feature of U(b). I t is too much to expect that U{b) has 
just the form assumed for UR(b) for all kb>kF. All we 
can hope to achieve is to have UR approximate U in 
some range of kb. Before discussing A, then, we must 
first determine the range of kb for which it is most 
important that UR*& U. 

The intermediate state energies are mainly needed 
in order to calculate the lowest order diagram, Fig. 
1(a), or in other words to calculate U(m). The criterion 
for determining the "important region" of kb, then, is 
to obtain the best accuracy for U(m), or more specifi
cally to minimize the "Pauli" and "spectral" corrections 
of Sec. 6. If the "Pauli" correction turns out to be 
large, this may be held within bounds by means of an 
MS separation, as is shown in greater detail in Sec. 10, 
so that we should use the freedom of choice of UR(b) 
to minimize the "spectral" correction to U(m). 

We see then that according to Sec. 6, especially 
Eq. (6.37), the "important" range is determined by 
the statistical average of the square of (kr times the 
Fourier transform of f). For a pair of particles m, n in 
the Fermi sea, the relative momentum, &o=i| km— kw | , 
is rather small, therefore only the 5-state component 
of f mn is important. Thus, we are mainly interested in 

Jp
,o(*,) = *o~1/ sinft'rXo (r)dr. (7.16) 

Jo 

Inside the core, xo=$o—^o is large because Uo—0, and 
ko is small enough so that xo/ko~r. Outside the core, 
Xo decreases rapidly, becoming very small beyond the 
healing distance of order ymir

l, or beyond the MS 
separation distance. Therefore, X0 has approximately a 
triangular shape, peaking at r=c (see Fig. 13). We ex
pect then that the maximum of (7.16) as a function 
of k1 occurs near that value of kr which makes the 
crest of the sine function come at the same point as 
the peak of the triangle, or 

h~kah=k'~Tc/2c, (7.17) 

because k' corresponds to the relative momentum of 
the intermediate state in Fig. 9. Assuming c = 0 . 4 F , 
this gives &&~4 Y~l^2.6kF. Further calculations, which 
include the D-wave part of the ZS\ (deuteron) state, 
bear this out. 

We thus try to choose A 2 and B in (7.1) in such a 
way as to approximate U(b) near kb=2.6kF, or in the 
range, say, of 2kF to 4&F. £U(b) is bound to deviate 
from the reference spectrum form for kb<2kF, due to 
the importance of second MBA terms, to the "Serber 
effect," as is explained below, and to the breakdown of 
the approximations in (7.5).] These are rather large 
momenta, and the main contribution to (bn\G\bn) 
comes from the core terms, (5.34). These core terms are 
well represented by the quadratic form assumed for the 
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reference spectrum, and this is an important reason for 
our confidence in this method. 

Now to return to the question posed above concern
ing the various sources of A. One source is the core term 
(5.34) which has a jump at &F because of the jump of 
Y2, (7.15). This term which is due to "going off the 
energy shell'' has been found to contribute only about 
20% of the total A so that there is no real problem from 
the "positive feedback'' of A onto itself. The major 
part (80%) of A arises from the outer, mostly attractive, 
potential and it is sufficient, for an understanding of 
A, to treat this by the MBA expansion of Sec. 5. We 
begin with the first MBA terms. 

Let us consider a hypothetical case where v= 
v (outer) only, i.e., v— 0 for r<c, and where v is a central 
Serber force (interaction in even states only) with, say, 
a Yukawa shape with the range appropriate for the 
exchange of two pions (TPEP). We may use (5.30) to 
find the sum of the (conventional) first Born terms for 
all L's. 

E (2L+1) f V,{iir)-h~^JLKhr)rHr 
even L J c 

= WJ Q*)-1<r*rll+M2k<r)'Ydr. (7.18) 

When both members of an interacting pair of particles 
are in the Fermi sea, k0 is small enough so that jo(2kor) 
is large within the range of the force. The interaction 
occurs mostly through the S state, and the Serber 
character of the potential is not very evident. But for 
kb^>kF, jo(2&0f)~0 a n d the first Born terms are con
siderably decreased. For example, with the Gammel-
Thaler potential discussed in Sec. 8 the first Born 
terms in U would be roughly 2/3 as large for high fa's 
as for an average state in the Fermi sea. We may call 
this decrease the "Serber effect." As ko increases, the 

By making a few fairly obvious approximations, one 
may obtain analytic results for exponential and Yukawa 
potentials. In this way we estimate that for the case 
of the Gammel-Thaler potential, first MBA terms con
tribute only about 10% of the total value of A, due to 
a near cancellation between the "Serber" and the 
"g-30," effects. 

This leaves, as the main contribution to A, the 
second and higher MBA terms. These depend strongly 
on the momentum. I t is well known that in free-particle 
scattering, the ratio of higher Born terms to first Born 
decreases with increasing k0. This decrease is stronger 
within nuclear matter since the scattering is now off the 

Serber effect rapidly "saturates" to simply give a 
factor of 1/2 for a Serber force as compared to an ordi
nary nonexchange force. This "saturation" is essentially 
complete for &&>2.0&/? (see Table I in Sec. 8). I t might 
seem that this is the major source of A, but such is not 
the case. In nuclear matter, the Serber effect is very 
nearly compensated by the effect of the core on the 
wave function, that is, the effect of replacing $L by 
$L—3£L in the modified Born approximation. The 
effect of the hard core in the case of a weak outer 
potential (first MBA) is to make the wave function 
vanish at r—c, and to approach the free-particle wave 
function roughly exponentially, with decay constant y. 
Thus a small value of y greatly reduces the wave func
tion in the region where the outer potential is strongest, 
while, on the other hand, this effect vanishes as y —> QO . 

We briefly describe a method we have used to esti
mate this effect. The object is to replace H^ by a 
simple exponential with a suitable average inverse 
range 7 chosen to be the same for all LJs. As discussed 
in Sec. 5, the WKB method gives 

(d/dr) \BHL^(yr)^-yll+L(L+l)/(yrYJ^ (7.19) 

Now we use (5.20) and (5.16) to define a suitable aver
age value of Z, 

( L ( L + l ) ) a v = f ( M 2 - (7-20) 

Inserting this in (7.19) we obtain 

l=y[l+(L(L+l))„/(yr)*Ji* 

= T [ I + ! ( V Y ) 2 ] 1 / 2 . (7.21) 

Note that the resulting y is independent of r. For any 
particular L, increasing r decreases the effective ? L . 
However, increasing r shifts the weighted average of 
L toward larger L's. Thus to take account of the core 
wave function effect, we replace the factor of I C l + i o ] 
in (7.18) by the kernel 

+Uc/rY e x p [ - 2 7 ( r - c ) ] [ l + i o ( 2 M ] . (7-22) 

energy shell by a rapidly increasing amount, (&o2+Y2). 
On the other hand, the second MBA is reduced even 
for states within the sea by ym and, in addition, the 
second MBA term in A contains a factor w*2. One 
factor of m* comes from the definition of A, (7.3), 
the other is contained in the second MBA, as we show 
below. These two effects make the second MBA con
tribution to U(m) only of order —20 MeV for a purely 
central potential, such as assumed by Moszkowski and 
Scott (Sec. 9). Even if the corresponding quantity for 
U(b) is reduced by a large factor, the resulting con
tribution to A would be quite small. On the other hand, 
a tensor force leads to much larger second Born terms. 

W + ) ( ^ Z (2L+l)(kor)-H3L-3CLy~ Z (2L+l){jL(kor)-jL(koc)(c/r)expt-y(r-c)W 
even L even L 

= i [ l + i o ( 2 * o r ) ] - (c /0 exp[-7(f -c)]{ jo[f to(r -c)]+yoC*o(f+c)]} 
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Indeed, the first-order effect of the tensor force is 
zero—the binding energy of the deuteron, for example, 
arises mostly from the second (and higher) orders of 
the tensor force. We conclude that the strong tensor 
force in triplet-even states is one of the main sources 
of A. This suggests that actual calculations with nuclear 
matter should be quite sensitive to the relative amounts 
of central and tensor force in the triplet-even states.43 

Having discussed the origin of A, we now consider 
the consequences of the fact that m* < 1. An elementary 
discussion of this was given in Sec. 4. In Sees. 5 and 6, 
we only treated the case where m*=l. Actually, the 
effective potential that enters everywhere in these 
sections should be ni*v, as seen from Eq. (3.10). We 
recall that we decided to leave the factor h2/M under
stood in all energy quantities. Now the corresponding 
factor is fi2/Mm*, or in terms of our original convention 
we should make the replacement 

<0|G(w*=l)|*)=<0|v|^(w*=l)>-> 
(m*)~\<l>\m*v\}fr(m*)). (7.23) 

The pure core wave function is not altered by m*, 
either inside or beyond the core (for a given 7). The 
quantity m^v\p, as defined in the core interior by the 
differential equation (3.10), is similarly unaffected by 
m*. The result is that the entire core term (5.34) is 
simply increased by the factor (ra*)-1, as was also shown 
in Sec. 4, Eq. (4.17). The differential equation, (3.10), 
shows that the outer portion of yp deviates less strongly 
from the pure core wave function when w*<l . In first 
MBA, it is assumed that \p is just the pure core wave 
function. Then the m* factors in the right-hand side 
of (7.23) cancel, and the first MBA is independent of 
m*. A glance at (5.38), which defines the MBA ex
pansion, shows, however, that higher order MBA 
terms contain increasing powers of m*. To summarize 
then, the core term scales as (?n*)~l, the first MBA 
term is unchanged, while the second MBA scales as 
w*, third MBA as tri*2, etc. 

This has an interesting and important result. The 
second MBA term is attractive, while the core term is 
repulsive. Both terms vary so as to make the G-matrix 
element more repulsive as w* decreases. From the ele
mentary discussion in Sec. 4, we see that 1—m* must 
be roughly proportional to the density. As the density 
increases beyond its equilibrium value, the binding 
energy per particle must decrease and eventually be
come negative. According to this simplified picture 
(since only low-order diagrams are being considered) 
the core repulsion increases rapidly and becomes in
finite for a rather modest value of p. This comes about 
entirely from the action of the core, although the de
tailed mechanism is somewhat involved. It is a^two-
stage process, where the core first leads to a large quad
ratic term in U(b) because the appropriate matrix ele-

43 This was found, for example, by S. A. Moszkowski and B. L. 
Scott, Ann. Phys. (New York) 14, 107 (1961). 

ments are far off the energy shell, and secondly, the 
resulting w* increases the repulsive core contribution 
to U(m) and therefore to the binding energy. This 
demonstrates two things. It has often been stated that 
the hard core is important in understanding saturation, 
since obviously the classical picture of a box of nucleons 
with the cores all touching would require infinite en
ergy.44 Numerical calculations with various core radii 
have shown that larger cores do in fact lead to satura
tion at a lower density. We have shown this by an ex
plicit qualitative argument. Secondly, we have shown 
that the use of proper single-particle energies for states 
above the Fermi sea, or alternatively, the calculation 
of certain higher order diagrams, is not merely an added 
refinement but is quite necessary for an understanding 
of the basic features of nuclear matter. 

We conclude that saturation is due to a combination 
of effects from the hard core, the Serber character of the 
outer potential, and the strong tensor force in triplet-
even states. The core is ultimately responsible, but the 
rapid weakening of the tensor contribution as density 
increases (due to m*) leads to saturation at a lower 
density than would be obtained with purely central 
forces. The Serber and tensor force effects lead to a 
large A and thus they justify the reference spectrum 
approach. Thanks to this large A, the Pauli exclusion 
operator, Q, is not needed to prevent real scattering, or 
even to provide the small healing distance. The "Pauli 
correction" due to Q is not negligible45 but it no longer 
has any fundamental role in the process of saturation 
when the reference spectrum is used. A more careful 
study of the saturation process is in preparation and will 
be published separately. 

8. ENERGY SPECTRUM FOR THE GAMMEL-
THALER POTENTIAL 

As an illustration of our general method, we estimate 
the "nuclear spectrum" and the associated "reference 
spectrum" for the version of the Gammel-Thaler po
tential used by Brueckner and Gammel.46 This was 
chosen both for its analytical simplicity and to obtain 
a comparison with the IBM calculation of Brueckner 
and Gammel. In a detailed nuclear matter calculation 
the procedure would be to choose some values for A 
and w*, calculate U(m) and U(b), approximate these 
by improved values of A and m*, and iterate to achieve 
approximate self-consistency. The following estimates 

44 Gomez, Walecka and Weisskopf, reference 22. These authors 
did not anticipate such a strong saturation effect from the core, 
because they were unable to show how m* varies with p. 

45 The Pauli correction is large enough so that for accurate 
calculations it must be included, and perhaps the modified 
Moszkowski-Scott separation technique of Sec. 10 may be neces
sary. However, it is small enough to be ignored in many qualita
tive arguments. 

46 Reference 4. See also the review articles by J. L. Gammel and 
R. M. Thaler, in Progress in Elementary Particle and Cosmic Ray 
Physics (North Holland Publishing Company, Amsterdam, 1960), 
Vol. 5, p. 99; and J. S. Bell and E. J. Squires, in Advances in Physics, 
edited by N. F. Mott (Taylor and Francis, Ltd., London, 1961), 
Vol. 10, p. 211, for comments on the validity of this potential. 
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could be used, for example, in the first iteration, subject 
to the important correction due to Rajaraman, men
tioned in Sec. 4. 

It is a great simplification to assume that both the 
theory and the two-nucleon potential are valid, and 
then use the observed binding energy per nucleon to 
obtain U(m). For the present, we take the "observed" 
nuclear matter parameters to be B.E./vl = 15.5 MeV, 
* F = 1.5 F-1. Then 

f + J C ^ - 1 5 . 5 MeV, 

f = 0 . 3 E f
2 I " 1 = 28.0 MeV, 

U= Z7(m)= -87.0 MeV, (8.1) 

E= T+U~ -59.0 MeV 

This argument is due to Weisskopf.47 It has the ad
vantage of being independent of the form assumed for 
the two-nucleon interaction. 

In order to proceed, we must assume a value for A. 
Let A=0.75. Then the core contribution to U(b) is 
easily calculated from (7.12), (7.14), and (5.34). In the 
approximation (7.5), this is multiplied by p. The result 
is shown in Fig. 10, for c=0.4F and m*=l, since the 
actual value of the core term differs only by the factor 
m*-1. The result is remarkably well fit by the quadratic 
form 

* W « = (l/tn*){Ac+BM). (8.2) 

Fitting this to the curve in Fig. 10 at the points kb 

= l.SkFy 3.5kF, one obtains ^4C=81.5 MeV, £c=4.74 
MeV-F2. Deviations from this quadratic form over the 
region kb=kF to 4kF are <2%. Formally we should 
allow for the possibility that m* may include a term 
from the outer contribution to J7(6), but actually this 
outer contribution to m* is negligible for the Gammel-
Thaler potential. Matching the coefficients of kb

2 in 

W / 1 \ BM 
1) = (8.3) 

2M\m* J <m* 

leads to w*=0.77. The quantity (1 —m*) differs from its 
asymptotic value (end of Sec. 4) by about a factor of 2. 
The fractional amounts of the various contributions to 
1—ra* mentioned in Sec. 4 are roughly: core volume, J; 
boundary terms, f; statistical weights, f. 

In Fig. 10 we also show the results of considering 
only even angular momenta in the core term. The 
methods of Sec. 5 give as the analog of (5.34): 

(k01 GR | &o)core, spin average, even s ta tes= 47TC{§ (x2+y2) 

+*C(^ 2A 2 ) - l )>i i (2x)+f( l+3;)[H-i 0 (2x)] 
+ (l+y)-W-&*j\(2x)J}. (8.4) 

It is apparent that when the core volume terms are 
included, odd angular momenta must not be neglected 
(as was done in the calculation of Brueckner and 

47 V. Weisskopf, Nuclear Phys. 3, 423 (1957). 

FIG. 10. Core contribution to the potential energy of inter
mediate states. Results are shown for all angular momenta, Eq. 
(5.34) and for even angular momenta only, Eq. (8.4). These re
sults must be divided by m* to obtain the correct values. The 
kinetic energy is shown for comparison. 

Gammel). The result for even L alone is linear in k, not 
quadratic, so the effective mass concept is not so useful. 
Most of our quadratic core term, Bc, in the important 
region of fa, is due to P states. 

Our estimate of the outer potential term in U(b) 
closely follows the discussion of the first MBA term in 
Sec. 7. In the asymptotic limit of large kb, higher terms 
in the Born series may be neglected and the core wave 
function correction, the 5C in U(o) = $—3C, vanishes so 
that MBA—» ordinary first Born approximation. Be
cause higher Born terms vanish in this asymptotic 
limit, tensor and spin-orbit forces contribute nothing, 
thanks to the identities, 

L+s / If I" Si I \ 
£ (2J+1)(LSJ\\ \\LSJ) = 0. (8.5) 

J-\L-S\ \ I I 5i2 J I / 

Our first approximation to the outer term is, therefore, 

U0ut(kb-> oo) 

J c 

- 1 E~+ l £++ 3 E + + 3 E" . (8.6) 

The Gammel-Thaler results are 
1E~= 21.8 MeV, lE+= -67.7 MeV, 
*£+=: -41.2 MeV, *E-= -21.2 MeV. 

Note that the odd-parity terms are small and have 
opposite signs. This is a justification for the often-used 
Serber potential model for the nuclear force. The almost 
perfect cancellation, however, is a special feature of the 
Gammel-Thaler potential. 
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TABLE I. Parameters for the calculation of U(b), as explained in Sec. 8. i?i(+) = 14-5i?s—8Re, 

kb/kr 

1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

koC 

0.380 
0.507 
0.643 
0.785 
0.930 
1.076 
1.222 
1.370 
1.518 

JC 

1.013 
1.168 
1.355 
1.563 
1.785 
2.016 
2.253 
2.495 
2.740 

yc 

1.060 
1.239 
1.453 
1.689 
1.940 
2.199 
2.464 
2.734 
3.007 

8RS 

0.353 
0.201 
0.101 
0.040 
0.005 

- 0 . 0 1 5 
- 0 . 0 2 5 
- 0 . 0 2 8 
- 0 . 0 2 7 

8RC 

0.439 
0.371 
0.306 
0.248 
0.201 
0.162 
0.131 
0.108 
0.091 

JRi<+> 

0.914 
0.830 
0.795 
0.792 
0.804 
0.823 
0.844 
0.864 
0.882 

yrc 

1.282 
1.434 
1.623 
1.837 
2.070 
2.314 
2.568 
2.828 
3.093 

(rrc+W+c) 2 

0.346 
0.291 
0.240 
0.197 
0.161 
0.134 
0.112 
0.095 
0.081 

Apart from (7.5), there are 3 approximations to 
correct for in (8.6), namely, the neglect of higher MBA 
terms, and the Serber and core-wave-function effects 
at finite fa. The small term lE~+ 3 £~ is ignored, and the 
latter two corrections to 1E++*E+= -108 .9 MeV are 
given by the factor 

which is 

«!<+> = f K1^(r)(lVc++Wc+ydr 

rl r 
I- (lV++Wc+)rHr 
L2JC 

, (8.7) 

in which i£"i(+)(r) is approximated by (7.22). The re
sulting J^i(+) for a single Yukawa potential is roughly 
linear in the inverse range, so for simplicity we replace 
(XVc

+-\-*V0
+) by a single Yukawa form with the 

weighted average /2=1.69F_ 1 . The Serber and core 
corrections vary with k in opposite directions, with the 
result that Rx(+) is nearly independent of &&. This is 
shown in Table I. The notation there is i?i (+ ) = l-\-8Rs 

— 8RC, where 8RS comes from the jo term in the first 
square bracket of (7.22), i.e., the Serber correction with 
core correction ignored, and 5RC comes from the ex
ponential terms in (7.22), the core correction including 
the full Serber effect, y is the average given by (7.21). 
This parameter is used both for the core correction 
and for the central force second MBA terms discussed 
below. The small difference between y and y suggests 
that this method of approximating the effect of 3CL is 
probably quite accurate. 

The same methods may be applied to the second MBA 
terms. First we note that (8.5) and 

L+S 

E (27+1X2-5/1 (L-S)512|75/) = • 0 (8.8) 

imply that in second MBA the effects of central, 
tensor, and spin-orbit forces are uncoupled and may be 
treated independently. We first discuss the second 
MBA expression for the singlet-even central force, 

,,00 /.00 

x(2«iMBA)+=lbrpMm*fr'i / lV+(r)dr\ W+(r')dr' 

Xh~* £ ( 2 L + l ) [ ^ ( r ) - 3 C i ( r ) ] 
even L 

XQL(r\r%3L(r')--KL(r'n (8.9) 
where QL is the Green's function defined in (5.39). 
The procedure is quite analogous to our treatment of 
the first MBA. Considering the asymptotic limit of the 
Serber effect and neglecting the core correction, i.e., 
the 3CL terms, we make the replacement 

h~2 E (2L+l )C^( f )^3C L ( f ) ]S L ( f | f ' ) 
even L 

X [ ^ ( r ' ) - 3 C L ( / ) ] - ^ W%Mr'), (8.10) 

by means of Eq. (5.30). In order to define the "average 
Green's function," ga v , we return to (5.39) which ex
presses QL in terms of HL(±) (yr) and use a more careful 
WKB estimate than the simple exponential assumed 
for 3CL, viz., 

ff L(±> (yr)« [ 1 + 7 ( L + 1 ) / (yr )2]~1/4 

X e x p { ± 7 ^ [ l + 7 ( 7 + l ) / ( 7 r ) 2 ] } . .11) 

Then the 7's are averaged as before to obtain 

r(±)<W>\-..« ( T / T ) - 1 / 2 exp(=byr), (8.12) (HL^(yr))* 

where y is given again by (7.21). The resulting ex
pression for g a v is the same as go, with y replaced 
everywhere by y. 

SavMO 
= (27)~1{exp[-7(f™c)] e x p [ - 7 ( / - c ) ] 

- e x p [ 7 ( r < - r > ) ] } . (8.13) 

With (8.10) and (8.13) the double integral in (8.9) 
becomes elementary. This procedure is easily modified 
for the other terms in the Gammel-Thaler potential. 
For the triplet-even central force, (8.9) is directly 
applicable. The singlet-odd central force requires a 
statistical weight factor of 1/8 instead of 3/8, and the 
triplet-odd central force requires 9/8 [see Eq. (6.14b)]. 
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In the case of the triplet-even tensor force, the 
quantity 

L+S 

E (2J+l)\(LSJ\l\LSJ)\*gL 
J=\L-S\ 

= 3 ( 2 L + l ) g L , (8.14) 

which arises in the central force calculation, is re
placed by 

L+S 
£ (2J+l)l\(LSJ\S12\LSJ)\^L 

J<=\L-S\ 

+ (l-5Lj)\(L'=2J-L,SJ\Sn\LSJ)\*QL^ 

L+S 
« £ (2J+l)\:\(LSJ\SL2\LSJ)\z 

J>=>\L-S\ 

+ (l-dLj)\(L, = 2J-LJSJ\S12\LSJ)\^giiVtT 

= 24(2Z+l )g a v , r (8.15) 

The tensor force thus requires an additional factor of 
8 compared to (8.9), this being the expectation value 
of Si2

2. [The factor of 3 in (8.14) is included in (8.9) 
in the statistical weight factor of 3/8.] Equation (8.15) 
suggests that a different sort of averaged Green's 
function, Qav.r, is required for the tensor force. The 
identity 

L+S 
E (2J+l)t\(LSJ\S12\LSJ)\*L(L+l) 

J=\L-S\ 

+ (l-8LJ)\(L'==2J-L,SJ\Su\LSJ)\'iL,(L'+l)l 

= 2 4 ( 2 L + l ) [ Z ( L + l ) + 6 ] , (8.16) 
together with (5.16), (5.20), and the identity in (8.15), 
leads to 

<L(L+l)> a v , r=6+§(Aof)2 . (8.17) 

We use c-\-yrl for f, where n is the inverse range, 
1.05 F _ 1 for the triplet-even tensor force. The resulting 
9av,?7 is formally the same as before, but wTith y re
placed by 

7T=y\ 1 + - I - + (8.18) 

Numerical values of yr are listed in Table I. I t is easy 
to see that these modifications are correct in the limit 
ko —> 0. Then the only term in the sum over L and / is 
the deuteron state. This contains a factor of 8 from the 
square of the 5i2 matrix element, and Z ( L + 1 ) = 6 for 
the relevant D-state Green's function. 

For the spin-orbit forces, we use the identity 

L+S 
E ( 2 / + l ) | ( L 5 / | ( L . S ) | L ^ V ) | 2 

J<~\L-S\ 

= 2 (2L+1)L(Z+1) . (8.19) 

I t is simpler to modify the above procedure to take 
advantage of the fact that the WL- S + and 3 F L . S~ are not 
too different in the Gammel-Thaler potential. (Actually 
3 ^ L . s + ~ f 3 F L . S ~ . ) NOW we observe two features. The 
first is that thanks to the very short range, (jx= 3.7 F" 1 

in both cases), even at the large values of ko important 
in U(b) the spin-orbit interaction occurs mostly in the 
P states. At kb— 2.6&F, D states contribute roughly 10% 
as much as P states, if the different statistical weights 
of P and D states are ignored by simply comparing 
(2L+l)jL

2(kor). The second feature to note is that 
| L ( L + 1 ) X 3 for P states is the same as §L(L+1) for 
D states, the result being 4 in both cases. Thus we 
multiply (8.9) by 4, sum over all L's, and subtract the 
5-state term explicitly. A weighted average strength of 
97% of 3 F L - S ~ is used to allow for the small amount of 
D-state interaction. This treats S, P, and D states 
properly. Higher L's are underestimated, but they are 
small and there is some evidence that a smaller 3 F L . S ~ 
should be used in F states anyway.48 

Results for all except the spin-orbit force may be 
expressed, for kb—2.6kF, as 

(2n d MBA) c , r 
- - w*[£2<+> (»15.1r++13.7c

++82.5o+) 

+-R2
(-) (31.67 '-+10.6C-+30.1C~)] MeV. (8.20) 

Each term is labeled, by standard notation, to show 
the type of force from which it originates; the large 
numbers giving the energy in MeV. The R2 factors are 
the analogs of R\, incorporating the core and Serber 
corrections. Since all terms are much smaller than the 
first MBA, it is reasonable, in addition to neglecting 
higher MBA terms, to make further approximations in 
calculating the R2S. The tensor terms are roughly 2.5 
times as large as the central terms. To see how (8.20) 
scales with kb, we lump all the terms together with 
ZVT+. Then we notice that the mean value of r which 
enters most prominently in the evaluation of Ri{+) is 
not very different from that for i?i ( + ) . g a v by itself 
makes the second MBA wave function vanish at r=c, 
and so one might expect f to be larger and hence the 
core correction to be smaller than for the first MBA. 
This is largely compensated by the fact that there are 
now two factors of V(r) which reduce the weight of 
large r7s in the double integral of (8.9). I t is a reasonable 
approximation then to replace i?2(+) by i?i ( + ) . In addi
tion, we find from the double integral that second MBA 
terms scale as ( T + M ) ~ 2 , when (8.10) is used. (Compare 
this with the discussion of the second MBA in Sec. 5.) 

48 R. A. Bryan, Nuovo Cimento 16, 895 (1960); T. Hamada, 
Progr. Theoret. Phys. 24, 1033 (1960); G. Breit (private 
communication). 
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TABLE II . Contributions (in MeV) to U{b). U\ and Z72 are the first and second MBA terms. The spin-orbit contribution in second 
MBA is listed separately as Z72

L'S- U0ut—Ui-{-U2c'T-{-U2L"8, and £7 = 27out+£7Core. UR, the best quadratic fit to U, is given by (7.1), 
(8.3), and (8.22) as A2+Z(tn*)-1-llT(b), for A* = - 5 . 5 MeV and m*=0.77. 

kb/kF 

1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

-Ut 

99.5 
90.4 
86.6 
86.2 
87.5 
89.6 
91.9 
94.1 
96.1 

-U2
C>T 

30.5 
23.3 
18.4 
15.0 
12.5 
10.6 
9.1 
7.9 
6.9 

-U2
L'S 

3.9 
6.1 
8.3 

10.0 
10.7 
10.9 
10.7 
10.1 
9.1 

— Uout 

133.9 
119.8 
113.3 
111.2 
110.7 
111.1 
111.7 
112.1 
112.1 

t/core 

117.5 
136.7 
162.4 
194.2 
231.8 
274.9 
323.3 
376.6 
434.5 

U 

-16 .4 
16.9 
49.1 
83.0 

121.1 
163.8 
211.6 
264.5 
322.4 

JJR 

8.3 
25.6 
49.8 
80.9 

118.9 
163.8 
215.6 
274.3 
340.0 

U-U* 

-24 .7 
- 8 . 7 
- 0 . 7 

2.1 
2.2 
0 

- 4 . 0 
- 9 . 8 

-17.6 

Finally then, 

(2nd MBA)C(r« -nPR^fa) 

-yT(2.6kF)+W+l2 

X 
L yT(h)+zVT+ 

X23.6 MeV. (8.21) 

Results are shown in Table II and Fig. 11. 
Referring to (7.1) and (8.1), and using w*=0.77, 

we find 

A2=Ac/in*+Uout(kb=2.6kF)=-5.5 MeV, (8.22) 

^ i = E - f / w * = - 9 5 . 3 MeV, (8.23) 

A= (w*MA2^2)(^2-^4i)=0.743. (8.24) 

We conclude that A = 0.75 leads to self-consistency 
within the accuracy of our estimates. 
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FIG. 11. Contributions to the "nuclear" potential for inter
mediate states U(b). Ui, U2, Uc, and U are the first MBA, second 
MBA, core, and total potentials, respectively. The difference be
tween "nuclear" and "reference" potentials is also shown, where 
UR is determined by A2 = - 5 . 5 MeV, tn*=0.77. 

There are two rather unexpected cancellations illus
trated in Table I I and Fig. 11. First, the various terms 
in Uovit combine to give a result which is almost inde
pendent of kb, and, second, the constant terms in UCOre 
and Z7out combine to give a very small A 2, so that the 
total U(b) can be qualitatively described by the effective 
mass alone, i.e., U(fi)^(l/m*-l)T(b). 

The difference between U and UB has been reduced 
about as far as is practical. There is little to be gained 
by allowing m* to include some of the small variation 
in Uout- A further reduction in U— UR would be possible 
if the reference spectrum could contain a linear term, 
but this would prevent easy solution of the differential 
equation for \pR. 

As mentioned at the beginning and end of Sec. 4, 
Rajaraman has pointed out that the particle energies 
for high k should be reduced due to the influence of the 
remaining third-order diagrams shown in Fig. 3. He 
finds that only the contribution of the even L states 
should be used, but with the full factor 1 rather than 
the statistical factor 3/4 which we have used in (5.29) 
and thereafter. Thus m^UCOre would be given by 4/3 
of the curve "Even L only" in Fig. 10. Rajaraman's 
result holds if the initial interaction Im —» ab is central; 
if it is a tensor force the potential in the intermediate 
state b seems to be approximately half the sum of the 
even and odd L state contributions. In any case, 1—m* 
at large k is reduced by a factor 1/2, and at the im
portant values of kb, near 2.6&F, perhaps by an even 
larger factor, as seen from Fig. 10. On the other hand, 
there is at least at present no clear indication how A 2 

and A should be changed. 
We therefore assume that 1 —w* is reduced to one-

half and A is not changed. For the Gammel-Thaler 
potential this means m*=0.88 and A=0.75; these 
values are used in the next section. We note, however, 
that recent calculations on nuclear forces49 favor a 
larger core radius than 0.4 F, and this again decreases 
nt*. The above result of 0.77 for m* may be fairly 
realistic for these newer potentials. 

We wish to point out that our m* does not apply to 

49 T. Hamada, Progr. Theoret. Phys. 24, 1033 (1960); 25, 247 
(1960); T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 
(1962); G. Breit (private communication). 
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states inside the Fermi sea, i.e., to U(m). There is 
some evidence47 that the effective mass for these states 
is considerably smaller. We expect to obtain such a 
result from the Serber and core-wave function effects 
in the calculation of Z7out(w), as well as from UCOre(m). 
UCOre(ni) depends much more weakly on the single-
particle momentum than does UC0Te(b) but, on the 
other hand, the core-wave function (5CL) effect now 
operates in the same direction as the Serber effect. 

9. APPROXIMATE WAVE FUNCTIONS, PAULI AND 
SPECTRAL CORRECTIONS 

The purpose of this section is (1) to discuss several 
approximation methods we have used for solving the 
wave equations, (2) to estimate some of the contribu
tions to U{m) and thus to B.E./A, and (3) to estimate 
the Pauli and spectral corrections. The MS separation 
technique is not used, both for simplicity and to esti
mate the accuracy obtainable without separation. For 
the calculations in this section we have chosen the 
parameters ra*=0.88, A=0.75, and A2=-10 MeV. 
The spectral correction is estimated by using the value 
of U(b) — UR(b) found in Sec. 8, without considering 
the Rajaraman correction. Our reasons for this choice 
are discussed at the end of the previous section. All 
energies quoted in this section refer to contributions to 
U(m), therefore each term must be divided by two to 
obtain the corresponding contribution to B.E./A. We 
use the approximation that U(m) equals the particle 
density, p, times an "average matrix element," as 
denned in Sec. 7. Parameters for this average element 
are kQ= ( 0 . 3 ) ^ ^ = 0 . 8 2 2 F"1, 7 = ( 1 . 2 ) 1 ^ F = 1 . 6 4 3 F ~ \ 
and P = (0.3)U*kF. 

In accord with the usual notation of perturbation 
theory, we define the zero-order wave function of the 
MBA expansion to be 

«L(O) = J L - 3 C L (9.1) 

for the uncoupled states, and 

UL>.JIO){L) = 8L,L>(3L-WL) (9.2) 

for the coupled states. (This notation is explained in 
Sec. 6.) The first-order corrections are labeled « ( D , etc.; 
these yield the second-order MBA for the energy. I t is 
also convenient to introduce 

use the same potential to calculate both wave functions. 
The Moszkowski-Scott potential is 

9L—UL—^L(0) = 5CL— XL, (9.3) 

so that 6 is the distortion of a partial wave caused by 
the outer potential. (The corresponding 6 for the 
coupled states has 3CL replaced by 8L,L'3CL.) 

We use the potential of Moszkowski and Scott14 to 
estimate the two S-state wave functions, namely the 
lS0 and ZSX (deuteron state) radial functions which are 
uo and u0i

(0) in our notation. (Our notation for the 
deuteron state D wave is ^2i(0).) We believe that 
^oi ( 0 )~^o is a good approximation, as is explained in 
connection with (9.11), therefore it is reasonable to 

FMs = + °°, r<c, 
= - 260e-^ r-c ) MeV, r > c, 

£=0.4 F, M = 2.083 F - \ 

(9.4) 

which they obtained from effective-range theory. They 
used an average over the x 5 0 and 35i data at low energies, 
together with a hard core having the Gammel-Thaler 
radius. For this potential the first and second MBA 
terms may be found analytically. The resulting #0(o) 
= (0o—3Co and #0(i) (for m*=0.88) are shown in Fig. 12, 
together with the shape of the potential. We find, by 
means of (6.14b), that Ŝo and zSi each contribute 
- 5 2 . 1 MeV in first MBA, and - 9 . 0 6 MeV in second 
MBA. Higher MBA terms may be estimated as follows. 
A glance at Fig. 12 shows that, within the range of the 
potential, Wo(i> is roughly proportional to w0(o>, and, 
therefore, 

€ = «o(i)/wo(o) (9-5) 

is a slowly varying function of r. If they were strictly 
proportional, that is, if € were a constant, it would 
follow that all higher MBA corrections to ^0(0) would 
have the same shape, and therefore 

u0= (1-

We would simply find that 

• « ) - 1 ^0(0) . (9.6) 

f (do-Wo)vuodr=(l-e)-lf (8o-Wo)hdr. (9.7) 

Some sort of weighted average e must be used in (9.7), 
since e is actually a function of r. A reasonable average 

FIG. 12. Approximate S-state wave functions for an "average 
pair" in the Fermi sea, &0= (0.3)1/2^ = 0.822 F"1, 7m= (1.2)ll*kp 
= 1.643 F - 1 . ^o is sin&o**, «o«» is $o-3Co, and «0(i) is the first 
MBA correction to w0(o), calculated for m* = 0.88 and the MS 
potential, whose shape is given by the exponential. 0O is the dif
ference between the complete wave function UQ and the core wave 
function, «0(o), i.e., the change in the wave function caused by the 
outer potential. 
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is given by deuteron-state D wave being 

[second MBA energy]/[first MBA energy]=0.199. 

This leads to —65.0 MeV for the outer term of each of 
the S states (lS0 and 8Si). This procedure should give a 
reasonable energy estimate, but a rather poor wave 
function. The method is easily improved by allowing e 
to vary with r according to (9.5). The resulting wave 
function obtained from (9.6) is plotted in Fig. 12, and 
also the corresponding 0o=^o—^o(o). This is the 
approximate Uo used in the remainder of this section. 
Further insight into this wave function is given by 
Fig. 13 which shows the difference X0—$Q— «o, as well 
as Xo(o) = $o—^o(o)-

When Uo is used in the outer integral, we obtain 
— 65.48 MeV for each of the 5 states. The core term is 
found to be 35.23 MeV for each S state, so for each 
state the sum of core and outer contributions to U(m) 
is estimated as —30.25 MeV. Inclusion of our Pauli 
and spectral corrections changes this to —29.2 MeV. 
This may be compared with the Moszkowski-Scott14 

result of —39.5 MeV. The large difference arises from 
the energy spectra used. Their U(b) is computed "on 
the energy shell," and is, therefore, continuous with 
U(m) at kF. A "best-fit" reference spectrum for their 
U(b) would have a larger m* and a smaller A than ours, 
leading to considerably less core repulsion. Even though 
their spectrum is continuous at kF} a "best fit" over the 
range of kj>—kF to 4kF would lead to a finite A and a 
positive 72. A reasonable "healing distance" is, therefore, 
assured without explicit use of the exclusion principle, 
and the remaining Pauli correction .should be rather 
small. 

Of course, it is not necessary to use the Moszkowski-
Scott potential in the outer integral, once an approxi
mate wave function has been obtained. Numerical 
integration with the Gammel-Thaler singlet-even po
tential gives —62.0 MeV for the ^ o outer term, and 
therefore —26.8 MeV for the sum of core and outer 
terms. To estimate the zSi (deuteron state) term for the 
Gammel-Thaler potential, we need some approximation 
for the D wave, U2i(0). 

A simple general method for the uncoupled states is 
obtained by subtracting (5.11) from (5.10), and using 
(9.3). 

W 2 1 (o )=~ w *2v2 3 z^o i ( 0 ) 

d2 L(L+1) 

Ldr2 r2 

therefore 

dL=ni*vuL=m*v(dL+UL(0)), (9.8) 

fn*vuL(o) 72+ 
L(L+1) 1 d2 

-m*v QL 

6Ldr2 J 
• (9.9) 

This is to be solved by iteration, by treating the second 
derivative term as a perturbation. This method may 
also be applied to the coupled states, the result for the 

/ 
6 1 

y2+-+?n*(h+-2 hT
+-3 hL.s+) 

r2 u2i
w dr2 

^ 2 1 
(0) 

(9.10) 

Unfortunately this method is not very accurate, since 
the second derivative term is not a small perturbation— 
the iterations become unstable at large radii where the 
potential terms are small. This is why the method was 
not used for uo. On the other hand, its simplicity and 
ability to handle any form of potential recommend this 
method for qualitative studies of the higher angular 
momentum states. The standard solution in terms of 
the Green's function (5.39) may be used instead of 
(9.9) to find the wave function at large radii. 

Our result for unm is shown in Fig. 13. This wave 
function gives —70.3 MeV for the ZS\ outer term. Of 
this, —29.3 MeV, is due to the tensor force, i.e., the 
term in (6.14b) involving w2i(0). I t should be noted 
that this result is more accurate than a second MBA 
because the denominator in (9.10) includes the inter
action in the D state. 

Fourier transforms of the functions xo and X2i(0) 

= —^2i(0), shown in Fig. 13, are needed in order to 
calculate the Pauli and spectral corrections. The corre
sponding transforms F0, F2i (0) [see Eq. (6.35) and 
(6.36)], are shown in Fig. 14, plotted in units of the 
core radius squared. Figures 13 and 14 also show X0(o) 
and Fo(o) (the results for a pure hard-core interaction) 
for comparison. The assumed similarity of the Es t a t e 
wave functions leads to F0 i ( 0 )~Fo, therefore (6.37) 

FIG. 13. Difference wave functions for the singlet and triplet 
S states of an "average pair" in the Fermi sea, showing the dis
tortion, due to the two-nucleon potential, of \pR from the form of a 
plane wave. The D-wave part of the sSi state, w2i

(0), has no counter
part in the wave function of noninteracting particles; it is a pure 
"distortion," ^2i (0 ) = — X2i(0). The curve xo«» is the distortion due 
to a pure hard core; xo is the distortion of the S wave due to the 
combined attraction and repulsion; it is assumed the same for 
triplet and singlet states. Note the rapid healing. 
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FIG. 14. Fourier transforms of the difference wave 
functions shown in Fig. 13. 

gives 3 r
a v«3(2Fo2+F2 i ( 0 ) 2). I t is apparent that ^2 i ( 0 ) 

is the major source of both the Pauli and spectral 
terms, thanks to a rather fortuitous cancellation be
tween the effects on Fo from the core and the outer 
potential in the region kf~kp. A study of Fig. 13 
shows that xoco) is positive definite, and, therefore, F0(o) 
is also positive definite in the region of interest, & ' < 4 & F . 
On the other hand, the outer potential causes u0 to 
"overshoot" $o, leading to a negative dip in %o at large 
r. For small k', the Fourier transform weights this nega
tive portion of xo more heavily than the positive peak 
due to the core. As a result, Fo is negative for small kf, 
becoming positive for larger k''. There does not appear 
to be any fundamental reason why the crossover should 
occur just at kr = kp. 

The total Pauli correction is 5.25 MeV, 2.81 MeV 
being due to F2i ( 0\ and the spectral correction is —1.72 
MeV, —1.44 MeV resulting from F2i

{0). Correction 
terms from higher angular momenta should be negli
gible. The effects due to P ^ O (a) enlarge the region of 
integration for the Pauli term, and (b) introduce a 
cross term involving i7oi(0)P2i(0). These corrections may 
each be of order 1 MeV. 

The various terms for each S state (core, outer, 
Pauli, and spectral) are given in Table I I I . The 
Moszkowski-Scott43 results for the Gammel-Thaler 
potential are also shown for comparison. The MS 
result for 35i should probably be corrected by minus 
several MeV for terms of higher than the second order 
in their expansion method which they did not include. 

For ^ o the difference between MS and-ourselves is 
again due to the energy spectra used. In their work 
with the Gammel-Thaler potential, Moszkowski and 
Scott used the Brueckner-Gammel results for their 
U(b). Considering the broad range of momenta that 
occurs in our xo, (see Fo in Fig. 14), a "best-fit" refer
ence spectrum for their U(b) would have an m* about 
the same as ours, but a A roughly half of ours. This 
explains why their ^ o state is much more attractive, 

viz., because the core repulsion is reduced. The com
parison for the tensor force in zSi is at present not 
understood. Generally Table I I I should not be con
sidered as a calculation of U(m) but merely as an 
illustration of the order of magnitude of the various 
contributions. 

I t is gratifying that both the Pauli and the spectral 
corrections (GN—GR) are small (5 and 2 MeV, re
spectively). These numbers should be compared with 
the total potential energy which we found to be about 
— 87 MeV from Weisskopfs argument (Sec. 8); thus 
the Pauli correction is about 6%. If the higher correc
tions to (GN—GR) are again around 6% of the first 
order corrections, their effect would be less than 0.2 
MeV for the binding energy. A better estimate, using 
one of the more recent two-nucleon potentials, is de
sirable to see whether the error would really be this 
small. 

This small result for (GN—GR) has been achieved 
without an MS separation, and thus illustrates the 
power of the reference spectrum approximation. (See 
Sec. 10 for a discussion with MS separation.) Particu
larly the small contribution of the spectral term is 
remarkable. I t shows that it is not at all necessary to 
know the particle energies accurately in the range 
kF<h<2kF where they would be difficult to calculate. 
On the other hand, our results are sensitive to ra* and 
A, hence we must have an over-all knowledge of the 
particle energies. In this connection we note again that 
all calculations in this section contain some uncertainty 
due to our crude treatment of the third-order diagrams 
shown in Fig. 3. A more careful study is being made. 

Formally, of course, it is not necessary to calculate 
the core and outer terms separately. The total con
tribution of each partial wave may be found directly 
in terms of x by means of (5.2). But this procedure 
would be less accurate, since the wave functions are 
never known precisely even if they are obtained from 
an electronic computer. By comparing (5.1) and (5.2) 
with and without any outer potential, the form of the 
outer term in the " x " method is found to be the left-
hand side of the identity 

/.oo /.oo 

(m^iy^+h2) 3ddr= ($-3Q)vudr. (9.11) 
J c J c 

This shows that the " x " method is much less accurate 
than the "core+outer" method, essentially because 

TABLE III . S-state contributions (in MeV) to U(m), calculated 
from the Gammel-Thaler potential and the wavefunctions shown 
in Figs. 12 and 13. The results of Moszkowski and Scott (refer
ence 43), for the same potential, are shown for comparison. 

Outer, 
central 

% -62.0 
*Si -41 .0 

Outer, 
tensor 

-29 .3 

Pauli 

1.22 
4.03 

Spec
tral 

-0 .14 
-1 .58 

Core 

+35.23 
+35.23 

Total 

-25.7 
-32 .6 

MS 
total 

-37.2 
-29 .4 
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u—U(o) is much smaller than u. For example, our use 
of the same UQ for both S states would lead to the same 
energies for these states, regardless of the details of v 
and U2i{0\ according to the " x " method. In fact, this 
argument and our expectation that these states would 
have roughly the same outer energy is the reason we 
have assumed ^oi ( 0 )~^o. (Note that, because of the 
core term, the fractional difference between the outer 
terms is less than this difference for the total of core 
plus outer.) An extreme example of the difference be
tween the expressions in (9.11) arises when one assumes 
w« ^(0). The " x " method gives no outer term at all, 
but "core+outer" gives the first MBA which accounts 
for 80% and 4 5 % of the outer terms for ^ o and zSh 

respectively. 
The Fourier transforms in Fig. 14 show that it is 

important to know U(b) up to, say, &&=3.5&F, therefore 
scattering data have some relevance for nuclear matter 
at laboratory energies as high as 450 MeV. This is a 
much higher energy than previously supposed. 

10. RELATION BETWEEN NUCLEAR AND REFERENCE 
MATRIX, MODIFIED MOSZKOWSKI-SCOTT 

METHOD 

In the preceding sections we have calculated the G 
matrix using the reference spectrum, i.e., GR. We have 
also considered the correction, GN—GR, which must be 
applied to obtain the actual G matrix in nuclear matter 
(Sec. 6). In Sec. 9 we gave numerical values for this 
correction for a special potential. In this section we 
shall consider the accuracy of the determination of 
GN—GR by an iterative procedure, and we shall find 
that the method of Sees. 6 and 9 is probably satisfac
tory. If still higher accuracy is desired the reference 
spectrum may be combined with the idea of Moszkowski 
and Scott (MS) of separating the potential into a short-
and a long-range part. 

The exact relation between GN and GR is given by 
(3.19), 

GN= GR+G™( \GN. (10.1) 
\eR eNJ 

This is still an integral equation for GN. Solution by 
iteration is practical if the first iteration is sufficient, 
i.e., if GR can be substituted for GN in the second term 
which yields 

<k|G*|ko>=<k|G«|ko> 

+ ( 2 T ) - 3 ftPV (k | G » | k ')(k' | GR | k„) 

X( - ^ - A (10.2) 

or, using (3.18) and (3.9), 

<k|G*|k0)=<k|G*|ko> 

+ (2*)-*Jd»k' «(kOfo(kO|r(k,P)>* 

X^(k ' ) | f (ko ,P )X (10.3) 

where 8(k') is given by (6.19), 

«(*') = (eR/eN)(eN-QeR) \ h>. (10.4) 

Eq. (10.3) is a slight modification of (6.17). Just as 
there, it is necessary to know the Fourier components 
of the "wave function distortion'' f. In Sees. 6 and 9 
we have discussed how these Fourier components may 
be obtained. 

Equation (10.4) may be considered as composed of 
two effects, 

(l-Q)eR+(eR/eN)(eN-eR)Q. (10.5) 

The first term is the effect of the Pauli principle; con
tributions come only from occupied states, and depend 
only on the assumed reference spectrum eR, not on the 
actual nuclear spectrum e^. Indeed, e^ in the states 
forbidden by the Pauli principle is obviously irrelevant. 
The second term depends on the difference between the 
reference and the actual nuclear energy in states outside 
the Fermi sea, and is minimized by choosing for eR a 
good approximation to e^. However, as shown in Sec. 7, 
this is only possible over a limited range of k', and for 
k' near k? the difference e^—eR tends to be negative, 
because of the attractive potential. Thus the two terms 
in (10.5), the Pauli and the spectral term, are of opposite 
sign and tend to compensate. 

I t would be possible to choose eR in such a way that 
this compensation (in the first order correction term) 
is exact for the diagonal term (ko\GN\ko) for some aver
age ko, let us say &o2=0.3JZF2. However, this would still 
not justify the approximation GN^GR in the second 
term of (10.1) which was made in deriving (10.3). For 
this to be justified, it is necessary that also the important 
nondiagonal matrix elements satisfy GN^GR. For these 
elements, the Pauli and spectral term do not, in general, 
compensate. I t is probably necessary, and certainly 
sufficient for the validity of (10.3) that the Pauli and 
the spectral term each be small by itself. 

We have shown in Sec. 9 that the Pauli correction is 
about 6% of the total potential energy for the Gammel-
Thaler potential. I t is reasonable to assume that the 
higher order- corrections, which arise from the fact that 
the last factor in (10.1) is GN rather than GR, are again 
about 6% of the second-order term (10.2): this would 
make them about 0.4% of the total potential, giving a 
contribution of about 0.2 MeV to the binding energy 
per nucleon. This is a satisfactory accuracy for most 
purposes; in fact, the fourth and higher order Goldstone 
diagrams which cannot be calculated very readily, 
probably give a larger correction. Nevertheless, there 
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may be cases where the higher order terms in GN—GR 

are larger, especially this might happen if the potential 
is very large just outside the core, and we, therefore, 
consider a method which is guaranteed to give GN—GR 

with very great accuracy. For the sake of illustration 
we only consider central forces beyond the repulsive 
core. This makes our discussion directly comparable to 
the work of Moszkowski and Scott.14 As shown in Sec. 9, 
the bulk of both the Pauli and the spectral corrections 
is due to the tensor force, so it is probable that also the 
separation method does not lead to quite as high a 
degree of accuracy for tensor forces as we find below for 
central forces. Special methods have been developed to 
deal with the tensor force.50 

Solution for Short-Range Potential 

We follow the method of MS and separate the po
tential into a short- and a long-range part, and we wish 
to prove that (10.3) is very accurate for the short-
range potential alone. For this purpose we go back to 
(10.1), of which we take the k, k0 matrix element, and 
then use (3.18), (3.17) to write 

(k\Gs
R\k') = eR(k)(k\(l-~Us

R)\k')y (10.6) 

4?r r°° 
<k| ( i - n . * ) | k ' > = — / #0(jfer)Xo.(A',r)dr. (10.7) 

In the last integral, we have replaced </> and f 8 by their 
L = 0 components, jo=3o/kr and xos/k'r. This should 
be justified for the short-range potential if kf is not too 
large. More generally, sums over L, S, J come in as in 
Sec. 6. Now xos is to be calculated from (5.11) using the 
short-range potential only, 

Xo«" —72Xo«= —vsu0s= —VS($0—XOS), (10.8) 

where ^ s = 0 for r>d. The xos for all values of kf are to 
be calculated with the same 7, given by (3.8) in terms 
of the (fixed) ko, because the starting energy must be 
kept fixed for calculating the entire matrix (k jG^lk ' ) , 
as shown in Appendix A. 

Since vs is restricted to small r, the function xo8/k' 
does not depend sensitively on kf as long as kf is moder
ate. But only for small and moderate k' is the "pro
pagator factor" in (10.1), (^/eR—Q/eN), appreciable. 
Therefore, as long as we consider the short-range 
potential alone, it is a good approximation to set 

<k| (1-Q.«) I k ' ) « <k| (1-G.«) I k0), (10.9) 

hence also 

<k|Gs*|k'>~(kiGs*(ko>. (10.10) 

For this conclusion it is important that eR(k) rather 
than eR(k') occurs in (10.6), i.e., we must make use of 

the Hermitean property51 of GS
R (Appendix A). We 

could not easily have deduced (10.10) from the form 
(3.16) for GS

R because this involves the derivative x" 
which appears to depend on k', but we have instead 
used the expressions (3.17), (10.7) for 1—0 which in
volve only the function % itself. 

Inserting (10.10) in (10.1) we obtain 

<k|G.*|ko>=(k|G.-«|ko> 

x[l+(2.)-3^k(^^)(k1^|k0 (10.11) 

The bracket evidently does not depend on k, hence 
GS

N is simply proportional to GS
R, for all &.52 We may 

then set 

( k | G ^ | k o ) = ( l - K ) - 1 ( k | G s " | k 0 ) . (10.12) 

Inserting into (10.11) yields 

|ko) (10.13) 

- (2TT)-3 / d*kf[(\~Q)-Q{eR-eN)/eN~] 

X ( k ' | ( l - ! V 0 | k o > , (10.14) 

where (3.18) has again been used. The bracket in 
(10.14) has been written so as to separate Pauli and 
spectral effects, and to put in evidence that the spectral 
effect is negative. 

Equation (10.12) is an "exact" solution of the inte
gral equation (10.11) for GS

N, provided (10.10) is valid. 
We can also solve (10.1) "in second approximation," by 
replacing GS

N in the last term by GS
R, as we did in ob

taining (10.2). If we then again make the assumption 
(10.10) we obtain (10.12) with ( l - * ) " 1 replaced by 
1 + K . Thus the relative error in this second approxima
tion is about K2, as might be expected. 

To estimate K we note that the bracket in (10.14) is 
appreciable only for moderate k', not for large ones, 
Therefore the matrix element of 1—tts

R may be 
approximated by 

<k'|(i-iyo|k0> 

47r&(T2/ Mktf>)X0a(ko,r)dr=lR,' (10.15) 

60 E. J. Irwin and M. Razavy (private communication). 

61 There is, of course, the alternate form of (10.6), 
{k\Gs

R\k')={k'\Gs
R\k)* = eR(k'){k'\(l-Sls

R)\k)*> 

<k'| (1-O s«) |k) = 47r(^0-1 rMVr)x*.*(kf)drt 

but this is not useful here. 
52 This simple result breaks down when k becomes so large that 

the matrix element (10.7) becomes small by the rapid oscillation 
of $o(kr). Then the small difference between xo(kf,r) and xo(ko,r) 
becomes important, and (10.9) ceases to hold. But then, by the 
same argument, GB and GN are both small. 
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c 2c d 

FIG. 15. A = schematic shape of the wave-function distortion 
due to the short-range potential alone, d—separation distance in 
modified Moszkowski-Scott method. B~ "triangular" approxima
tion to A, used in (10.16). 

which is a constant, of the dimension of a volume, 
characteristic of the deviation of the wave function 
from a free-particle wave. I t is similar to the constants 
IP and ID of MS. For a rough approximation we assume 

So(k(f)/k0=r, 

- 0 , r>2c 

which gives 

IR = 4*(*. (10.17) 

Actually, the triangular shape for %os, (10.16), should 
be replaced by a more rounded shape, as in Fig. 15, 
having zero slope at r—d but with d>2c; this probably 
gives about the same result as (10.17). The Pauli 
effect in (10.14) can now be immediately evaluated and 
gives, for JP=0, kF= 1.5 F"1 and c=0.4 F : 

KP= (2/3w)(kFcy=0.043 (10.18) 

The spectral effect requires the knowledge of the 
spectrum ex but can then be evaluated by a simple 
quadrature; we estimate that it is somewhat less than 
KP and of opposite sign. The resulting K is then less 
than (10.18) and is further reduced by the fact that, 
for &o>0, (10.16) is an overestimate. Therefore, we 
estimate K < 0 . 0 3 ; thus the "second approximation" to 
GS

N, (10.2), should have an error of less than 0 .1%. 
This is more than sufficient accuracy for the calculation 
of G8

N, especially since this quantity is only about 15% 
of the total GN [see below, after Eq. (10.34)]. Thus for 
the calculation of the diagonal elements of G8

N, Eq. 
(10.12) is unnecessary. I t is necessary, however, for 
the accurate calculation of the interference term be
tween short- and long-range forces, the third term in 
(10.25), as is shown below. 

According to (10.12), (10.18), the reaction matrix 
GS

N due to short-range forces is very well approximated 
by the reference matrix G8

R. The wave-function dis
tortion is of course not the same in the nuclear spectrum 
as in the reference spectrum, 

i-(Wi-o,*, 
especially because of the Pauli principle. Thus G8 is 
the "simpler" matrix, in marked contrast to the be
havior of the matrix elements in a given spectrum as a 
function of the final state: The element (10.7) of 1 — Q8

B 

is nearly independent of k, while the element (10.6) of 
GS

R is proportional to eR(k).m 

Modified Moszkowski-Scott Method 

So far we have not specified the separation dis
tance d of the MS method. We may now choose d 
so as to justify Eq. (10.15), i.e., the statement that 
(k ' | (1—£2B,)|ko) is nearly independent of kf. Clearly 
this is best fulfilled if xos^O only for small r\ then 
3o(k'r)/k'»So(kor)/k0 wherever xos^O. The best we 
can do is to make xos vanish entirely beyond d, so we 
propose to determine d from the condition 

Xo.*(fto,r) = 0 for r>dB. (10.19) 
This means 

Uo8
R = 3o-Xos

B=3o for r>dB, (10.20) 

i.e., the wave function in the reference spectrum goes 
over into the unperturbed wave function beyond the 
separation distance. This condition replaces that of MS, 
viz., that the wave function of two free nucleons inter
acting by v8 should go over into the unperturbed wave 
function, 

u0s
F==So for r>dF (MS). (10.20a) 

We prefer our choice (10.19) because the reference G 
matrix is much closer to the actual G than the free-
nucleon G matrix, and it is, therefore, reasonable to 
make the reference G as good and as simple as possible. 

Since x and yf are continuous, (10.19) requires that 

X(d~e) = x
f(d-e) = 0. (10.21) 

I t can be shown that the separation distance d exists 
for any attractive potential at reasonably small ko. I t 
is generally larger with our requirement (10.19) than 
with the MS condition (10.20a). Just like MS, we have 
the choice of either (a) letting d depend on ko, or 
(b) satisfying (10.18) for some faav and keeping it 
fixed. In the latter case, X0 is small but finite for r> d 
if kov^ko av, and behaves as (3.11). Even with choice (a), 
however, G8

R remains Hermitean (Appendix A). We 
refer to condition (10.19) as the modified Moszkowski-
Scott (MMS) method. 

We must now obtain the complete reaction matrix 
GN from that for the short-range potential G8

N. Ac
cording to (A. 16) in Appendix A, 

G=GS+2MU, (10.22) 

where the superscript N has been dropped. We rewrite 
the last term, 

G^G8+(l-Gsi-XIl—G\ (10.23) 

and neglect the very small third order term (estimated 

53 Also, if we compare the matrix elements for the short-range 
force in the reference spectrum with those for free nucleons, we 
find that (1— Os) is about the same, while Gs is very different. 
(See Kohler, reference 15.) 
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about 0.02 MeV below), 
Q Q 

G(3) = Ga
t-wz-G. 

sistently neglected the denominator 1 — K in the third 
term should be omitted, but we shall see that it is better 

(10.24) retained. 

In the second-order term vi(Q/e)G, we replace G by the 
first-order approximation Gs+vi and thus obtain 

Q Q 
G=Gs+vi~2Gs

f-vi~vi-vi. 
e e 

(10.25) 

The third term is correct in this form only for diagonal 
matrix elements. Now we use (10.12) and add and 
subtract a convenient term: 

GS
R 

GN= +vr 

2 1 
-GR^vl 

1~K 

2 Z1 Q\ - — G M — - } 
1 - K \e* eNJ 

Q 
— pi-vt—vt. (10.26) 

The third term here is, apart from the factor — 2/ (1 — K), 

1 
I I I s s s G . * * - - ^ (l-Qs

R)hh (10.27) 

whose diagonal element is 

<ko|III|k0> 

"2 f So(ktir)vi(r)XQ8
R(k0,r)dr = 0. (10.28) 

The last equality follows from our definition (10.19) 
which makes X0s

R=0 for r> d while vt=0 for r<d. The 
vanishing of (10.28) is another great advantage of the 
MMS method. 

The first term in (10.26) is not as accurate as the 
others. A more accurate result is obtained if (10.12) is 
not used directly but is inserted into the second term 
of (10.1), giving for the first term 

GS
N= GS

R+ (1 - KyiGs
RH )GS

R. (10.29) 

This has the further advantage that now the second 
term of (10.29) can be combined with the fourth term 
of (10.26) to give the final formula 

G"=G.*+V1+(1-K)-1 

XGS
R* ( - - - ) 

\eR eNJ 

Q 
(2vl+Gs

R)-vl—vl. (10.30) 

Thus the second-order terms [the two last terms of 
(10.30)] have become very simple. Both of them are 
small, the last term because Born approximation is 
good for the long-range potential, the third term be
cause 1/eR is a good approximation to Q/e^ when used 
in conjunction with GS

R. If third-order terms are con-

Evaluation of Correction Terms 

The most important correction term in (10.30) is the 
third term which we now rewrite explicitly for the 
diagonal matrix element, similar to (10.14), (10.15), 
thus 

IR r&k' 

' (i-e)-e-(2*)* 

X<k' |2M-G s*|k0>. (10.31) 

The bracket has been split into a Pauli term 1 — Q and 
a spectral term. For simplicity, the factor'IR=1—Q,S

R 

has been assumed to be independent of the intermediate 
state, k'. I t is evident that there is a double com
pensation: the attractive potential vi vs the repulsive 
GS

R, and the Pauli effect vs the spectral effect. The 
attractive potential has mainly low Fourier compo
nents, the repulsive short-range potential mainly high 
ones. We have shown in Sec. 9, especially in Fig. 14, 
that the Fourier transform of GB^vi+G8

R crosses zero 
near kF\ that of 2vi+G8

R is zero at a slightly higher 
momentum. Thus in the spectral effect the contribu
tions from vi and GS

R should compensate very effec
tively, even more so than in Sec. 9. Therefore, the result 
for the nuclear binding energy is very insensitive to the 
spectrum of particle energies just above the Fermi sea. 
This result was already found empirically in the IBM 
calculations of Brueckner and collaborators, but the 
above argument clarifies the reason for the lack of 
sensitivity. Probably the term most sensitive to the 
particle energies is the second Born term, VLiQ/e^vi, 
and this is only 0.8 MeV according to MS. 

I t should not be concluded that the entire particle 
energy spectrum is unimportant. The behavior of e^ 
Sit high kr has a substantial influence on G, as shown in 
Sec. 7, and contributes significantly to saturation. But 
this behavior is well approximated by the "effective 
mass" form for e%\ thus we have shown that this 
approximation is very good. 

The most important term in (10.31) is the Pauli 
effect for the long-range potential, i.e., the term 
(l — Q)vi. Because of its simple structure, the integra
tion over kf can be carried out (for P = 0 and S states) : 

IR(2TT)~Z f ° rkF 

1 — /c Jo 

4:1 R r dr 

sin&V sin&of 
X 2vt(r) 

k'r kor 
(10.32) 

Tr(l — K)Jd r 
-(smkFr—kFr COS&F*0 

Xvi(r)-
sinkor 

k0r 
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(notation: P = Pauli, Z = long range). Thus, this most 
important second order term has been reduced to a 
quadrature involving the long-range potential. Assum
ing the MS potential (9.4), estimating d = l . l F, in
serting (10.17) and (10.18), and setting ^o^O we get 

G p i « - 3 0 M e V - F 3 , (10.33) 

which may be compared with the corresponding (&0=0) 
matrix element of vi, 

/

CO 

vp2dr~ - 1 0 0 0 MeV-F, (10.34) 

j 

so that the Pauli correction to vi, Gph is about 3 % of Vi. 
In Sec. 9 without using separation we found a Pauli 
correction of 6%, but this was largely due to the effect 
of the tensor force. The point we wish to emphasize, 
in comparison with Sec. 9, is that here we have also in
cluded the main third-order term. Furthermore we can 
show explicitly that this is small. I t is not easy to esti
mate third-order terms for the method in Sec. 9. The 
largest third-order term here is represented by the 
factor (1 — K) - 1 . I t is, therefore, about 3 % of GP, and the 
remaining corrections should be even smaller. 

Equation (10.32) only gives the contribution of the 
term with vi to the Pauli part of (10.31). The contribu
tion of GS

R to (10.31) is about KG8
R, as can be seen from 

the definition (10.14); KGS
R has a sign opposite to (10.33) 

and is about 3 % of GS
R, which is by accident the same 

percentage as (10.33) is of (10.34). Numerically, we 
estimate from (10.6), (10.15), and (10.17) that for an 
average value of ko in the Fermi sea 

<k0 |G,*|ko>«140 MeV-F (10.35) 

or about 15% of (k0 |Gf | k0). Thus the GS
R part of the 

correction (10.31) is about 0.2 MeV per particle. 
I t is interesting that the long-range Pauli term, 

IR(1—Q)VI, increases the effect of the potential vi. This 
is because it originates from a correction to the short-
range wave function, i.e., replacing £2S

E by tis
N; the 

Pauli effect removes the low-frequency components 
from that wave function and hence reduces its "re
pulsive" character. In the (attractive) second-order 
Born term vi(Q/e)vi the Pauli principle reduces the 
attraction as expected. 

The third-order terms are very small. The neglected 
term (10.24) can be transformed similarly to (10.26)-
(10.28), and the result is then related to the fourth 
term of (10.26) in much the same way as that term is 
to vi, except that it does not contain the factor 2 present 
in (10.26). We therefore estimate (10.24) to be about 
f% of (10.31), and thus to contribute about 0.02 MeV 
(attractive) to the binding energy per particle. The 
third-order Born term, vi(Q/e)vi(Q/e)vh is probably 
about 1 | % of the second order term, vi(Q/e)vi, because 
MS have shown that this second-order term is about 
1 | % of the first-order term vi; this makes the third-

order term about 0.01 MeV in B.E./A. One third-order 
term has been retained, viz., the denominator 1 — K in 
(10.31). If the total (10.31) is about 1.3 MeV (attrac
tive), and K = 0 . 0 3 , then this denominator contributes 
0.04 MeV to B.E./A (attractive). I t is, therefore, the 
largest of the third-order terms so that i ts retention 
seems justified. 

Thus, we have proved that our method, using the 
reference spectrum and MMS separation, gives a 
highly accurate result in second order. I t remains to 
discuss the relation to the theory without MS separation. 
In this theory the reference G matrix is, using again 
(A16), 

GR = Gs
R+i1s

Rhln
R 

( 1 \ / 1 \ (10.36) 
= Gs

R+[ l - G . B t - W 1 GR\ 

\ eRJ \ eR J 
Using the first approximation GR~G8

R-\~vi in the last 
term, and neglecting the third-order term gives 

1 1 
GR^Gs

R+vl-2vl—Gs
R-vi--vl, (10.37) 
eR eR 

The third term is again zero, by (10.27) and (10.28). 
The last term may be compared with the last term in 
(10.25), i.e., with the usual second Born term. The 
difference between the two, 

G^-G^=AGi = vi[ hi (10.38) 
\eR eNJ 

is just the contribution of the long-range potential to 
the second-order term in (10.1). Now the important 
point is that the last term in (10.37) is apt to be 
appreciably larger than the last term in (10.25) be
cause the long-range potential Vi has mostly matrix 
elements for small momentum change, thus the Pauli 
operator Q is very effective in making vi(Q/e?/)vi small. 
Therefore, the last term in (10.37) corrects vi by an 
unnecessarily large amount; this correction must then 
be removed by the further correction GN—GR. In other 
words, Gs

R-\-vi is a better approximation to the correct 
reaction matrix GN than is GR. This is the main reason 
why the MMS separation method is more accurate 
than the direct use of GR as a first approximation. 
Moreover, the last term of (10.37) contains strong low-
momentum components which have a complicated 
dependence on k. Therefore, it is difficult to calculate 
the third-order terms, or even to estimate their magni
tude reliably, in contrast to the MMS method. On the 
other hand, if our estimate in Sec. 9 is correct, the 
third-order terms in the straightforward GR method 
without MS separation are only of order 0.2 MeV per 
particle, and this is accurate enough for most purposes. 
Moreover, in Sec. 9 tensor forces gave the main con
tribution to the second order while in Sec. 10 these 
forces were omitted. I t is, therefore, not clear whether 



R E F E R E N C E S P E C T R U M M E T H O D F O R N U C L E A R M A T T E R 259 

the MMS method with tensor forces included is really 
more accurate than the straightforward calculation of 
Sec. 9, but we believe that its error can be more reli
ably estimated. 

Highly Excited States 

All the foregoing discussion in this section applies 
to the calculation of the nuclear binding energy, or of 
the particle potential U(m) for states inside the Fermi 
sea. For states of high k much less care is necessary. 
First of all, their energy enters the nuclear binding 
energy only through (10.3), or more specifically, the 
second term in (10.5). We estimate that an error in 
U(b) of 1 MeV (on the average over kb) causes at most 
0.1 MeV error in the nuclear binding energy. Hence 
much less accuracy is required in calculating U(b). 
Second, the function yp{k^r) for large kb is almost en
tirely given by the pure-core function g—3C and the 
correction due to the attractive potential is small, 
approximately as (Y+M)~2> see end of Sec. 5 and (8.21). 
Hence the Fourier components of f, (k ' | (1 —0)| k0), 
are dominated by the behavior of £* for small r, even if 
¥ is small. The arguments in (10.6) to (10.14) which 
were made for the short-range potential only, now 
apply to the complete potential and wave function f. 
Therefore the MS separation is not needed in this case. 

The wave function can be obtained directly from 
(3.10), as is done in Sees. 7 to 9. In most cases the 
second MBA for the energy gives sufficient accuracy. 
An exception may be the spin-orbit interaction because 
this interaction is very large ( > 1 BeV) outside the 
repulsive core, but integration of (3.10) without MS 
separation is still all right. Incidentally, the correction 
K in (10.14) is smaller for large ko because the wave 
function f falls more rapidly outside the repulsive core. 

For states in the Fermi sea and L^O, MS separation 
is also superfluous: For L= 1 the most important inter
action (spin-orbit) is of very short range, therefore the 
Pauli correction is small. I t can be calculated for the 
entire Z = l interaction in the same simple way as it is 
calculated for the short-range interaction in (10.14). 
For L > 2 the repulsive core and short-range interaction 
generally are unimportant because $L(&OC) is very small, 
and it is, therefore, not worth while to separate them out. 
In fact, for states with L>3 it may be sufficient to 
neglect the core altogether and use ordinary first Born 
approximation. 

11. DISCUSSION 

We have shown that the calculation of the Brueckner-
Goldstone reaction matrix G is greatly simplified by 
first calculating a reference matrix. For this purpose, 
the actual energies of nucleons in all intermediate states 
of the nucleons are arbitrarily replaced by a "reference 
spectrum" 

EB(k) = A+k2/2tn*, (11.1) 

i.e., by an effective mass formula. The constants A and 
w* can be chosen to fit the actual particle energy spec
trum closely over the important range of momenta, 
especially from k — 2kF to 4/^F (Fig. 11). The energy of 
the initial state, occurring in an element of the re
action matrix G, may be deduced from the actual 
particle energies in nuclear matter. 

The particle energies are defined more carefully than 
in previous work, especially for states above the Fermi 
sea. In accord with previous calculations,4 the G matrix 
for these states must be calculated off the energy shell, 
the more so the higher k. This fact, together with the 
repulsive core, makes the potential energy positive, 
large, and proportional to k2 at high k1 so that in this 
limit the actual energy is given by a formula of type 
(11.1) with m * < l . Approximately, in the limit of 
large k, 

m*=l-(47r/3)c3p, (11.2) 

if we take into account Rajaraman's factor26 of f (see 
beginning of Sec. 4 and end of Sec. 8). In (11.2) p is 
the density and c the radius of the repulsive core. This 
is about w* = 0.94 for the observed nuclear density 
(&/?= 1.5 F"1) whereas the value to be used in the refer
ence spectrum (11.1) (for the important region of k) 
is about w* = 0.88 or somewhat less (Sec. 8). 

When the reference spectrum (11.1) is used it is 
possible to obtain a simple differential equation in 
space for the wave function ypR which is defined as the 
Fourier transform of the reference reaction matrix, GR. 
This greatly simplifies the treatment of the repulsive 
core. The differential equation differs from the Bethe-
Goldstone20 differential equation by the absence of the 
integral term which in that theory represents the effect 
of the Pauli principle: The use of the reference spec
trum makes it unnecessary to take the Pauli principle 
in intermediate states into account when calculating GR. 
The resulting simplification makes it possible to give 
an explicit and simple solution for the reference wave 
function for a pure repulsive core, and the case of core 
plus attractive potential can then be treated by a simple 
perturbation method (Sec. 5). The reference reaction 
matrix GR is immediately obtained from the wave 
function \pR by Fourier transformation. 

The actual reaction matrix, GN can be obtained from 
the reference matrix by solving the integral equation 

GN=GR+GRH p v , (11.3) 
\eR e^J 

in which we take into account (a) the deviation of the 
actual particle spectrum e^ from the reference spectrum 
eR, and (b) the Pauli principle, i.e., the operator Q. 
I t is shown (Sec. 9) that it is usually sufficient to solve 
(11.3) by one iteration, i.e., by replacing GN in the last 
term by GR. This reduces the calculation of the differ
ence, GN—GR, to a quadrature. The two corrections, 
for Pauli principle and for the spectrum difference, 
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tR—eN, tend to compensate. This method is amply 
accurate for the calculation of the energies EN of states 
above the Fermi sea and for the L^O interactions in 
the Fermi sea. For the 5 states in the sea it is moder
ately accurate. 

Even higher accuracy is obtained if the method of 
the reference spectrum is combined with the Moszkow-
ski-Scott separation method. I t is possible and conveni
ent to define a separation distance CIR, somewhat larger 
than that of MS, such that the reference wave function 
for Y>(LR goes over exactly into the free particle 
function, whereas MS put this requirement on the 
wave function of two interacting nucleons outside of 
nuclear matter. With this separation method, the re
action matrix in nuclear matter, GN, can be calculated 
to an accuracy of better than 0.1 MeV per nucleon, 
using only quadratures after the solution of the first, 
simple differential equation for the reference wave 
function in the short-range potential. We note however 
that this separation method may perhaps not be 
capable of quite such high accuracy when tensor 
forces are considered. 

Whether MS separation is used or not, the nuclear 
binding energy is insensitive to the particle energy 
spectrum E(k), between kF and 2kF. There is some 
sensitivity to E(k) between 2kF and 4k F but in this 
region E(k) is rather easy to calculate. The insensitivity 
to E(k) directly above the Fermi sea is partly due to a 
compensation between the attractive long-range and 
the repulsive short-range interaction. 

A great advantage of the MS method and of our 
modification is that it should permit easy extension 
of the theory to finite nuclei. The contribution of the 
short-range forces depends essentially only on the 
density of nuclear matter, and it should be permissible 
to use the local density in finite nuclei, at least for 
approximate calculations. The contribution of the long-
range forces can be calculated by Born approximation, 
and this can be done just as readily for shell model 
wave functions in a finite nucleus as for plane waves 
in nuclear matter. Thus the potential to be used in 
approximate shell model calculations is the long-range 
part of the nucleon-nucleon interaction, i.e., just the 
part which is best known from meson theory. 

The MS separation is also useful to assess the sensi
tivity of the nuclear binding energy to the (largely 
unknown) behavior of the nucleon interaction at short 
distances. In the MS method, the short-range forces 
are mainly important for the determination of the 
separation distance d. But we can determine d, for a 
given relative momentum koy also from the observed 
phase shift of nucleon-nucleon scattering for momentum 
ko, together with the well-known nuclear forces at 
large distance which are given by one- and two-pion 
exchange. We simply integrate the Schrodinger equa
tion inwards from large r until we reach the point at 
which the logarithmic derivative of the wave function 
is equal to that for free, noninteracting nucleons; this 

is then the MS separation distance for free nucleons, dF. 
The correction from MS separation to our modified 
separation distance dR can then be made by perturba
tion theory, requiring only a rough knowledge of the 
wave function u between the core radius c and d: but 
this knowledge is provided, with nearly adequate 
accuracy, by noting that uF = uR = 0 at r=c and that 
the logarithmic slopes of uF and uR are the same as for 
the no-interaction wave function $ at dF and dR, re
spectively. The result should be almost independent of 
the details of the interaction between c and d. The 
short-range reaction matrix, G8, also requires mainly a 
knowledge of the core radius c and the separation dis
tance d. 

An accurate method for calculating G is of course 
not enough to determine the nuclear binding energy; 
there are two other requirements. One is a quantitative 
treatment of the higher ( > fourth) order Goldstone 
diagrams which may together contribute of the order 
of 1 MeV per particle. The other is a detailed knowledge 
of the nuclear force as discussed at the end of Sec. 1. 
In particular, the exact radius of the repulsive core 
seems very important for nuclear matter. We have 
assumed for simplicity that c is the same in all (spin, 
isospin) states, but the evidence for this is rather poor. 
We also expect the results to be rather sensitive to the 
relative amounts of central and tensor force in triplet-
even states. 
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APPENDIX A. REACTION MATRIX IDENTITIES 

Consider two problems A and B, with different po
tentials VA and VB and different propagators 

PA^QA/BA (Al) 

and PB. We wish to obtain relations between the corre
sponding reaction matrices GA and GB> The Schrodinger 
equation and the definition of G become 

QA=1-PAGA, (A2) 

GA=VA&A, (A3) 
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and two similar equations with the subscript J3. Be
cause of (A2) and its Hermitian conjugate with sub
script B, the brackets in the following expression are 
zero, and it is an identity: 

GA = GA~GB^A+PAGA- 1] 

+ p V + G B
t P £ t - l ] O i , (A4) 

which simplifies to 

GA = GB*-GB*QA + QB*GA+GB*(PBf-PA)GA. (A5) 

Using (A3) and its Hermitian conjugate we obtain 

GA = GB^+^{VA~VB^A+GB^{PB^-PA)GA. (A6) 

We first consider (A6) for the case when problems A 
and B are identical, i.e., when 

VA = VB, PA^PB, (A7) 

in which case we may drop the subscripts. Then we find 

G=G\ (A8) 
if 

v=v\ (A8a) 
and 

P = p t . (A8b) 

The potential is Hermitian, v= v* for nearly all practical 
cases.54 The second condition P=P* is more intricate. 
Using (Al) we see that P—P^ is ensured if 

Q=Q\ e=e\ (A9) 

The first of these is clearly satisfied: The Pauli operator 
Q is real and depends only on the "present" state of the 
two nucleons, hence it is Hermitian. The energy de
nominator e, however, is the "present" nucleon energy 
minus the "starting energy" H, as discussed in Sec. 3. 
If we consider a nondiagonal element of Eq. (A6), 
going from state ko to k, we might be tempted to set 

2 ^ = £ ( P + k o ) + E ( P - k 0 ) , ( A ] 0 ) 

i J B t = J S ( P + k ) + J S ( P - k ) , 

i.e., to put the starting energy equal to the actual 
energy of the nucleons in the respective initial state. 
In this case, HB^^HA, and therefore P^P so that G 
is not Hermitian. To ensure Hermiticity, it is necessary 
and sufficient that the starting energy be chosen as a 
constant H, independent of the actual initial state.55 

Thus the reaction matrix G is a function of the two 
independent parameters P and H; there is a complete 
matrix (k\G\ko) for each pair of parameters P, H. We 
can then, if we wish, choose the matrix corresponding 
to H=HA in (A10); the elements (k |G |k 0 ) of the 
resulting G matrix will then be "on the energy shell" 
with respect to ko. 

54 See below for the Moszkowski-Scott potential. 
55 This was recognized by Thouless (reference 31) and by 

Erueckner and Gammel (reference 4) but, to our knowledge, it 
has never been stated explicitly that H — const is required to 
make G Hermitian. 

In the special case of the Moszkowski-Scott poten
tial, a separation distance d is chosen which is a func
tion of feo. If we wish to obtain the diagonal element 
(ko | Gs | k0) for the short-range potential, we only need 
to calculate the complete matrix (k' \GS\ k) for d=d(ko) 
and H=HA of (A 10). This matrix is Hermitian56 [ the 
elements of the v matrix (kf\v\k) all being calculated 
with d=d(ko), regardless of k and k'2 and the single 
element (ko | Gs | ko) of this matrix is the required answer. 

We have thus shown that it is easy to assure that G 
be Hermitian; hence in (A6) wej!may replace GB* by 
GB. However, the wave operator £2 is not Hermitian; 
in fact, an element of the Hermitian conjugate of 
(A2) is (dropping the subscript A) 

< k ' | O t | k > = l - < k ' | G t | k > P t ( k ) , 

= l - < k ' | G | k > P ( k ) , K } 

since P is a diagonal matrix, while 

<k , |Q |k>= l -P (k / )<k ' |G |k )^<k , | 12 t | k> . (A12) 

We now use GB^—GB and assume 

vA = i% PA^PB. (A13) 

Then (A6) becomes 

GA = GB+GB(PB~PA)GA 

/QB QA\ 
= GB+GB[ -)GA, (A14) 

\ eB eA/ 

a relation we have used repeatedly in Sees. 3, 6, 9, 
and 10. 

Next we assume 

PA=PB, VA^VB+VC^VB. (A15) 

For example, VB may be the short-range potential of 
Moszkowski and Scott, and vc the long-range potential. 
Then (A6) becomes 

GA^GB+^VCVA. (A16) 

This relation has been derived by Kohler15 and has 
been used in our Sees. 2, 5, and 10. I t has a very plau
sible form; apart from the "short-range" reaction matrix 
GB we have the second term whose matrix element is 

( k ' l ^ A i l k ) - / "^*(k /
> r )v c ( r )^(k , r ) r f r . (A17) 

That is, the matrix element of the long-range potential 
is taken between the wave function in the "short-
range" potential B and that in the full potential A, 
quite analogous to an exact formula in Schrodinger 
theory comparing two potentials. 

I t should be noted that (A 16) involves &1" which is 
not identical with QB- Thus the matrix element be
tween states k and k' involves the (complex conjugate 

56 As pointed out by Kohler, reference 15. 
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of the) wave function of the final state in potential VB, 
viz., ife*(k',r) as indicated in (A 17). In momentum 
representation, 

(k ' |G A | k )=<k ' |G* |k> 

+ (2TT)- ^V^V"(km\QB\V)* 

X<k">c|k"><k" |QA|k>. (A18) 

APPENDIX B. ENERGIES OF HOLE STATES 

This Appendix presents the argument, referred to in 
Sec. 4, for considering the hole-bubble of Fig. 2(b) to 
be "on the energy shell." If this diagram is evaluated 
according to the usual Goldstone rules, the hole-bubble 
interaction of Fig. 2(b) is even further off the energy 
shell than the particle-bubble interaction of Fig. 2(a), 
as shown in (4.11). However, as pointed out in Sec. 4, 
an argument by Brueckner and Goldman suggests that 
the hole-bubble interaction should be taken on the 
energy shell. 

Brueckner and Goldman use perturbation theory, 
i.e., ^diagrams, and show that in this case two diagrams, 
Figs. 6(a) and 6(b), combine to make the interaction 
effectively on the energy shell [see Eq. (4.12)]. This 
proof is not directly useful to us since we must deal 
with G matrices. In this Appendix we shall generalize 
the Brueckner-Goldman proof16 to all orders of per
turbation theory so that in fact their result is also valid 
for the complete hole-bubble interaction. We believe 
that this was first pointed out by Thouless,57 who 
arrived at this result while studying the single-particle 
Green's functions of the Goldstone theory. The most 
direct proof uses time-dependent perturbation theory, 
and is similar to the original Goldstone demonstration 
that unlinked diagrams may be factored. We recall 
that there one sums over all relative time orders for the 
v interactions, subject only to the restriction that each 
linked part of a diagram has a unique time order among 
its own interactions. 

A typical v diagram contained in Fig. 2(b) is shown 
in Fig. 16. (WTe assume of course that the core is not 
infinitely hard, and only pass to this limit at the con
clusion.) Evaluating this diagram in the conventional 
manner, we obtain a product of ^-matrix elements times 

(ON. 
FIG. 16. A typical ^-interaction diagram contained in Fig. 2(b). 

The interactions are shown here in their order of occurrence 
within the usual Goldstone expansion, Eq. (B2). 

67 D. J. Thouless, thesis, Cornell University (1958) (unpub
lished). 

an energy factor given by 
1 V CO—1 /.0 ftu—l p t% 

dta-r - - J dh ( 1 v co—1 /.U pi 

— ) / <B—i/ 

XlIe i , ' <«* ' - f a ) / *= i l ( -X ;&E*) - 1 , (Bl) 

where 8E3- is the change in the intermediate state energy 
caused by the jth. interaction. In Goldstone's formalism, 
the 5E's originate from the time factors associated with 
the matrix elements of the perturbing Hamiltonian in 
the interaction representation. This gives the ordinary 
Goldstone result, Eq. (4.11), that the hole bubble is 
off the energy shell by the amount X^=ix<$£fc. 

A large number of closely related diagrams may be 
generated by relaxing Goldstone's time order restric
tion, which is 

h<t2<-' <tn<tn+l<"' <L=0. (B2) 

We now choose to keep the interactions in each of the 
three uninterrupted ladders in the same relative order 
as before, but to restrict the interactions in different 
ladders only by 

*X<*,<*H-I- (B3) 

This means that any of the times t\+i to /„_i may fall 
anywhere between h and t\, or even below t\. The 
possibility that all of these times may fall below h is 
also included. An example is shown in Fig. 17. Figure 
17 can be described in words as follows: There are two 
ladders in the left half of the diagram, the lower ladder 
from h to t\ and the upper ladder from tv+i to /•„, and 
one ladder in the right half, from t\+i to tv. The last 
interaction on the right tv provides an indicator which 
determines whether a given interaction of the left-
hand side of Fig. 17 should be considered part of the 
upper or the lower G of Fig. 2(b). A heavy line has been 
placed at the level of tv in Fig. 17 to emphasize the 
special role of this interaction. 

The energy factor is then 

l i m ( - ) dL dt, H-l 

(' ty+l 

X / dt, 

X / dh 

dtp-i -

dt\-i 

dt-

x-r • • I an 
—00 J —00 —' 

dh 

X+l 

w - 1 
T T eitj(SE3—ia)lfi 

/=1 

=cn (-ES^-^C-I:«£*)-» 
j = H - l fc=l &=1 

X [ n ( - £ 8Ek)-*l(-X 8£*)-i 

X - l j 

X E I K - Z ^ ) - 1 ] . (B4) 
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Square brackets have been used to distinguish the 
integrations and energy factors which belong to each 
of the G's in Fig. 2(b), while the remaining integrations 
and the factors in ordinary parentheses refer to the 
energy denominators between the G's. The main dif
ference from (Bl) is that now the hole-bubble ladder 
is on the energy shell. This is because *x+i is not re
stricted from below by h so that the integrand over 
/x+i does not receive any factor from integrations over 
preceding */s; the integrand is simply exp(i8E\+lt/h) 
and the lower limit is — °o. This explains the second 
square bracket in (B4). The two energy denominators 
between the three ladders are the same as before, and 
are equal to each other because 

£ 5E* = 0. (B5) 

For the same reason, in the first bracket in (B4) the 
sum over k from X + l to v may be omitted. 

When we now sum Fig. 17 over all intermediate 
states that can occur in each ladder, and then sum over 
diagrams having all possible numbers of v's in each 

FIG. 17. A time ordering of Fig. 16 permitted by the less re
strictive condition, Eq. (B3). The heavy line at /„ separates the 
interactions which belong to the top and bottom G matrices of 
Fig. 2(b). Time tv forms the upper limit for both t\ and /„_i. 

ladder, we obtain the single G diagram of Fig. 2(b), 
with the hole-bubble interaction taken on the energy 
shell. 

There is a further reason for the choice of time order
ing given by (B.3), beyond the fact that it leads to this 
useful result. I t turns out that (B3) generates all 
possible diagrams which may be considered as inser
tions in a hole line, such that the insertion part of the 
diagram is of first order in the density. This is because 
there is one hole state to be summed over in each of 
these insertions, viz., the hole n, in Figs. 16 and 17, 
and the number of possible holes is proportional to 
kp^^p. Hugenholtz3 has emphasized that the density 
is an appropriate expansion parameter, supplementing 
the expansion in powers of G. 

Suppose now that the condition tu<lv+\ were relaxed 
to t„<tu. Then it would be impossible to tell how many 
of the co+X— v interactions of the left-hand side of 
Fig. 17 contributed to the upper G of Fig. 2(b), and 
how many to the lower. To form the G's we must sum 
over all possible combinations of values of X, v—X, and 
co— v, but we must consider each possibility only once. 
Relaxing tv<tv+i to tv<ta would lead to a double sum
mation over the number of interactions in the upper 

FIG. 18. An iteration of the hole-bubble insertion of Fig. 2(b). 
The U(m) defined by a single hole bubble also identically cancels 
this diagram, provided that all hole bubbles are evaluated on the 
energy shell. 

left-hand ladder. Relaxing t\ <tv would lead to the same 
difficulty. If tv>t0} were permitted, the problem of 
overcounting would occur in a different form. I t would 
become impossible to tell which side of the diagram 
represented an insertion into the other side. Upon 
summing over all time orders, all intermediate states, 
and all numbers of interactions in each of the original 
ladders, each diagram of the form shown in Fig. 17 
would be counted twice. (Momentum conservation re
quires that tv>th or the diagram would vanish.) 

I t is clear from the derivation that the result (B4) 
is quite general. Any hole-bubble interaction can be 
put on the energy shell no matter how complicated the 
rest of the diagram in which it occurs. The arguments 
of the last paragraph may be generalized to show that 
a restriction similar to (B3) is quite reasonable for 
many higher order diagrams. Overcounting would not 
necessarily result from v diagrams which violated this 
restriction, since in a more complicated diagram other 
features might remain which would distinguish "in
sertion" from "reduced" parts, but these extra diagrams 
should be considered as parts of still higher order G 
diagrams, in order to retain this simplicity for the hole 
energies. As an illustration, we mention how iterated 
hole bubbles, such as Fig. 18, may be treated. Figure 19 
shows a typical v diagram contained in Fig. 18. If we 
take as the analog of (B3) the restriction 

tx<t,<ty<tP+h (B6) 

it is easily seen that the hole interactions are both on 
the energy shell and the energy denominators between 
the G's are the same as before. I t is interesting to note 
that time orders with / M + i < ^ are permitted, in which 
case three holes are simultaneously present in state m. 

I t is clear that the result (B4) is also valid in time-
independent perturbation theory, since the time in
tegration is merely a convenient way of combining the 
contributions from graphs with different orderings. We 
have derived (B4) purely algebraically, using a proof 
by induction, but this does not appear to be instructive. 

t, \L I V 

FIG. 19. A ^-interaction diagram contained in Fig. 18. The 
interactions are shown in the standard Goldstone order. Gen
eralizing the time ordering according to Eq. (B.7) leads to an 
on-energy-shell evaluation of the hole bubbles. 



264 B E T H E , B R A N D O W , A N D P E T S C H E K 

FIG. 20. Lowest order ordinary Goldstone diagram [excluding 
Fig. 2(b)] contained in an on-energy-shell evaluation of Fig. 
2(b). 

One thing that this shows, however, is that (B3) could 
be replaced by 

h<h+i<U+h (B7) 

which is not immediately obvious from the time inte
gration method. This statement corresponds to inter
changing top and bottom in diagrams like Fig. 17. 

We have discussed in Sec. 4 which types of conven
tional Goldstone diagrams are taken into account when 
we calculate Fig. 2(b) on the energy shell. A fairly 
general example is shown in Fig. 7. The lowest order 
conventional diagram [apart from Fig. 2(b)] is shown 
in Fig. 20. Now there is a rather similar diagram, Fig. 
21, which is apparently related to the particle bubble 
of Fig. 2(a) in the same way as Fig. 20 is to the hole 
bubble. The question therefore arises as to whether a 

FIG. 21. Another fourth-order Goldstone diagram. In contrast 
to Fig. 20, this contains different ^-matrix elements and an addi
tional independent hole line q. It cannot be generated from Fig. 
2 (a) by altering the time order. 

particle-bubble interaction can also be put on the 
energy shell. To answer this question, we must examine 
the ^-interaction ladder diagrams which are contained 
in the G-matrix diagrams. Figures 2(b) and 20 contain 
the same ^-matrix elements; they differ only in the time 
orders of the v's. On the other hand, it is easily seen 
that Figs. 2(a) and 21 involve different ^-matrix ele
ments. [Fig. 2(a) contains no matrix elements leading 
to state #.] There are no other Goldstone diagrams 
which contain the same ^-matrix elements as Fig. 2(a) 
(or Fig. 4) but which have different energy denomina
tors. Therefore, Fig. 2(a) must be taken at its face value 
and be evaluated off the energy shell. Figure 21 is a 

FIG. 22. Simplest generalization of Fig. 2(a) which contains the 
same number of independent hole lines. 

different type of diagram, and is proportional to a 
higher power of the density since it contains an addi
tional hole line, q. The only generalizations of Fig. 2 (a) 
that are of the same order in the density are of the 
form shown in Fig. 22. This is a " t rue" higher order 
(in G) diagram, but the possibility remains of con
sidering this approximately equivalent to an insertion, 
following Rajaraman's argument. The crucial point 
of this discussion is that the hole insertions, such as 
Figs. 2(b), 16, 18, and 19, naturally contain "kinks" 
in the Fermion line, m, so that the time order may be 
altered without changing the ^-matrix elements. There 
are no analogous "kinks" in Figs. 2(a) or 4. 


